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Abstract

We propose a multi-layer, real-time vehicle detection and tracking

system using stereo vision, multi-view AdaBoost detectors, and opti-

cal flow. By adopting a ground plane estimate extracted from stereo

information, we generate a sparse set of hypotheses and apply trained

AdaBoost classifiers in addition to fast disparity histogramming, for

Hypothesis Verification (HV) purposes. Our tracking system employs

one Kalman filter per detected vehicle and motion vectors from

optical flow, as a means to increase its robustness. An acceptable

detection rate with few false positives is obtained at 25 fps with

generic hardware.

I. INTRODUCTION

Most Driving Assistance Systems (DAS) rely on the detec-

tion of relevant features in the immediate environment of the

vehicle, such as other vehicles, pedestrians, lanes, traffic signs,

and other potential obstacles [1]. Many driving assistance

systems such as adaptive cruise control, collision warning,

blind spot monitoring, and park assist rely on some form of

obstacle detection mechanisms. While obstacle detection in

general can be made simpler with the use of active sensors,

the resulting cross-talk and noise from other vehicles can po-

tentially deteriorate the robustness of such systems. Moreover,

for large distances and increased resolution, passive sensing

seems more applicable [2].

Recently, visible spectrum vision-based vehicle detection

has attracted a lot of attention due to improved machine vision

algorithms and the availability of low-cost high computational

power [3]. Real-time detection is vital for DAS as road-based

imagery is highly dynamic (a vehicle moving at a speed of

120 km/h changes its position by 33 m every second). While

very dependable techniques and methods for object detection

have appeared [4], most of them require high-cost, advanced

hardware to be executed in real-time, if at all possible.

This contribution proposes a real-time, multi-layer vehicle

detection system using stereo vision, optical flow, and a

machine-learning classifier, and is structured as follows: Sec-

tion II reviews the recent vehicle detection literature, Section

III presents our main approach, while Sections IV, V, and VI

describe Hypothesis Generation (HG), Hypothesis Verification

(HV), and Tracking respectively. Section VII presents our

experimental results while Section VIII offers a conclusion.

II. RELATED LITERATURE

There exists a large body of research from the last two

decades on DAS. With the goal of creating autonomous

vehicles, many research groups have launched several projects

in different aspects of DAS [5], [6], [7], [3].

Our focus is on detecting and tracking vehicles as imaged

by passive sensors inside an instrumented vehicle. The vehicle

detection stage is usually broken into three parts: Hypothesis

Generation (HG), Hypothesis Verification (HV), and tracking.

For HG, several contributions have proposed various methods,

including the selective detection of vertical and horizontal

edges [8], symmetry maps [9], stereo depth [10], and more,

either in isolation or in combination.

In Region Of Interest (ROI) based HG, Cheng et al. use

vanishing points obtained from the intersection of detected

lanes [11] and achieved 20fps on conventional hardware.

While lane-based vanishing point detection requires salient

road markings, Sappa et al. computed ROIs with horizon lines

obtained from stereo depth data [12]. In addition, Keller et al.

proposed a similar algorithm but employ a B-Spline model for

the road rather than a flat plane [13]. In both cases however,

a lack of knowledge about obstacles on the road often leads

to erroneous ground plane estimations. Conversely, samples of

disparity-based obstacle detection methods are that of Jung et

al. [14] and Mandelbaum et al. [15] in which the authors used

disparity histogram peaks as evidence of obstacles.

The HV stage is often performed with either block matching

[16] or appearance-based methods, which take features such

as Scale Invariant Feature Transform (SIFT) [17], Principal

Component Analysis (PCA) [18], summation of intensity or

Gabor filtering [19], to train a classifier into verifying gener-

ated hypotheses. Different classifiers such as Support Vector

Machines (SVMs) [19], neural networks [20], AdaBoost [21],

and nearest neighbor [18] are often used in the literature.

III. DESCRIPTION OF APPROACH

We propose a three-stage vehicle detection method which

includes: Hypothesis Generation based on ground plane es-

timation, Hypothesis Verification with Haar-like features, an

AdaBoost classifier, and disparity histogramming, followed by

vehicle tracking using optical flow and Kalman filters.

With the depth map we estimate the parameters of a plane

which fits the data in a near rectangle at the bottom of the

image where there is no visible obstacle. The absence of

obstacles in this region is determined by the absence of peaks

within the part of the disparity histogram corresponding to the

ground plane near the vehicle. By using RANdom SAmple

Consensus (RANSAC) in estimating the parameters of the

ground plane, the effects of depth outliers are minimized. The
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Fig. 1. a) (left): Color-coded stereo depth map and the region used
for ground plane estimation b) (right): Horizon line estimated from
ground plane

horizon line can in turn be estimated by intersecting the plane

parallel to the ground plane and containing the focal point

with the imaging plane of one of the sensors. The horizon

line constitutes the basis for generating hypotheses. These are

then tested with a set of AdaBoost classifiers trained with four

different views of various vehicles from existing data sets. An

integral disparity histogram is used to increase the robustness

of the verification stage. Following these steps, optical flow

data provides assistance in tracking sparse features on verified

hypotheses. If the number of overlapping rectangles of similar

scale containing detected vehicles exceeds a certain limit in

a number of consecutive frames, they are then merged into

a single rectangle and a Kalman filter is created to track the

detected vehicle(s) within the extent of the merged rectangle.

Our main contribution is two-fold. First, the integration

of horizon-based ROI generation together with multi-view

vehicle detection allows it to execute very efficiently, since

many hypotheses can be rejected outright, given their relative

location with respect to the horizon line. In addition, the

horizon detection stage can take advantage of the tracking data

and the disparity histogram to verify the absence of obstacles

at close range, yielding a robust horizon line estimate. Other

similar techniques often do not take advantage of detected

obstacles which may lead to erroneous ground plane estima-

tion [13]. Second, the efficient integral disparity histogram-

based hypothesis rejection removes a significant portion of

false positives. Excellent results are obtained with AdaBoost

classifiers trained on very small sets of images, resulting in a

training time for each classifier under 5 minutes. The algorithm

is discussed with greater detail in the next Sections.

IV. HYPOTHESIS GENERATION

With rectified stereo images, finding disparities merely

consists of a 1-D search with a block matching algorithm (our

implementation uses the stereo routines from Version 2.2 of

OpenCV). As expected, the presence of an obstacle in the

image creates a peak in the disparity histogram. Considering

this, an obstacle-free area from the bottom portion of the image

may be determined and then used to estimate the position of

the ground plane.

Using the disparities and the calibration parameters of the

stereo system, the 3D positions of the image pixels in the

camera coordinate system are computed. Assuming that the

ground plane equation is of the form

ax + by + cz = d (1)

where ~n = (a, b, c) is the unit normal vector to the plane, we

pose

d =
1√

a′2 + b′2 + c′2
(2)
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Often times the ground surface leads to inordinate amounts of

outliers, due in part to a lack of texture from the pavement or

other drivable surfaces. With the sensitivity of least-squares

to outliers being known, we resort to the use of RANSAC

in selecting the inliers and obtain a robust estimation of the

ground plane coefficients, in the following way:

1) randomly select three points from the 3D points believed

to be representative of the ground plane

2) compute the coefficients of the plane defined by the

randomly selected points using (5)

3) count the points whose distance to the plane is less than

a threshold ǫ
4) repeat these steps n times where n is sufficiently large1

5) among the n fits choose the largest inlier set which

respect to ǫ and compute the coefficients of the ground

plane this time using least-squares as in (6)

The plane parameters are averaged over a short period of time

in order to stabilize them further. The coefficients of the plane

are recomputed at each new stereo frame arrival. However,

in cases when the number of depth values is low (poor

texture, etc.) or other vision modules indicate the presence

of a near obstacle, the coefficients of the ground plane are not

recomputed, the previous parameters are used instead.

The horizon line is approximated by intersecting the plane

parallel to that of the ground and passing through the focal

point with the image plane of the sensor, and converting

to image coordinates using calibration parameters. Figure 3

depicts the geometry involved in approximating the horizon

line, while Figure 1 displays a sample disparity map and

1Choosing n > 20 does not significantly improve the number of inliers
with respect to ǫ.
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Fig. 2. Histogram of depth map depicted for different rectangular areas. High peaks constitute evidence of presence of an obstacle in that
area. The position of the peak defines acceptable scale ranges.

Focal point

Horizon line

Visual sensors

Optical axis

containing 3D focal point

Ground plane

Imaging plane with horizon line

Plane parallel to ground 

Fig. 3. The geometry of estimating the horizon line in camera
coordinates

estimated horizon line, used in our hypothesis generation

mechanism.

We generate hypotheses as rectangular shapes in which

vehicles may be found. Consider a hypothesis

H(x, y, w, h) (7)

where x and y are the image coordinates of the top-left corner

of the rectangle and w and h are the width and height of the

rectangle forming the hypothesis.

The method to generate hypotheses first postulates that,

since the sensors are located on the roof of the vehicle, every

other vehicle with similar (or smaller) height will appear under

the horizon line in the image. Consequently, the imaging of

taller vehicles such as transport trucks and buses will include

image sections that are above the imaged horizon line.

The fact that the horizon line is parallel to the detected

ground plane does not signify that the resulting imaged horizon

line is parallel to the x-axis of the image (due to the roll of the

vehicle, for instance). Vehicular acceleration and deceleration

generally cause tilting of the vehicle and as a consequence the

estimation of the horizon line may be somewhat imprecise at

times. For this reason, we generate hypotheses for the presence

of other vehicles within ±δ vertical pixels of the imaged

horizon line.

Given these observations, we generate hypotheses along

a band of pixels comprised within the set of image lines

{L} : f(x) = mx + b ± δ. For the smallest image area

considered for hypothesis generation, we posit that there could

be a vehicle in any of the image regions with all the possible x-

axis coordinates acting as upper-left corners within the image

band. For taller vehicles, we allow every generated hypothesis

to grow above l ∈ L by as much as 2

3
of its own side height

h. A total of four classifiers are defined and trained for the

detection of

1) front views

2) back views

3) front-side and back-side views

4) side views

with some of them requiring different aspect ratios2. For rear

and front views, the smallest hypothesis rectangle is of size

15×15 pixels, 15×36 pixels for front-side and rear-side views,

2The aspect ratio is 1 for the front and rear classifiers, 2.4 for vehicle front
side and back side classifiers and 3.0 for the side classifier.
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and 15×45 pixels for side views. Each generated smallest-area

hypothesis is then used to generate other, larger hypotheses to

account for the detection of vehicles that are at closer range,

and thus appear larger on the image plane. For this purpose,

we scale each hypothesis by a factor of 1.2 repeatedly, until

the region outgrows the image plane.

V. HYPOTHESIS VERIFICATION

AdaBoost (short for Adaptive Boosting) introduced by

Freund and Schapire [22] is a method for choosing and

combining a set of weak classifiers to build a strong classifier.

Combining the concept of the integral image as an efficient

way of computing Haar-like features and cascaded AdaBoost,

Viola and Jones introduced a powerful method for object

recognition [21]. We adopted this approach for the hypothesis

verification stage. We used four cascaded AdaBoost classifiers

to discriminate positive from false-positive hypotheses. The

Haar-training module from OpenCV is used to train our

classifiers. We used in excess of two hundred vehicle images

(positive samples) for each classifier. The images used for

different vehicular views are borrowed from the dataset used

by Cornells and Leibe [23], [24]. For the negative examples

we used a set of more than five hundred images randomly

downloaded from the Internet.

In order to increase the robustness of the hypothesis ver-

ification stage, we considered the fact that there should be

a peak in the disparity histogram where obstacles above the

ground plane are imaged. Figure 2 shows areas with or without

obstacles, and their corresponding disparity histograms. Al-

though disparity histogram peaks have been used for obstacle

detection before [14], we are not aware of any work using

our approach for testing several rectangular areas from the

image. The main reason is probably the high computational

cost of repetitive histogram generation for overlapping areas.

To efficiently compute the disparity histogram, an integral

disparity histogram is extracted from the disparity map. This

integral disparity histogram defined by us is inspired from

the integral image concept introduced by Viola and Jones

[21]. To reduce the required processing time, the original

disparity map is down-sampled to half of its size, and then

the integral value for each bin of the histogram is computed.

A total of twenty bins are used for the histogram. Computing

the disparity histogram for any rectangular area amounts to

performing two additions and one subtraction for each bin. The

processing time required to compute the integral histogram is

5ms on conventional hardware.

Given a positive vehicle detection from our classifiers,

we can further affirm that, for a given image area, if the

disparity histogram peak is greater than a certain threshold,

there is little probability that this hypothesis constitutes a false

positive. Conversely, and again for a verified hypothesis, the

absence of a clear peak is considered to signify a false-positive.

Furthermore, if the peak disparity in the histogram (as a clue to

obstacle depth) is inconsistent with the image area for which

there is a detection, the hypothesis can be rejected outright.

VI. HYPOTHESIS FUSING AND TRACKING

In every frame, image regions standing as verified hy-

potheses may overlap. It thus may be necessary to fuse

these hypotheses into one, more consistent detection event.

Hypotheses sharing more than 40% of their area are then

fused into the smallest rectangular image region containing

the overlapping hypotheses. This list of rectangles is used for

maintaining and confirming current detections.

The representation of detected vehicles consists of a list of

rectangles together with a detection counter. If this detection

counter becomes higher than a certain threshold τ2, the rect-

angle state changes to active (the probability of a vehicle in

the image region is high), otherwise it remains in the list to

be either activated based on future hypothesis confirmation, or

removed after sufficient evidence accumulates that no vehicle

is present in it. Before new hypotheses can be added to the

current list of confirmed detections, it is necessary to maintain

it by tracking the detected vehicles. To this end, an optical flow

field is computed for each detection along with a Kalman filter

to perform the tracking.

As a new image frame becomes available, hypotheses

(rectangular areas) are added to the list with their detection

counter set to a value τ1, corresponding to their maximum

lifetime (measured in number of frames) before they can be

removed from the list, if no confirming evidence can be found

for the presence of a vehicle. We use the same technique as

above to perform the merging of overlapping areas and the

setting of thresholds τ1 and τ2. A hypothesis is removed from

the list when its detection counter reaches zero. As a result, a

tracking continues if a vehicle is detected every τ1 frames on

average, and a tracking is terminated if it is not detected for

τ2 frames in a row3.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

We used the RoadLAB instrumented vehicle for recording

sets of sequences in the urban area of London Ontario, Canada

(see Figure 5) [25]. The stereo system used for the experiments

has a baseline of length b = 357 mm, a smallest detectable

2D disparity of 1

16
of a pixel, a focal length of f = 12.5 mm,

and a physical pixel square size of 4.40 µm. The image

resolution was set to 320 × 240 pixels. Typical vehicle speeds

during the experiments ranged from 0 to 60 km/h.

The algorithm has been tested on 7,814 frames containing

13,513 vehicles in different lanes, orientations, and directions.

Table I shows the accuracy of the system for vehicles closer

than 50m, 100m, and 150m for leading, oncoming, other, and

all vehicles, where other includes parked vehicles and those

in other views such as at intersections. Figure 4 shows some

correctly and incorrectly detected vehicles.

In the sum of frames used for the experiments, the number

of false positives amounts to 2,008 (about 0.26 per frame or

less than 7×10−6 False Positive Per Window (FPPW)). Since

false positives are mostly detected outside the area occupied by

the roadway, better results could still be achieved by rejecting

hypotheses related to detections that are not located on the

3Acceptable results are obtained with τ1 = 3 and τ2 = 10.
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Fig. 4. Examples of detection results for various frames, including errors

Fig. 5. The RoadLAB in-vehicle laboratory

TABLE I
DETECTION RATES FOR DIFFERENT DISTANCES AND VEHICLES

Hit Rate Leading Oncoming Other All

Dis. < 50 0.9853 0.9886 0.8004 0.9858

Dis. < 100 0.8669 0.8135 0.8028 0.8548

Dis. < 150 0.8171 0.7393 0.8145 0.7990

roadway. The execution time of the algorithm is 25fps on

generic hardware.

Table II shows the number of false positives and algorithm

speed, using AdaBoost with and without the horizon line

constraint and the depth histogram. Removing the disparity

histogram constraint results in twice as many false positives,

accompanied by a modest increase of the frame rate.

Figure 6 illustrates the difference between the detection rates

for on-coming, leading, and other vehicles. Detection rates for

on-coming vehicles are slightly worse than those of leading

vehicles. A possible explanation may be that headlights are

on in our sequences while off in the training images. The

detection rates are worse for parked vehicles and those at

intersections, possibly because of partial occlusion.

TABLE II
THE EFFECT OF THE IMAGE HORIZON LINE AND DISPARITY HISTOGRAM

CONSTRAINTS ON FALSE POSITIVES AND FRAME RATES

FP Frame Rate

Complete Technique 2008 25

Without Disparity Histogram 5676 27

Without Disparity Histogram and Horizon 7874 18
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Fig. 6. Detection hit rates for different vehicle positions and distances

Figure 7 depicts the relation between hit-rates (provably cor-

rect detections) and vehicle distance. The performance of our

technique decreases dramatically for vehicles located farther

than 80m. A possible cause of this performance degradation

may be that the smallest windows for which our classifiers are

trained are of modest size (15× 15 pixels) and provide crude

resolution. We have compared the frame rates, hit rates, and

the farthest detectable vehicles with other contributions cited

in Table III. Among these other techniques, ours has the best

frame rate, with comparable hit rates for distances under 50m.

VIII. CONCLUSION

We have developed a real-time, multi-vehicle detection and

tracking system using stereo information, optical flow, Kalman

filters, and an AdaBoost classifier. The technique executes

at 25fps on generic hardware and has been tested on the

RoadLAB instrumented vehicle [25]. Research is currently

being conducted to determine whether vehicular odometry
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TABLE III
COMPARISON ON FRAME RATES, DISTANCE (OR SIZE), HIT RATES, FALSE POSITIVES, AND VEHICLE VIEWS

Authors Distance of Farthest Detection FPS HR FP Notes

Chang and Cho [26] 32×32 image region 5 99% 12% Rear detection

Southall et al. [27] 40m 16 99% 1.7% Single lane rear detection

Bergmiller et al. [28] 83.12% 16.7% Rear detection

Sun et al. [29] 32×32 image region 10 98.5% 2% Rear detection

Alonso et al. [30] 92.63% 3.63% Rear and front detection

Cheng et al. [11] 20 90% 10% Rear and front detection

Our Results 120m 25 98.6% 13% Multi-view
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Fig. 7. Overall hit rate with respect to distance

may provide additional constraints to improve the quality of

our results. We plan to use a similar framework, possibly with

different constraints, to detect pedestrians in real-time.
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