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Abstract 

The classical method of numerically computing the 
Fourier transform of digitizedfunctions in one or in d- 
dimensions is the so-called discrete Fourier transform 
( D F T ) ,  efficiently implemented as Fast Fourier Transform 
( F F T )  algorithms. In m n y  cases the D F T  is not an ad- 
equate appmximation of the continuous Fourier transform. 
The method presented in this contribution provides accurate 
approximations of the continuous Fourier transform with 
similar time complexity. The assumption of signal period- 
icity is no longer posed and allows to compute numerical 
Fourier transforms in a broader domain of frequency than 
the usual halfperiod of the D F T .  In imagepmcessing this 
behavior is highly welcomed since it allows to obtain the 
Fourier transform of an image without the usual interfer- 
ences of the periodicity of the classical D F T .  The math- 
ematical method is developed and numerical examples are 
presented. 

1 Introduction 

The Fourier transform and its numerical counterpart. 
the discrete Fourier transform ( D F T ) ,  in one or in many 
dimensions, are used in many fields such as mathemat- 
ics, physics, chemistry, engineering, image processing, and 
computervision(4, 12. 11, 8, 14, I]. 

"The D I T  is of interest primarily because it approxi- 
mates the continuous Fourier transform" [4]. In this regard, 
the D F T ,  usually computed via a fast Fourier transform 
( F F T )  algorithm, must he used with caution since i t  is not 
a correct approximation in all cases [13, IO, 15, 61. As an 
example, for a function such as h ( 1 )  = e - s 0 t ,  t E [0,1], 
the error on D F T  { h }  around f = 64 decreases roughly as 
N - ' I 3 .  Hence, one must increase N by a factor of 1000 to 
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decrease the error by a factor of 10. 
One may increase the accuracy of the numerical Fourier 

transform when the number of sampled data points is lim- 
ited. This can be implemented through the assumption that 
the function from which the sampled data points are ex- 
tracted and its derivatives are continuous. In a sense, the 
sampling process performed through the Dirac comb [4] 
isolates each data point, rendering them independent from 
each other. The function and its derivatives are no longer 
continuous. By re-establishing the continuity between sam- 
pled points. a method that yields a highly accurate numeri- 
cal Fourier transform can be devised. 

2 Theory 

Let t  E W and f E W. As usual, C is the field of com- 
plex numbers, W is the set of real numbers, N the set of 
nonnegative integers and PI* = M\ (0) .  Let us define two . - . .  . 
rectangular functions: 

R ( t )  = x (t  - 0-) x (-t + T+) 

S (1) = x ( t )  x (-t + T) I 
and 

where x i s  Heaviside's function, and let 

0- = lirn (0 - E )  , T: = lirn (Ta 
S i 0  c+n 

Let g : R + (R or C) he a continuous function which 
admits derivatives of any order for all t such that S ( t )  # 0. 
Let us now define the function 

h ( t )  = R ( t )  9 ( t )  (3) 

and adopt the following definition of Fourier transforms 

F { h ( t ) ) = /  I ~ ( t ) e - ' ~ " f * d t  (4) 
R 

In virtue of Heaviside's and Dirac's delta functions proper- 
ties 112. SI, the nth derivative of h with respect t o t  is 

h(") ( t )  = x ( t  - 0-) x (-t + T') g(") ( t )  + D, ( t )  ( 5 )  
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in which D, ( t )  is defined as sums on j and p.  we obtain: 

D, (1) = 
0 if n = O  

( $ w ( O - ) 6 " - m - ' ( t  - 0-) { Zb 
- g ( m ) ( ~ + ) ~ " - ~ - I ( t  - T + ) )  if n E N* 

(6) 
Eq. ( 5 )  and (6) express the fact that the nth derivative 

of h with respect to 1 is the ordinary nfh derivative of the 
function h strictly inside the rectangular box where it is con- 
tinuous and differentiable, in addition to the nth derivative 
of h in the region where it is discountinuous. 

According to our definition of the Fourier transform, we 
have: 

We can expand the integral in (7) into parts to form: 

The sum of the first and last integrals of the right handside 
of (8) is clearly 7 { D, (t)}.  Hence, (8) becomes: 

T 

F { h l n ) ( t ) }  = / h ( " ) ( t ) e - " " l t d l + F { D .  ( t ) }  (9) 
n 

By separating the interval [0, T ]  into N equal At = T I N  
subintervals. (9) can be rewritten as: 

(10) 
Since h(") ,  between and at 0 a n d T  is continuous and differ- 
entiable, it can be approximated, fo r t  E IjAt, ( j  + 1) At].  
for each j E [0, N - 11 , by a Taylor expansion: 

where hi.'"'is the mfh derivative of h at the point t = jA t .  
Merging ( I O )  and (1  I ) ,  using the substitution r = t - jAt 
and performing the adequate permutation of the integral and 

To numerically compute the Fourier transform of h, we 
must evaluate it for some discrete values of f .  Let f = 
kAf = k/T , k E N be these discrete variables. 
In addition, let us define Hk as the discrete version of 
7 { h(")  ( t ) )  . The integral in (12) depends only on the var-  
able f (or k) and on parameters p and At and can be evalu- 
ated analytically, whether f is continuous or discrete, once 
and for all, for each value of p as: 

Since the integral in the definition of Ip is always finite 
and. in the context of Gamma function [9] ,  p! = foo when 
p is a negative integer then I, = 0 for p < 0. 

The summation on j in (12). when f = kAf = k/T 
is the discrete Fourier transform of the sequence h y " ) ,  
j E [0,  N - 11 C N [4]. We denote it as Fp+,,,k. Since 
At = T I N  and f = k/T we have: 

N-1 

Fp+n,k = hiP+")e-'z"% (14) 
j=n 

Substituting (13) and (14) in (12). we obtain the follow- 
ing result: 

.F {h'") ( t ) }  = 2 IpFptn, l ;  + F { D ,  ( t ) }  (15) 
p=n 

When n = 0, (15) becomes: 

m 

Hk = IpFp,k (16) 
p = O  

Now, integrating by parts the right hand side of (7) yields: 

7 { h("+ ' ) }  = i27rf7 { h ( " ) }  (17) 

Defining b, = i27rf7 { Dn} -+{D.+l} ,combining (15) 
and (17) and reorganizing the terms yields: 

m 

- i 2 a f I O F n , k + x  ( I ( p - ~ )  - i27rf1,) Fp+& = b, (18) 
p=1 

With the following definition: 

J ,  = I - - ,  - i 27r f I ,  (19) 
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(1 8) becomes: 

m 

p=1 

Given the definition of g and h. we have g(") (0-) = 
g(") (0) = h(") (0) andg(") ( T t )  = g(") (T) = h(") (T). 
Using these facts in addition to the properties of Fourier 
transforms and those of Dirac delta functions [ 5 ] ,  expanding 
b, results in the simple following form: 

In the discrete context, where f = k IT, (21) takes a simple 
form: 

b, = h(") (T)  - h(")  (0) = h$) ~ h g )  (22) 

Up to this point, all equations are rigorously exact since 
p tends towards infinity. However, in practical situations we 
introduce approximations by limiting the range on p. Let 
us define H E N. the truncating parameter. We refer lo 
i t  as the order of the system. Let us expand (20) for each 
value of n E [O,  B - 11 c N. This generates a system of 
Q equations, and for each of these we let p range from 1 to 
Q - n.  Thereafter, the terms are reorganized to obtain the 
following system, which is written in a matrix form: 

or more compactly as: 

MhFh Y B + C 

The general expression for elements of Mb is: 

( M h ) p v  = J,-,+I 

Let us now write (24) as: 

Fh Y Mh' (B + C) 

With (28). we approximate the Fourier transform (or the 
inverse Fourier transform) of a digitized function in one di- 
mension. The digitized Fourier transform calculated with 
(28) is not band limited (as with the DFT which is period- 
ical). Eq. (28) remains valid and accurate as an approxi- 
mation of the analytical Fourier transform for all positive or 
negative values of k (or f ) [ 2 ] .  

Eq. (28) contains the symbolic form of F h  which can be 
used as is to form a single equation without having to nu- 
merically evaluate each term of Fb separately. On the other 
hand, if, for instance, (26) is used to numerically compute 
each term of F b  for values of k from 0 to N - 1, it produces 
Q different sequences of numbers which are approximations 
of the DFT of the derivatives h:p), for values of p E [l, Q]. 
Thus, applying the inverse DFT operation to each of these 
sequences generates the corresponding sequences h:p) that 
are the numerical derivatives of order 1 to Q of the initial 
function h:n). This implies that one can numerically com- 
pute the derivatives of any order of a digitized function or 
signal [2]. 

Derivatives calculated in that manner are continuous in- 
between and at each data point. We obtain spline polynomi- 
als of any odd degree, with their corresponding properties, 
merely with the use of a classical DFT ( F F T )  [2]. Such 
high-order spline interpolation polynomials allows integrals 
between any limit to be accurately computed [2]. 

1 

Provided a numerically known matrix B (see next sec- 
tion on boundaries conditions). the values of FD are then 
obtained from (26). Hence, the terms in (16), for p E [O,Q]. 
are completly determined, and the truncated version of (16) 
can be written as: 

(27) 

Let us define a one row matrix Is  = [I, I 2  . . . Is], and 
write (27) as follows: 

H k  Y 1nFn.k + l e F h  ( 2 8 )  

3 Boundary conditions 
0 ' 1  
0 1 
(23) 

Eq. (26) requires the values of B to be properly com- 
puted. Eq. (22) shows that the values of B are directly 
related to the values of the derivatives of different orders at 
both ends (0 and T) of the function. The computation of 
such derivatives based on a few data points near the bound- 
aries of the function is known to be a crude and often in- 
accurate method. In [21 and [3], a method based on a11 the 
data points of the function has been devised, resulting in 
high numerical accuracy. The drawback is that sometimes a 
limitation on the order H of the system is implied. Most of 
the time that limitation is harmless but, in image processing. 

(24) 

(26) 
it may happen that Q < 1. To overcome that inconvenient, a 
more robust method that still uses the information from all 
data points of the function has been devcloped.. This method 
is based on the fact that the numerical Fourier transform pre- 
sented in this paper gives the derivatives of any order up to 
Q of the initial function. Furthermore, as mentioned earlier, 
these derivatives form spline polynomials of degree H that 
interpolate the sampled initial function h j ,  Hence it is possi- 
ble to compute a spline norm [7] that contains the boundary 
conditions (B) as parameters. It is then possible to adjust 
these parameters to minimize the spline norm. Limitation 
on space does not permit to go through1 all the mathemati- 
cal details of the method. However let us briefly show the 
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main operational equations. 

the boundaries conditions is given by: 
The one column vector or the 0 x 1 matrix B that contains 

S is the following three-summation operator: 

. .  
In (29) we define the matrix as follows: El = 
[Ellj . . .ElejlT and EL =   EL^^ , . . E ~ e j ]  in which 
T means the tranmose (not coniuaate) and the over- 

T .  - - 

_ _  . 
bar means the complex conjugate. In addition, Aij = 
D-' { - P I I J O F , ~ } ~  and Ei,j = {q im}j .  D-' stands for 
the inverse discrete Fourier transform. The term qim repre- 
sents the element in the l th row, ,nth column of the matrix 
hi;'. All the elements, except A that depends on h, depend 
on the parameters (A', T )  of the function and not on the ac- 
tual values h j  of the function. Hence, they are computed 
only once. 

4 Time complexity 

A close examination of (23) and (28) reveals that the 
computation of only one classical F F T  is required. The 
other terms form a correcting operation to be applied once 
on each of the N values of the F F T .  The time complex- 
ity of the entire correcting operation is 0 ( N )  and the time 
complexity of the FFT is 0 ( N  log N )  . Hence, the time 
complexity of the entire algorithm is 0 ( N  log N )  when 0 is 
kept constant. The time complexity relatively to @the order 
of the system, is 0 ( O * ) .  However, the error E on computed 
results decreases exponentially with an increase of the or- 
der 8. The method can be applied sequentially to compute 
d-dimensional Fourier transforms. In the multidimensional 
case, for each a E { 1 , 2 ,  . . . , d }  we have t, E [O, T,]. This 
interval is separated into Ne equal At, = T e / N e  suhin- 
tervals. and f a  = kaAf, = k,/T,. As with the ordi- 
nary D F T  ( F F T ) .  the order in which the dimensions are 
treated is irrelevant. The number of times (28) has to be 
applied to completely compute the d-dimensional Fourier 
transform is: 

1 d d 

PQ where P = n N ,  and Q = - (31) 
, = I  p=1 

The time complexity is then 0 (P  log P) . Let us consider 
N ,  = o , N ,  V a ,  a, as constants. Then it is easy to show 
that the time complexity is 0 (Nd  log N )  which is the same 
as for the D F T  in d-dimensions. 

5 Examples in 1 dimension and on image 

In this section, an example in one dimension i s  used to 
illustrate the algorithm and an image processing example 
is presented. The one dimensional function is a decaying 
exponential (exp(-50t)) representing a frequent situation 
in images where values changes rapidly within a few pix- 
els only. Figures 1 shows, respectively, the classical D F T  
and the new discrete Fourier transform ( N e w D F T ) ,  both 
evaluated from the N = 64 data points of the exponential 
decay. The usual periodical behavior of the D F T  is evident 
and the absence of periodicity of the N e w D F T  is clearly 
seen. The same figure also shows the percentage of error 
of the D F T  (fairly computed on the first half of the period 
only) and the error of the N e w D F T  computed on the full 
number of data points. The error of the DFT is between 
40% and 120% while the error of N e w D F T  (with 6 = 9 ) 
is between 0.05% and 0.25%. 

Figure 2 shows the image of a simple occlusion scene 
involving two sine plaids, for which the Fourier transform 
must be computed to reveal the frequency structure of the 
occlusion. This type of images is relevant to theoretical 
and practical studies in image processing [ I ] .  The same 
figure also shows the D F T  and the N e w D F T  (0 = 3) 
of the sine plaid occlusion scene. It should be noted that 
the initial signal is 64x64 and the transformed signals have 
beencomputed on 128x128 data pointscentredon the origin 
( f l ,  f2) = (0,O). One can clearly see the repeated lines and 
peaks due to periodicity of the classical D F T .  On the other 
hand, the N e w D F T  completely eliminates that annoying 
behavior. Even on an extended number of data points, the 
N e w D F T  gives an excellent approximation of what would 
be the analytical Fourier transform (often difficult if not im- 
possible to compute) of the image. 

6 Conclusion 

The method presented in this contribution provides ac- 
curate approximations of the continuous Fourier transform. 
is no longer periodical and yields a broader frequency do- 
main than the usual half-period of the D F T .  The method 
gives accurate numerical partial derivatives of any order and 
the polynonial splines of any odd degree with their opti- 
mal boundary conditions. The time complexity is the same 
as for the F F T .  The time complexity, relatively to 6 (in- 
dependent of the time complexity related to N )  is 0 (@*) 
while the accuracy increase exponentially with 0. Hence, 
the numerical accuracy increases much more rapidly than 
the computational cost of the proposed method. Finally, re- 
sults show that a significant improvment is accomplished in 
image processing throught the complete elimination of pe- 
riodicity in the computed numerical Fourier transform. 
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D F T  (top) and N e w D F T  (bottom) Error on D F T  Error on NewDFT 

Figure 1. Classical discrete Fourier transform ( D F T ,  top curve) and discrete Fourier transfom given 
by the new method ( N e w D P T ,  bottom curve) and percentage of error on D F T  computed on the first 
half of data points only and percentage of error on N e w D F T  computed on the full range of data 
points. The exact Fourier transform is not shown since it is indistinguishable from N e w D F T .  

Occlusion DP3' of  occlusion : V r w l ) l ~ ' l '  01 occlusioii 

Figure 2. Occlusion of a two dimensional signal by an another of different frequency and orientation 
and the discrete Fourier transform of the occlusion computed with the classical D F T  and with the 
N e w D F T .  
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