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Abstract

We present a method for filtering noisy point clouds, specifically those constructed from merged depth
maps as obtained from a range scanner or multiple view stereo (MVS), applying techniques that have pre-
viously been used in finding outliers in clustered data, but not in MVS or range scanning. We estimate the
probability density function (PDF) over the space of observed points via a technique called kernel density
estimation. We utilize Mahalanobis distance and a variable bandwidth for weighting kernels accordingly,
based on the nature of neighbouring points. Further, we incorporate a distance metric called the Reachability
Distance that, as we show in our results, gives better discrimination than a classical Mahalanobis distance-
based metric. With the addition of this nearest neighbour metric, we can produce results that are ready for
meshing without any post-processing of the cloud. We mesh our filtered point clouds using a traditional
surface fitting technique that is unequipped to deal with noise to demonstrate the efficacy of our method.

1 Introduction
Following a renaissance in energy-based MVS methods in the literature, there has been a return to methods
that merge depth maps from multiple views to generate a representative point cloud. This change in method-
ology can be traced back to the work of [Goesele et al., 2006], whose simple method generated depth maps
for each camera using adjacent views, and then merged those depth maps using third-party software de-
signed to merge range images into a complex model. Prior to this, the MVS literature was dominated by
methods that evaluated photo-consistency over a dense grid and then used an energy minimization technique
to extract a representative surface, which is often the minimal surface.

A cursory glance at recent results on the Middlebury multi-view stereo data sets [Goesele et al., 2006]
indicates incredible improvement of modern stereo matching algorithms over their predecessors. Such ad-
vancements are possible because of the improvements in disparity map generation like ordering constraints,
bi-directional image matching, etc. That said, merging multiple depth maps and fitting a surface to the re-
sultant point cloud remains a challenging endeavour, at least partially because of the presence of outliers
and the general location of these outliers. These outliers can be very difficult to filter, as outlier clusters
can occur both near to and far away from the true surface. Mahalanobis distance-based density estimation
cannot correctly identify points that are close to the center of these outlier clusters as not being part of the
surface.

The goal of this paper is to demonstrate that it is possible to fit a surface to a point cloud with very large
quantity of outliers (a ratio of 5:1 outliers to inliers), by filtering using anisotropic kernel density estimation
with variable bandwidth, and subsequently fitting a surface to this filtered cloud using standard surface
meshing software [Cignoni et al., 2008]. We take clean, merged point clouds and populate them with noise.
This way, we know the ground truth and can thus quantify this method’s ability to discriminate inliers from
outliers with the Receiver Operating Characteristic (ROC) curves [Provost and Fawcett, 2001].

Our method uses a process called kernel density estimation to construct a probability density function
over the space of discrete data that we obtain from measured data. The target application is filtering point
clouds obtained from MVS data. [Xi et al., 2009] and [Schall et al., 2005] utilize a similar process, but our
method differs from theirs in that we use a variable bandwidth based on the nearest neighbour of each point
that contributes to a density estimate, as inspired by [Latecki et al., 2007, Loftsgaarden and Quesenberry, 1965,
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Terrell and Scott, 1992]. These works utilize variable bandwidths in finding outliers in clustered data. Our
key observation is that these metrics are also very effective in filtering MVS and range scan data. Ma-
halanobis distance works well for discrimination of points near the true surface, in our experience better
than Euclidean distance-based methods, but is prone to accept false positives near the center of a cluster of
outliers. [Xi et al., 2009] note that, when necessary, they apply their filter repeatedly apply their filter until
they get a result that is visually acceptable. Our method provides sufficient discriminatory ability such that
it can be applied to a noisy point cloud once and the result can be meshed as is. We quantify our results
and compare the discriminatory ability of our method with the Mahalanobis distance-based method used in
[Xi et al., 2009].

2 Previous Work
[Lu et al., 2005] utilize tensor voting (TV) with a minimal surface-based fitting scheme to reconstruct sur-
faces from highly noisy (1:1 signal-to-noise ratio) point clouds. They use the level set formulation of
[Zhao et al., 2000] to evolve an initial implicit surface to fit the points, but add an extra term to influence the
motion in the direction of the tensor.

When working with noisy data, one way to deal with outliers is to average them out. This is the method
utilized by [Goesele et al., 2006]. The software they use, VRIP, converts each depth map into a signed dis-
tance function (SDF), and then merges these SDFs using a weighted averaging based on the angle between
the observed points and the sensor in each depth map. The area over which a point can be averaged with an-
other point is referred to as its “ramp". Such a method results in smoothing of observations, and subsequent
depth based methods that explicitly filter out a subset of the point cloud construct a surface from actual,
unsmoothed observations.

[Li et al., 2010] identify “tracks", matched features that are found in at least three different views of an
object, and then use bundle adjustment to recover the 3D point. If the reprojection error is above a certain
threshold in one of the images, the point in question is discarded.

[Campbell et al., 2008] keep multiple hypotheses for prospective matches, and then use a spatial con-
sistency measure in a Markov Random Field minimization scheme to recover better matches. If a point’s
hypotheses are not spatially consistent with its neighbours, it is discarded. [Bradley et al., 2008] construct
point clouds using multi-scale matching and then use an iterative filtering method for outlier detection on
the resultant point cloud. They compute the projection of a point and its neighbours to a plane and then
evaluate the fit using a density function.

[Xi et al., 2009] is the reference point for this work. They merge depth maps constructed from multiple
views and use an anisotropic kernel density estimation method combined with a projected line search to
obtain the maximum along each normal to find the maximum area of density on each normals path. We
forego the use of reprojection error and “ramps" and instead use a density estimator to determine the quality
of an observation. [Schall et al., 2005] also use an anisotropic kernel for filtering. Their method is similar
to [Xi et al., 2009] in that they use an iterative method to move points along the normal direction to areas
of maximal density. Further, they eliminate noise from high quality scans, and generate smooth surfaces
from very high quality scans. Our focus is somewhat different, in that we study the circumstance where the
quantity of outliers equals or exceeds the number of inliers, testing the ability to discern between inliers and
the types of outliers that we see in photometric stereo, i.e. those that are both clustered near and far from the
true surface. Further, we wish to simply filter the point cloud, as opposed to iteratively shifting the points to
the area of highest density along the normal.

We assert that if a slightly better density estimator is used, one that uses both Mahalanobis distance, an
adaptive bandwidth and the reachability distance [Breunig et al., 2000], we can mesh resultant point clouds
without any further complication. We use a more advanced nearest neighbour metric, point clouds from
range scans and MVS can be filtered without the projected line search while yielding an output cloud that
can be meshed using an off-the-shelf method without any other pre-processing.

3 Obtaining a Probability Density Function from Measured Data
The easiest way to construct a probability density function from a set of points is a binning approach,
similar to the construction of a histogram. Consider the problem in 1D: Say we have a set of measured data
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X = [x1, x2, . . . , xn] where each data point xi is a scalar-valued observation. If we construct a set of k bins
and simply count the number of items that fall within each bin, we can easily construct a histogram.

A number of questions arise:

• How many bins should we use?
• Where should our bins start and end?
• How does this strategy scale in higher dimensions, i.e., how do we determine the orientation of the

bins in multiple dimensions?

The next section introduces a better method for constructing a PDF.

3.1 Kernel Density Functions
Kernel density functions propose to solve the problem of obtaining a probability density function in a dif-
ferent way. Instead of creating arbitrary bins of data, the density is instead evaluated at each point, using
the distance to neighbouring points as input to a kernel function, the most commonly used of which is the
Gaussian kernel [Xi et al., 2009]

K (x) = 1
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where d is the dimension. This is referred to as the Parzen Window technique [Parzen, 1962]. For each
point xi 2 X , we rely on all points within a predefined radius to calculate the density of xi using the kernel
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where the points x j are the n neighbouring points of xi within radius r , Ck,d is a weight constant and h is
the bandwidth.

Intuitively, f (xi ) will be close to 1 if the sum of distances between xi and its neighbouring points is
small compared to the bandwidth. In other words, areas that contain a large number of points inside of their
radius will yield a large density estimate and thus are more likely to be considered inliers than outliers.

3.2 Mahalanobis Distance
[Xi et al., 2009] utilize a more advanced method for filtering, based on the observation that the distribution
of noise in point clouds tends to be anisotropic in nature. Thus, they evaluate an anisotropic kernel f of fixed
radius r and shape at each point x to estimate its density utilizing its neighbouring points within distance
r . Instead of using the L2 distance between points within r , they find the distance to the center of mass by
making use of

f (x) =
Ck,d

n

nX

i=1
K (dß(x, xi )), (3)

where the kernel K is as defined previously. dß(·, ·) is the Mahalanobis distance, which is defined as

dß(x, xi ) =
°
(x °xi )T H°1(x °xi )

¢1/2
,

where the covariance matrix
H = DDT ,

can be constructed using
D = (x1 °x, x2 °x, · · · , xn °x).

They find the location of highest density within the neighbourhood (r ) and then use the distance to this
point as the distance for the kernel to evaluate. This method discriminates between inliers and outliers when
near the “true" surface much more robustly than the basic kernel density estimation method that we defined
in Equation (2). We found that this method still had good discriminatory power when the signal-to-noise
ratio was 1:10, i.e. we added 10 randomly generated outliers for each inlier in the point cloud’s bounding
volume. Their method is prone to errors when there are clusters of outliers in a small area, a common
occurrence.

This method isn’t new, it has been used in outlier estimation when dealing with clusters of data in the
past. Likewise, our work is based on well-founded principles that are known in the literature. It hasn’t been
applied to this domain, and its discriminatory ability is notable.
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3.3 Local Bandwidth Estimation
The idea to use a local estimate of bandwidth h(xi ) comes from [Latecki et al., 2007] who applied it to
detecting outliers in clusters of data. It effectively unweights points whose n-th nearest neighbour is any
larger than a very small distance from the point itself. Applying this to surface fitting makes a lot of sense,
as points that lay near the true surface should have a neighbour in its very near vicinity.

4 Methodology

(a) Bunny. (b) Bunny, noise added.

Figure 1: The Bunny point cloud with 5:1 ratio of noise to inliers added.

We attempt to remove outliers via a method that differs from the previously described one in two ways.
Based on the density of the nearest neighbour, we can weight each kernel accordingly. In other words, if a
neighbouring point xi itself has a low density, the bandwidth h(xi ) will be lower and thus the contribution
to the magnitude of f (x) will be smaller than an equally distant point that exists in an area of higher density.

f (xi ) = 1
n

nX

j=1

1

h(x j )d
K

µ
dß(x j , xi )

h(x j )

∂
(4)

The bandwidth is the distance of the nearest neighbour to xi , the dimension d is 3, n = si ze(N N (xi ), where
N N (·) is the set containing the nearest neighbours of xi , the points within the radius r . The Gaussian kernel
is as defined previously. The bandwidth,

h(x j ) = min(dß(x j , xk ))

where xk 2 N N (x j ), i.e. xk is the nearest neighbour to x j , when Mahalanobis distance is used to determine
the “closeness" of two points. This method differs from the anisotropic kernel density method described in
the previous section in that the density of a point relies on the density of its neighbouring points. In other
words, we could have a point xi and its nearest k points, and in the previous method, its kernel density
estimate q(xi ) would be the same irrespective of the points surrounding these neighbours.

4.1 Reachability Distance
We can extend this idea further by replacing the numerator of Equation (4) with a more robust metric called
the reachability distance, where

rd(xi , x j ) = max(dß(x j , xi ),dß(xk , x j )). (5)

This yields

f (xi ) = 1
n

nX

j=1

1
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and is thus composed of both the distance from xi to its neighbours x j , and distances of neighbouring points
x j to their nearest neighbour (xk ). If r d(xi , x j ) = dß(xi , x j ) then the inside of K is ° dß(xi ,x j )

2dß(x j ,xk ) where the
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numerator is greater than the denominator, and thus yields an increasingly smaller value as this difference
increases when evaluated by the exponential. If r d(xi , x j ) = dß(x j , xk ) then the inside of the exponential is
° 1

2 and thus gives the minimal value.
If this neighbour x j ’s nearest neighbour is quite far away, i.e., xk is a somewhat “isolated" point, it gives

us very little information about the nature of point xi , as being in the same neighbourhood as a likely outlier
is not a great clue that xi is an inlier. If, however, the distance to x j is larger than the distance to x j ’s nearest
neighbour, we can say that having such a point in the neighbourhood is good evidence, and it is thus more
likely that xi is indeed an inlier!

5 Kernel Density Filtering on Data with Additive Noise
We approach it first using anisotropic kernel density estimation, where we evaluate the density of the data
within a set radius of each data point. (3) evaluates the contribution of each point within this area, and takes
into account the local density of each of these points as well.

We filter the signal by removing points whose density are below some threshold ø 2 [0,1]. The method
struggles with clusters of outliers though, and a substantial percentage of inliers are removed before the
outliers fall below ø.

Interestingly, when we use the nearest-neighbour kernel density estimate, even in conjunction with the
less discriminative L2-norm, we still recover a much more accurate signal. That said, the performance of the
anisotropic kernel density near the signal is better.

(a) Buddha statue. (b) Statue with noise added.

Figure 2: The Buddha point cloud with 5:1 ratio of noise to inliers added.

6 Results
We test our algorithm on the Bunny and Buddha data sets from Stanford and add random noise of varying
quantities to determine the ability of our density-based method to discriminate between inliers and outliers.
To quantify the filter’s ability to discriminate between an inlier, i.e. a member of the normal class (“NC”)
and an outlier (“C”), we generate a ROC curve, which plots the detection rate (rD ) versus the false alarm
rate (rF A)

rD = TP
TP+FN (7)

rF A = FP
FP+TN (8)

where TP is the number of true positives, FN is the number of false negatives, and FP is the number of
false positives and TN is the number of true negatives. The nature of these terms is explained the confusion
matrix seen in Table 1. A perfect ROC curve has an area of one beneath said curve.

Proceedings of the 17th Irish Machine Vision and Image Processing conference IMVIP 2015

August 26th-28th, 2015, Dublin, Ireland 31 ISBN 978-0-9934207-0-2



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

o
u

tli
e

r 
d

e
te

ct
io

n
 r

a
te

false alarm rate

ROC Curves

 

 

Fixed Bandwidth
Reachability Dist

Figure 3: ROC curve for anisotropic filters on the Bunny point cloud with 5:1 noise. The reachability dis-
tance/adaptive method is in red.
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Figure 4: ROC curve for anisotropic filters on the Buddha point cloud with 5:1 noise. The reachability dis-
tance/adaptive method is in red.

As can be seen from the ROC curves in Figures 4 and 3, our method offers excellent discrimination
between inliers and outliers in both circumstances. When one uses a strictly Mahalanobis-based density
estimator on the Bunny data, a substantial portion of outliers remain. To make this more clear, we display
the remaining points in the resultant cloud in Figure 5. There are far too many outliers in Figure 5(b) to
allow for the fitting of a surface points, and true surface points are being thresholded as we remove more
outliers. In Figure 5(a), a few outliers remain, but they occur in such low densities that they do not interfere
with the subsequent surface fitting. We meshed the points from Figure 5(a) in Figure 5(c) with the ball
pivoting algorithm [Bernardini et al., 1999].

Likewise, we see that our method works extremely well on the Buddha data set. Most impressive is its
ability to handle the thin part of the statue above the head. As we see in Figure 6, despite the addition of 5:1
noise, we can still perform an accurate reconstruction of the surface with our method.

We also experimented with using the k nearest neighbours of xi for estimation of the Mahalanobis
distance in the above examples, but we found that the slight increase in discrimination was not worth the
added time complexity.

Adjusting the area of support, r , has an effect on the nature of the filtering. If the algorithm is having
trouble removing outliers near the surface, it may be useful to decrease the radius of the points that contribute
to the density estimate. Increasing r will include more points with a larger distance to a point xi if it is an
outlier, but it will do the same for an inlier. The radius should be large enough to contain a sufficient number
of points (for our purposes, ∏ 50), but small enough that the density estimates are excessively “smooth".
Ideally, the estimation of f for any outlier near the surface will include a large sampling of inliers (i.e.
actual surface points) to weight the center of mass correctly, yielding a small distance to points on the
surface, and a large distance to outliers. Further, if there are thin areas on the surface, a small r can be useful
to ensure that a density estimate at x is only influenced by its neighbours on the surface, not close by points

Proceedings of the 17th Irish Machine Vision and Image Processing conference IMVIP 2015

August 26th-28th, 2015, Dublin, Ireland 32 ISBN 978-0-9934207-0-2



(a) Reachability distance. (b) Fixed Mahalanobis. (c), Bunny, meshed.

Figure 5: The Bunny point cloud with 5:1 noise, filtered. It was meshed with the ball pivoting method.

Predicted Predicted
Outlier Normal

Class (C) Class (NC)
Actual True False

Outliers Positive Negative
Actual False True
Normal Positive Negative
Class

Table 1: Confusion matrix describing the different classifications of inliers and outliers.

that belong to a different part of the surface.

7 Conclusions and Future Work
We have demonstrated that our filtering method performs well on challenging data sets, even when the point
cloud to which we apply our method is corrupted by large amount of noise. In reality, point clouds obtained
from MVS or range scanning are not even near as noisy as our two corrupted point clouds. That said, the
nature of the noise may be such that noise resides near the true surface, and it will thus be more difficult for
the method to decipher whether a point is an inlier or an outlier.

In in future, we would like to automate the process of fitting a surface to our filtered cloud, possibly
by including our density estimate in a surface evolution scheme, similar to the level set-based method of
[Zhao et al., 2000], with an extra term for density. It might be effective to include the confidence measure
of each point in the point cloud from the stereo matching process. In the end, the goal is to obtain extremely
accurate multi-view surface reconstructions of objects from multiple views, and a filtering method like the
one we’ve presented is a step in that direction.
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