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Abstract

Events such as atmospheric gas dispersion by industrial accidents

or processes are generally predicted with Gaussian plumes, coupled

with local models of gas emission. In this contribution we inves-

tigate the association of integral models of instantaneous emission

with Gaussian dispersion processes for predicting the progression of

potentially hazardous low-altitude emissions over sensitive or popu-

lated areas. We develop a novel, more accurate approach suitable for

dynamic, high spatial resolution atmospheric conditions by means

of gas plume fragmentation and parallel estimation of extent and

concentration.
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1. Introduction

Because of its simplicity, the Gaussian dispersion model
is often used for predicting the progression of atmospheric
gas plumes [1–3]. This model relies on a number of
hypotheses to determine the path and spread of plumes,
the most fundamental stating that the dispersion must be
passive, which is equivalent to considering the gas density
as roughly the same as that of the surrounding atmosphere.

Before reaching the stage of passive dispersion, initial
conditions of gas emissions are often addressed differently,
as various gases may have densities differing from ambient
air (depending on molecular weight, temperature, altitude
of emission, and so on). Failing to consider such parameters
in the early stages could result in considerable prediction
errors, either in concentration levels or geographical spread.

The use of Gaussian dispersion models requires that
terrain be free of significant obstacles such as skyscrapers
or mountain ranges, or that the altitude of the emission
source be sufficiently high to ignore obstacles. Other
hypotheses include the absence of atmospheric turbulence
and gas densities which minimize the effect of gravity on
the plume. Under such conditions, the dispersion results
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are usually considered correct from approximately 100m
from the emitting source and beyond [4].

Hence, in our low-altitude emission framework, the sole
use of a Gaussian dispersion model is clearly inadequate.
A local emission model for the source is required, and
we adopt the integral model as an instantaneous emission
source, which aptly provides the initial conditions for the
Gaussian dispersion simulation. An additional hypothesis
pertaining to the integral model requires that gas emission
be relatively significant, generally in the order of a few
m3/s. A gas cloud following an integral model evolves
at very small spatio-temporal scales while compared with
the much larger dispersion extents inherent to a Gaussian
model. However, the integral model is required, if only
to provide the dispersion process with adequately realistic
initial parameters.

The integral model employs a stack of cylinders, de-
scribing volumes (or puffs) containing gas particles. These
puffs are updated through an iterative process until they
reach the density of the surrounding air. Ultimately, puffs
with such densities are injected in the stack of the Gaus-
sian model, for large-scale dispersion computations to
begin.

To combine the integral and Gaussian models while
preserving a relative flexibility, we choose an approach in
which both models share common environmental param-
eters, operating over a discretized grid map describing
dynamic atmospheric and terrain conditions. At each it-
eration, the combined model updates the environmental
conditions and the characteristics of emission sources, and
injects gas puffs in the integral or Gaussian model. Results
are expressed as concentration and dispersion grids over
the region of interest.

This contribution presents a combined integral–
Gaussian model which includes Gaussian puff fragmenta-
tion. The process of fragmentation consists of breaking up
large Gaussian puffs into sets of smaller ones, to increase
the accuracy of plume simulations: Gaussians puffs cover-
ing large geographical extents (1 km or more) are generally
subjected to spatially variable winds within their extent,
while puffs with smaller extents are less likely to suffer
from this phenomenon. Consequently, a plume composed
of many small puffs will evolve along the prevailing winds
more accurately than plumes composed of puffs with
significant extents.
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We proceed by presenting a survey of the related lit-
erature, the integral and Gaussian models, the fragmenta-
tion process, and experiments from our atmospheric plume
simulator.

2. Related Literature

Several models of passive air dispersion exist, and they may
be organized according to their level of mathematical com-
plexity [2]. Among the typical classes of dispersion mod-
els, we find: gross screening models, intermediate models,
and advanced models, as per their degree of mathematical
sophistication.

Gross screening models are those that require the sim-
plest tools and are generally used in the absence of more
elaborate models to make worst-case predictions [2]. The
sophistication of the input data is minimal and allows emer-
gency planners to make crude estimations in a minimum of
time. For instance, this class of models includes Hanna et
al.’s work on the estimation of worst mean concentration
downwind from a point source [5].

Intermediate models are able to take into account
atmospheric stability classes and wind speed as inputs.
This class is represented by models such as the diffusion
equation, which describes smoke behaviour in turbulent
air flows [6]. Analytical solutions to this diffusion equation
include the Gaussian plume model in its simplest form for
continuous point sources [3].

The Gaussian plume model is central to the modelling
of atmospheric diffusion, and one of the remaining diffi-
culties associated with its use is the determination of ade-
quate diffusion coefficients (Gaussian standard deviations),
which depend on local conditions at and around the site of
release. This problem has been investigated since the first
uses of this model. For instance, Barad was one of the first
to determine adequate values for the diffusion parameters
in prairie-like terrain conditions [7, 8]. Based on this work,
Pasquill and Gifford proposed coefficients for releases at
low altitude over relatively obstacle-free terrains [9, 10].
They examined the turbulence created by the heating of
the atmosphere from the ground and defined atmospheric
stability classes, for both daytime and night-time releases.
While Pasquill and Gifford’s results could be used over rel-
atively flat terrains, McElory and Pooler contributed coeffi-
cient curves and tables for diffusion in urban environments
which were much needed at the time [11].

Elaborate diffusion coefficients may also be derived
when atmospheric conditions are known with precision.
For instance, Draxler and others have related the values
of the coefficients to velocity variation directly [12–14], to
account for the increased turbulence and dispersion these
fluctuations create.

Advanced models of passive diffusion include complex
atmospheric phenomena such as plume ground reflection,
elevated inversion, advection velocity, and plume rise with
down-wash [2]. In the case of ground reflection, an elevated
release will diffuse vertically until the bottom of the plume
reaches the ground, where gas particles are reflected, or
absorbed. In addition, as the plume elevates, it may
reach an atmospheric temperature inversion, effectively

dampening its ascension. When both phenomena are
combined, the plume mostly remains in a layer comprised
between the ground and the inversion. In practice, the
concentration in the layer tends to reach uniformity, and
can be estimated accordingly [3]. More recently, techniques
have been designed to account for situations in which a
plume is only partially reflected by an inversion [15].

From the ground to low altitudes, wind speed varies
logarithmically and in turn influences plume velocity [16].
This effect is generally approximated with a power law, in
which the value of the exponent is strongly influenced by
the atmospheric stability class and the ground roughness,
as noted by Irwin [17]. Atmospheric stability also has
an effect on the mean wind profile and is taken into
consideration by advanced passive diffusion models, using
the Monin-Obukhov scale of meteorological parameters [5].

Initial release momentum and plume buoyancy gener-
ally cause a plume to rise rapidly, before prevalent winds
make it bend in the downwind direction. Corrections
have been suggested to include release momentum and
buoyancy in advanced models by considering the effective
height of the release, which varies with the intensity of the
down-wash [18]. Simplifying assumptions, introduced by
Davidson, must be posed to obtain closed-form equations
for buoyant plumes [19].

While these techniques improve the performance of
passive diffusion models, a problem subsists when the
spatial extents of Gaussian puffs become so large as to
encompass regions in which atmospheric conditions may
vary substantially. Our research addresses this problem
by establishing a Gaussian puff-breaking technique which
may be employed to keep the maximum size of puffs
as a constant, resulting in plumes composed of elements
small enough to remain under consistent meteorological
conditions.

3. The Integral Model

Once a dense gas is emitted, it enters a gravity flow stage
where it collapses under its own weight for a period of time,
until the ensuing entrainment of air (and possibly heating
by solar radiation) dilutes the gas sufficiently to enter a
passive dispersion stage. At this point, the cloud forms a
layer which is in contact with the ground. Air flow then
becomes the dominant factor involved in the dispersion of
the cloud. The gravity flow stage for an instantaneous gas
emission is generally modelled with a vertical gas cylinder
whose properties, such as the atmospheric entrainment of
air it creates, dimension, temperature, volume, and density
may be estimated over time with the integral model. Fig. 1
shows such a cylinder undergoing gravitational collapse.

The radius of the cylinder corresponding to the in-
stantaneous emission is expected to grow, as the gas cloud
collapses under gravity. As this process takes place, the
difference between the air and the gas densities diminishes
to reach a point in time when the radius of the cylinder
becomes stable [20] (at ρ= ρa)

1:

1 A complete description of the variables and their units is given
in Appendix A.
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Figure 1. Collapse of gas cylinder under various environ-
mental and gravitational effects.

R′ = K

√
gH

ρ− ρa
ρa

(1)

The total mass of air entrained by the gas cloud, which
significantly contributes to its dilution, evolves in time at
a rate given by:

M ′
a = πρa

(
R′2α1HR+R2α2

Ut

R1

)
(2)

The entrainment of air is a function of the areas of the edge
and top of the cylinder, as well as the speed of turbulent
air.

The temperature of the cloud is influenced by various
factors, the most significant being the temperature of the
ground (Q1) with which the gas is in contact, and the
temperature of the surrounding air (Q2):

T ′ =
Q1 +Q′

2

MaCa +MgCg
(3)

It is assumed that turbulent convection is the means by
which heat is supplied to the gas from the ground:

Q1 = α3(T − Ts)
4
3 (4)

The heat transfer between the air and the cloud is expressed
as:

Q′
2 = M ′

aCa(Ta − T ) (5)

From previous equations, we can derive the volume, height,
mean concentration, and density of the cloud:

V =
Ma +Mg

ρ
(6)

H = π
V

R2
(7)

C =
Mg

V
(8)

ρ = T (Ma +Mg)T
−1
a

(
Ma

ρa
+

Mg

ρg

)−1

(9)

The integral model is adequately suited for dense gas
dispersions until the difference in gas and air densities
becomes negligible. At this point, the model provides the
initial parameters to a passive dispersion calculation, such
as that carried out by a Gaussian model.

4. The Gaussian Model

The simplest form of atmospheric dispersion is passive.
Nonetheless, determining the standard deviations for the
Gaussian model in realistic cases remains a complex and
experimental problem. According to Pasquill’s experi-
ments [9, 21], the initial standard deviations σy and σz

(the crosswind and the vertical dispersion coefficients2,
respectively) for the Gaussian model can be computed as:

σy or σz = axb + c (10)

where x, the distance from the source, is expressed in
kilometres. Values for parameters a, b, and c are obtained
from Tables 1 and 2, according to six atmospheric stability
classes, from A (very unstable) to F (very stable). The
values of these parameters differ whether σy or σz is
computed. Atmospheric stability depends on factors such
as wind speed, incident solar radiation, cloud cover, and
possibly ground roughness at low altitudes. Tables 3 and
4 give the atmospheric stability class as a function of wind
and solar radiation for daytime and as a function of wind
and cloud cover for night-time. Once σx, σy, and σz are
computed and the simulation is ongoing, concentrations
may be estimated at a given time step with the following
Gaussian:

C(x) =
M

(2π)
3
2 detS

exp

{
−1

2
[S−1(x− xc)]

TS−1(x− xc)

}
(11)

where

S =

⎛
⎜⎜⎜⎝

σx 0 0

0 σy 0

0 0 σz

⎞
⎟⎟⎟⎠

is the matrix of dispersion coefficients. Concentration is
obtained at x=(x, y, z)T while the centre of the Gaus-
sian is located at xc =(xc, yc, zc)

T . As the wind pushes
the Gaussian cloud, its centre is updated with the pre-
vailing wind velocity vector u. In addition, the distance
x from the source to the centre of the Gaussian cloud is
recomputed as3:

2 Pasquill assumed σx =σy , which is a reasonable hypothesis for
crosswind dispersion.

3 The initial dispersion coefficients for the Gaussian are provided
by the integral model after the gas cylinder has collapsed.
Hence, the position of the source is said to be virtual, as it
does not reflect the position of the gas cylinder.
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Table 1
Standard Deviations According to Pasquill’s Atmospheric
Stability Classes, for Passive Dispersions under 1 km [21]

x≤ 1 km

Class σ a b c

A σy 0.215 0.858 0.00
σz 0.467 1.890 0.01

B σy 0.155 0.889 0.00
σz 0.103 1.110 0.00

C σy 0.105 0.903 0.00
σz 0.066 0.915 0.00

D σy 0.068 0.908 0.00
σz 0.032 0.822 0.00

E σy 0.050 0.914 0.00
σz 0.023 0.745 0.00

F σy 0.034 0.908 0.00
σz 0.014 0.727 0.00

Table 2
Standard Deviations According to Pasquill’s Atmospheric
Stability Classes, for Passive Dispersions over 1 km [21].
Standard Deviations for Classes A through D are as

per Table 1

x> 1 km

Class σ a b c

E σy 0.050 0.914 0.00

σz 0.148 0.015 −1.126

F σy 0.034 0.908 0.000

σz 0.031 0.306 −0.017

Table 3
Daytime Atmospheric Stability Class as a Function of

Wind and Solar Radiation

Wind Solar Radiation (Wm2)

(m/s) ≥925 925–675 675–175 ≤175

<2 A A B D

2–3 A B C D

3–5 B B C D

5–6 C C D D

>6 C D D D

x =

(
σx − c

a

) 1
b

(12)

This description of the Gaussian model accounts for
one instantaneous emission of gas only. A source emit-

Table 4
Nighttime Atmospheric Stability Class as a Function of

Wind and Cloud Cover

Wind Cloud Cover (%)

(m/s) ≥50 <50

<2 F F

2–3 E F

3–5 D E

>5 D D

Table 5
Values for z′0 Depend on Terrain Roughness

Flat Terrain z′0 = z0

Agricultural Land z′0 ≈ 0.10m

Garden Area z′0 ≈ 0.30m

Residential Area z′0 ≈ 1.00m

Urban Area z′0 ≈ 3.00m

ting in a continuous fashion must be modelled differently.
The instantaneous integral and Gaussian models can be
extended to include series of instantaneous emissions over
time, each emission at time ti possessing its own mass of gas
Mi. Hence, to simulate a continuous emission, the integral
model is fit with a gas cylinder stack while the Gaussian
model receives a puff stack. Each new emission is placed in
the gas cylinder stack, where the simulation begins. When
a cylinder has reached relative stability, its parameters are
fed into the puff stack of the Gaussian model, where it is
left to develop according to prevailing environmental con-
ditions. The resulting set of instantaneous emissions forms
a plume governed by passive dispersion.

These models are obvious simplifications of environ-
mental reality which entails more complex phenomena such
as ground reflection and roughness, and particle fallout [4].

4.1 Ground Roughness

Variations in terrain quality, from plains to dense urban ar-
eas, affect the dispersion of gaseous puffs through increased
turbulence. A correction, applied to the dispersion coeffi-
cients and introduced by Pasquill and Smith [21], amounts
to computing the coefficient σz as:

σz = (axb + c)

(
z′0
z0

)0.53x−0.22

(13)

where z′0 is a measure of ground roughness expressed in m,
and z0 is a constant set to 0.03m. Table 5 indicates appro-
priate values for z′0 with respect to terrain characteristics.
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4.2 Ground Reflection

The ground may not entirely reflect gas particle fallouts,
depending on gas and terrain properties. In light of
this, a reflection correction is introduced, accounting for
the resulting reduction in concentration as gas particles
precipitate to the ground. This correction transforms the
exponential in z from (11) into:

exp

{
− (z − zc)

2

2σ2
z

+ ρ
(z + zc)

2

2σ2
z

}
(14)

where zc is the emission height in metres and ρ is ground
reflection coefficient.

The rate of change in gaseous mass due to fallout can
be obtained with:

M ′ =
(r − 1)M√

2π

(
σz

z2 + 2σ2
z

+
1√
2
tan−1 z√

2σz

)
(15)

evaluated between zc and zc +
σz|t+δt

σz|t . Coefficient r repre-

sents ground reflection, which assumes values between 0.0
for no reflection, up to 1.0 for complete reflection.

4.3 Model Interface

There are several ways of combining the integral and the
Gaussian model [21], and we adopted a method which poses
the least number of hypotheses on the emission process.
Once a gas cylinder has collapsed under gravity and its
density has become similar to that of the surrounding
air, the simulation must then turn to a passive mode, in
the form of a 3D Gaussian puff. The interface resides
in determining the initial parameters for the Gaussian
from the integral model. At this critical stage, the gas
mass must be conserved, and the parameters that require
adjustments are the dispersion coefficients that are found
in the covariance matrix S of (11). Experiments have lead
to the following relationships between the cylinder height
and radius and the dispersion coefficients [4]:

R = 2.14σy (16)

H = 2.14σz (17)

The initial position of the puff is given by the coordinates
of the centre of the collapsed cylinder. In the passive
mode of diffusion, the parameters requiring updating are
the position of the puff, its mass (due to fallout), and its
dispersion coefficients, from environmental variables such
as ground roughness, reflection, direction and speed of
prevailing winds, and so on.

5. Puff Fragmentation

The Gaussian model, when used to predict continuous
emissions, possesses a relative adaptability as each puff
evolves with respect to its local environmental conditions,
provided that these are available on such a local scale.
Over time, the scale of Gaussian puffs increases to a point

Figure 2. The positional symmetries of the top layer puffs
starting at the bottom centre of the initial cloud.

Figure 3. The positional symmetries of the middle layer
puffs starting at the bottom centre of the initial cloud.

Figure 4. The positional symmetries of the bottom layer
puffs starting at the bottom centre of the initial cloud.

where atmospheric conditions within their extent may vary
significantly. To account for such variation, an effective
approach consists of fragmenting large Gaussian puffs into
smaller ones, while preserving the properties of the plume,
such as spread and concentration. The original Gaussian
puff prior to the fragmentation is represented by an ellip-
tical sphere. We use a hexagonal sphere packing scheme
to create a group of elliptical spheres, each a Gaussian
puff, with a distribution as close to the original Gaussian
as possible. This fragmentation ensures a minimal number
of elliptical spheres with relative positional symmetries.
Figs. 2–4 show such a fragmentation, along with positional
symmetries of the sphere centres for an initial Gaussian
puff centreed at coordinates xc =(0, 0, 0)T .
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Figure 5. The computation of sphere centres. (a) The
radius of the inscribed equilateral triangle formed by the
centres of spheres r0, r1, and r2, yields the x, y coordinates
of sphere r7 from the top layer and (b) the height of the
tetrahedron formed by the centres of spheres r0, r1, r2,
and r7 yields the z coordinate of sphere r7.

5.1 Computing Gaussian Sphere Centres

Let C(x) be a 3D Gaussian with covariance matrix S, as
in (11). After fragmentation into a hexagonal packing, the
13 resulting Gaussians have covariance matrices Sf =

2
3S

with the centre coordinates of the centre Gaussian set to
r0 =(0, 0, 0)T . The x, y plane contains the centres of the
six Gaussians surrounding r0, labeled clockwise from r1 to
r6 starting with the top one on the y-axis, as per Fig. 5(a).

The centre coordinates of Gaussian r1 are immediately

obtained as: r1 =S
(
0, 2

3 , 0
)T

. The rightmost point of the
dotted equilateral triangle with side 2r

(
or 2

3

)
shown in

Fig. 5(a) yields the x, y coordinates of Gaussian r2. The
y coordinate is equal to r

(
or 1

3

)
, and the x coordinate

is obtained as x2 + r2 =(2r)2. Hence, x=
√
3
3 and the

centre of r2 is S
(√

3
3 , 1

3 , 0
)T

. The centre coordinates

of r3 and r4 are obtained by folding around the x-axis

as r3 =S
(√

3
3 , −1

3 , 0
)T

and r4 =S
(
0, −2

3 , 0
)
. The centre

coordinates of r5 and r6 are obtained by folding around

the y-axis as r5 =S
(

−√
3

3 , −1
3 , 0

)T
and r6 =S

(
−√

3
3 , 1

3 , 0
)
.

The top layer consists of three Gaussian spheres that
are packed hexagonally from the central layer, as in
Fig. 5(b). The first sphere r7 is in contact with central
layer spheres r0, r1, and r2 and its x centre coordinate is
given by the radius of the inscribed circle inside the dotted

triangle:
√
3
9 . As the sides of the triangle are 2r in length,

the y coordinate is given by r or 1
3 . The z coordinate can

be obtained as the height of the tetrahedron of side 2r
formed by the centres of Gaussian spheres r0, r1, r2, and

r7 as
2
√
6

9 (depicted in Fig. 5(b)). Hence, the coordinates of

r7 are S
(√

3
9 , 1

3 ,
2
√
6

9

)T
. Progressing clockwise, the second

sphere r8 of the top layer is in contact with spheres r0, r3,
and r4 from the central layer, and its centre coordinates

are obtained by folding the x-axis: r8 =S
(√

3
9 , −1

3 , 2
√
6

9

)T
.

Sphere r9 is in contact with spheres r0, r5, and r6 of the
central layer. Due to its placement, the y coordinate of the
centre of this sphere is simply 0. In addition, because the
three Gaussian spheres from the top layer are equidistant
from the point (x, y)= (0, 0), its x coordinate is obtained as
the negative of the length of the segment from (x, y)= (0, 0)
to the centre of sphere r7, projected onto the x, y plane:

−2
√
3

9 . Hence, r9 =S
(

−2
√
3

9 , 0, 2
√
6

9

)T
. Fig. 6(a) shows the

final placement of the Gaussian spheres from the top layer.
As there are only two ways of placing the top or the

bottom layer with respect to the central one, we chose to
place the bottom layer in a different configuration from
the top layer, to achieve symmetry of concentration in the
Gaussian sphere pack. To this end, sphere r10 is placed
such as to create contact with spheres r0, r1, and r6 from
the central layer. Its centre coordinates are immediately

obtained by symmetry as r10 =S
(

−√
3

9 , 1
3 ,

−2
√
6

9

)T
. The

centres for r11 and r12 are obtained symmetrically as

r11 =S
(

2
√
3

9 , 0, −2
√
6

9

)T
, and r12 =S

(
−√

3
9 , −1

3 , −2
√
6

9

)T
.

Fig. 6(b) shows the final placement of the spheres from
the bottom layer, while Figs. 2–4 show the positional
symmetries of the Gaussian sphere pack.

5.2 Error Minimization

This Gaussian puff fragmentation scheme must maintain
essential properties such as the conservation of both the
total gaseous mass and the geographical distribution of
concentrations. To this end, our initial, empirically deter-
mined approximation consists of a central puff containing
21.81% of the initial gaseous mass with the remaining 12
puffs containing 6.52% each. The dispersion coefficients
σx, σy, and σz from each of the 13 puffs are set to 2

3 of the
initial cloud coefficients, while the sphere centres are set
to kfri:

C =
M

(2π)
3
2 detS

exp

{
−1

2
[S−1(x− xc)]

TS−1(x− xc)

}

≈
12∑
i=0

Mi

(2π)
3
2 detSf

exp

{
−1

2
[S−1

f (x− xc − kfri)]
T

S−1
f (x− xc − kfri)

}
(18)
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Figure 6. (a) The top layer sphere arrangement and (b)
the bottom layer sphere arrangement.

where Sf = kσS, kσ =
2
3 , kf =π

2
3 ,

Mi =

⎧⎨
⎩0.218107 if i = 0

0.065158 otherwise

and

r0 = S(0, 0, 0)T

r1 = S

(
0,

2

3
, 0

)T

r2 = S

(√
3

3
,
1

3
, 0

)T

r3 = S

(√
3

3
,
−1

3
, 0

)T

r4 = S

(
0,

−2

3
, 0

)T

r5 = S

(
−√

3

3
,
−1

3
, 0

)T

r6 = S

(
−√

3

3
,
1

3
, 0

)T

r7 = S

(√
3

9
,
1

3
,
2
√
6

9

)T

r8 = S

(√
3

9
,
−1

3
,
2
√
6

9

)T

r9 = S

(
−2

√
3

9
, 0,

2
√
6

9

)T

r10 = S

(
−√

3

9
,
1

3
,
−2

√
6

9

)T

r11 = S

(
2
√
3

9
, 0,

−2
√
6

9

)T

r12 = S

(
−√

3

9
,
−1

3
,
−2

√
6

9

)T

While approximation (18) preserves the total gas mass,
the distribution of concentrations still slightly varies from
the initial Gaussian puff, as shown by the error function
in Fig. 7. Hence, we defined a functional to be minimized
with respect to kσ and kf , which are the parameters that
influence the distribution of concentration the most:

F (kσ, kf ) =
1

(2π)
3
2

∫ ∞

−∞

[
M

detS
exp

{
−1

2
[S−1(x− xc)]

T

S−1(x− xc)

}

−
12∑
i=0

Mi

detSf
exp

{
−1

2
[S−1

f (x− xc − kfri)]
T

S−1
f (x− xc − kfri)

}]2
dx (19)

We used Polak-Ribiere’s conjugate-gradient descent
method to minimize (19) with respect to kσ and ff . The
procedure lead to the following values: kσ =0.754529 and
kf = 1.8303234. The resulting error function displayed in
Fig. 8 evaluated to 4.01E−4 and shows the improvement
over our initial approximation, illustrated in Fig. 8.

4 The choice of keeping the mass distribution constant over
the minimization process is motivated by the fact that the
inclusion of these terms invariably leads to a central fragmented
Gaussian sharing its parameters with the initial one (mass
and dispersion coefficients), and a zero mass for the remaining
fragmented Gaussians.
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Figure 7. The Gaussian fragmentation process using our initial parameters kσ and kf . The 13 Gaussians generated after
fragmentation of the initial Gaussian: (a) the centre layer, (b) the top layer, (c) the bottom layer, (d) the Gaussian prior to
fragmentation, followed by (e) the sum of the 13 Gaussians, and (f) the error function.

Figure 8. The results obtained with the minimization of the error functional: (a) the Gaussian prior to fragmentation,
followed by (b) the sum of the 13 Gaussians, and (c) the error functional.

6. Parallelization

From a computational standpoint, the combined integral–
Gaussian model with puff fragmentation is demanding,
particularly when the number of Gaussian puffs becomes

large. Fortunately, the model lends itself rather naturally
to parallelization.

A number of observations concerning the characteris-
tics of the combined model can be made: during a simula-
tion, the integral model is in use for what amounts to be
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Figure 9. (a) Classical plume progression from a continuous emission source and (b) plume progression with Gaussian puff
fragmentation. Different trajectories under identical wind vector fields are experienced.

a small duration per emitted gas cylinder, owing to rapid
collapse and dilution. In comparison, the Gaussian model
is computationally costlier, due to the number of Gaussian
puffs fed to its stack by the integral model, the duration of
each puff (hours, perhaps days), and particularly the puff
fragmentation mechanism, which exponentially increases
the number of puffs entering the simulation. In addition,
one of the most demanding processes is the calculation of
estimated concentrations over grid maps.

Consider a continuous gaseous emission lasting a total
time T =N1t, with a Gaussian puff emitted at every t. The
total number of puffs, without fragmentation is thus N1.
If we assume that each puff is fragmented n times, then N ,
the number of Gaussian puffs in the simulation is:

N = N1

n∑
i=0

P i (20)

where P =12. For instance, if 1,000 initial puffs are re-
leased, after four simultaneous fragmentations, the number
of puffs in the simulation reaches 22,621,000. In addition,
numerous concentration calculations must be carried out
for each puff, and the amount of these increases as the
extent of the puffs becomes larger. A monoprocessor ar-
chitecture is clearly inadequate for long simulations such
as radiological emissions and volcanic phenomena, which
may last for days.

An adequate parallel architecture for the paralleliza-
tion of the combined integral–Gaussian model is a shared-
memory, multiprocessor architecture allowing computing
units to share one instance of the grid map of the region
of interest, while ensuring an adequate distribution of the
computation of dispersion and concentration. For instance,
the puffs could be evenly distributed among available pro-
cessors in a natural fashion each time they are introduced
in the simulation. In the context of the preceding example,
a multiprocessor architecture with 210 available computing
units would, at the peak of the simulation, reduce the com-

puting load from 22 million puffs to 22,091 per processor,
which is an acceptable computational burden.

7. Experiments

Two sets of experiments were conducted to demonstrate
the extended capabilities the fragmented Gaussian plume
system possesses.

The first set of simulation experiments were conducted
over an elevation grid map of the Sarnia region in Ontario,
Canada (see Figs. 9 and 10). Elevation is colour-coded
from yellow (low elevation) to orange (high elevation). The
Gaussian puffs forming the gaseous plumes are displayed
with transparency factors unrelated to concentration, to
show their position. The extent of the displayed puffs is
a fraction of their dispersion coefficients. These experi-
ments are conducted with average atmospheric conditions
(Pasquill’s stability class D) for 1.5–3 h of real dispersion
time. Wind direction is variable with speed ‖u‖2 averaging
1.5m/s. The gas emission Mg is set to 0.005 kg and occurs
at every second. The simulation time step δt is set to 10 s.
A list for the values of the remaining parameters can be
found in Appendix B.

The first experiment displayed in Fig. 9 demonstrates,
under a spatially variable wind vector field (divergent, in
the north direction), the difference in gaseous progression
between the classical integral–Gaussian plume model with
and without puff fragmentation. Fig. 9(a) shows the dis-
persion results when the extent of puffs becomes sufficiently
large to be subjected to more than a single wind vector:
the plume deviates towards the dominant wind. However,
as shown in Fig. 9(b), with a puff fragmentation mecha-
nism, the trajectory of the plume is consonant with the
variation observed in the wind vector field, resulting in an
improvement in the realism of the plume progression [22].

The second experiment, shown in Fig. 10, is a sequence
of images showing the puff fragmentation mechanism. The
blue region represents the emission site, simulated with the
integral model. In Fig. 10(a) the initial gaseous emission
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Figure 10. A sequence of images showing the Gaussian puff fragmentation, occurring at puff radii reaching 500m: (a) the
initial puff progression, (b) the first fragmentation occurrence, (c) the progression of the resulting puffs, and (d) the second
fragmentation occurrence.

Figure 11. (a) A typical plume with Gaussian fragmentation over a populated area, (b) its colour-coded ground-level
concentration levels, (c) the plume superimposed onto the concentration levels, and (d) an evacuation zone related to the
gaseous release.

starts with a single Gaussian puff. After an amount of time
into the simulation, the largest dispersion coefficient (σx,
σy, or σz) reaches 500m, and triggers the fragmentation
process. The resulting puffs are displayed in Fig. 10(b). As
time elapses, the puffs experience progression and increased
extent, as in Fig. 10(c). Ultimately, the fragmentation
process is triggered a second time, as depicted in Fig. 10(d).

The second set of experiments uses an urban map of

the regional city of London, Ontario, in Canada, and is
designed to illustrate the capabilities of the fragmented
plume model. Atmospheric conditions for this experiment
consist of light northern winds (0.4m/s), atmospheric sta-
bility class D, and 8.0 h of real-time dispersion. Unless
indicated otherwise, other simulation parameters are as in
Appendix B.

Fig. 11(a) displays a plume that has undergone Gaus-
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sian fragmentation after 3:57 h of real-time dispersion. The
Gaussian puffs are displayed using translucent 3D ellipti-
cal spheres with dimensions consonant with the dispersion
coefficients of the Gaussian puffs. Fig. 11(b) displays the
concentrations of the plume at ground level. The absence
of discontinuities in the concentration spread is due to the
successful minimization of error functional (19). Fig. 11(c)
displays the 3D plume over the estimated concentration at
ground level, while Fig. 11(d) is a putative warning and
evacuation zone upon this simulated gaseous release. This
zone varies depending on the chemical being released and
the prevailing environmental conditions.

Our experiments qualitatively demonstrate the ex-
tended capabilities of the fragmented Gaussian plume
model against traditional dispersion techniques, when lo-
cal meteorological conditions vary significantly over large
spatial extents (as in Fig. 9). Our model is effective against
highly variable wind conditions that account for the im-
precisions noted in more classical plume models which are
all exempt of fragmentation.

8. Conclusion

Air dispersion modelling remains an elusively imprecise
branch of environmental science [22]. Inherent difficulties
are numerous, among which we find the experimental eval-
uation of various critical parameters, such as Pasquill’s dis-
persion coefficients [21], or the mathematical complexities
involved with modelling turbulent phenomena.

We proposed a combined integral–Gaussian atmo-
spheric dispersion model including a mechanism for the
fragmentation of gas puffs. The immediate benefits of
this model reside in the improvement in concentration and
spread predictions under variable wind conditions, at an
increased computational cost, which may be alleviated by
an adequate parallel implementation on shared-memory,
massively parallel computing equipment. This accurate gas
plume technique has been adopted by emergency planners
and the resulting algorithms are currently being included
in commercial software. Improvements to this model in-
clude the inclusion of light gases, and adequate model cor-
rections for terrains with significant slopes and obstacles,
in the case of dense gas emissions.

A. Notation

C: gas concentration (kgm3)

Ca: specific heat of air (kg J/K)

Cg: specific heat of gas (kg J/K)

H: height of gas cylinder (m)

K: Van Ulden’s parameter (m)

M : mass of pollutant (kg)

Ma: air entrained by cylinder (kg)

Mg: mass of gas in cylinder (kg)

Q1: heating by the ground (J)

Q2: heating by the air (J)

R: radius of gas cylinder (m)

R1: Richardson’s number

T : gas temperature (K)

Ta: air temperature (K)

Ts: ground temperature (K)

Ut: horizontal turbulent air speed (m/s)

V : cylinder volume (m3)

g: gravity (m/s2)

α1: air entrainment by cylinder edge

α2: air entrainment by cylinder top

α3: gas thermal conductivity (JK
3
4 )

ρ: average cylinder density (kg/m3)

ρa: air density (kg/m3)

u: (u, v)T wind velocity (m/s)

x: (x, y, z)T point of concentration

xc: (xc, yc, zc)
T Gaussian centre

B. Experimental Values

Ca: 1,000 J/kg/K

Cg: 2,400 J/kg/K

K: 1

Ma: 0.4 kg

R1: 1

T : 300K

Ta: 295K

Ts: 293K

Ut: 1m/s

g: 9.81N/kg

ρa: 1.184 kg/m3

ρg: 2.4 kg/m3
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