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Abstract— We present a robust and accurate technique
for the cross-calibration of 3D remote gaze trackers with
stereoscopic scene vision systems between which no common
imaging area exists. We empirically demonstrate that a multi-
depth calibration approach yields remarkably superior results
for obtaining 3D Point-of-Gaze (PoG) when compared with
traditional methods using monocular scene cameras and co-
planar eye gaze calibration points.

I. INTRODUCTION

Remote gaze trackers have been in use for various ap-

plications together with scene cameras to determine the

point of gaze (PoG) of human subjects on an imaged scene.

Several types of applications benefit from the use of such

systems including vehicle driver training and advanced driver

assistance systems, the context in which the results herein

have been obtained.

The task of projecting back the 3D gaze direction onto

the imaged scene requires a cross-calibration between the

remote gaze tracking device and the scene. In most if not all

of commercially available systems, this type of calibration is

performed by requiring that test subjects fixate specific, pre-

selected image points on a planar surface placed at a known

distance such as on a computer screen or, by using a scene

image from a monocular camera and treating it essentially

as a 2D object (co-planar fixation calibration points).

Such approaches are dependable when the subject’s eye

center is not highly offset from the scene camera(s). In other

words, because the origin of the reference system of the

scene cameras and the subject’s eye center approximately

coincide, the projection ray of any fixated object will also

approximately lie on the line of sight regardless of the depth

of the object. In such cases, the calibration process may

be performed correctly. Otherwise, objects with different

depths along the line of sight correspond to different image

locations, and must be calibrated for as such.

Our primary goal is to determine whether driver intent and

driving-related actions can be predicted from qualitative and

quantitative analyses of driver behavior. Toward this end, it is

necessary to establish the correspondence between cephalo-

ocular behavior and visual stimuli in such a way as to identify

the elements in the visual field to which driver attention turns

to. This type of information in turn may facilitate the task
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of a driving assistance system to assess whether drivers are

attending to the appropriate stimuli, given traffic context [1].

A. Literature Survey

It has been known for some time now that the direction

of driver gaze possesses predictive qualities in regards to the

detection of driver intent and following driver maneuvers

[2]. In particular, the relation between gaze direction and

subsequent vehicle steering has been clearly demonstrated

in several studies [3], [4], in which it was found that

driver gaze generally points towards the tangent point of a

road bend, and does so 0.8 to 1s before effecting steering

maneuvers, providing evidence that the eyes begin processing

information before the associated action has begun [4].

Hennessey and Lawrence presented a 3D PoG method

which employs eye vergence to estimate the 3D position of a

fixated object [5]. In their experiments, fixated objects were

contained in a 0.01725 m3 volume located in front of the

subject. The reported average positional error was 3.93 cm.

It constituted the first binocular system for estimating the

absolute 3D coordinates of where one is looking in the 3D

world.

Alternatively, Yamashiro et al. devised an automatic cal-

ibration to estimate the gaze of vehicle drivers by using

known reference points such as the rear-view and the side

mirrors of the vehicle [6]. The gaze of drivers was recorded

and an Expectation-Maximization algorithm was used to

cluster glances to the reference points. An automatic cali-

bration of gaze could be achieved from the collected gaze

data over time as the vehicles were driven.

In these approaches, it is assumed that the subject’s eye

center coincides with the origin of the reference frame of the

scene cameras. When this constraint is satisfied, the depth

of fixated objects does not influence the position of the gaze

onto the scene images, thus avoiding parallax errors in the

identification of the PoG.

The problem posed by non-coinciding frames of reference

between the eye tracker and the scene camera(s) has been

recently addressed by Kim et al. by tracking both eyes

and using vergence to assist in the localization of the 3D

point being fixated [7]. Their approach relies on a binocular

tracking in order to estimate eye vergence and to locate the

3D PoG. However, according to Land, vergence tend to be

set anywhere from 25% to 45% beyond the visually attended

object. Additionally, the role of vergence in real tasks is

still not well understood [4]. Bernet et al. also investigated

this problem with monocular scene camera systems, but

readily admit that a stereoscopic scene system constitutes
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Fig. 1. Physical configuration a) (left): Remote eye-tracking system,
and b) (right): RoadLAB stereoscopic vision system

the best approach to precisely locating the PoG in absolute

3D coordinates [8]. Hence we propose a method to cross-

calibrate a stereo scene camera system with a remote eye

gaze tracker using variable depth calibration points and

compare the resulting error with a typical, monocular scene,

co-planar calibration process.

B. System Configuration

Our systems consist of a remote gaze tracker with two

cameras pointed toward the driver’s face and a stereo system

oriented toward the front of an experimental vehicle. Our aim

is to determine which objects within the visual scene in front

of the vehicle elicit visual responses from drivers.

Our remote gaze tracker computes several variables in-

cluding gaze Euler angles, eye center location, and head

position and orientation with respect to the coordinate system

of the tracker, located in the middle of the stereo cameras

pointed toward the driver’s face. Our scene stereo system

attaches to the roof of the vehicle, with its reference frame

centered on the left camera. Both systems require a calibra-

tion prior to use. Figure 1 shows the configuration of the

experimental vehicle.

II. CROSS-CALIBRATION TECHNIQUE

The orientation of the gaze with respect to the coordinate

system of the tracker is given by Euler angles describing the

rotations around the X axis and the Y axis. Performing these

rotations amounts to aligning the the Z axis of the tracker

with the 3D direction of the gaze. The eye gaze direction

defined in this way is a unit vector originating from the eye

center. Figure 2 shows the relation between the gaze vector

and a fixated point in the field of view. Given Euler angles

θi and φi, the gaze unit vector is obtained as:

gi = Ry(θi)Rx(φi)





0
0
1



 =





sin(φi) cos(θi)
− sin(θi)

cos(θi) cos(φi)



 (1)

A. Description of Algorithm

The objective consists of computing estimates of the rota-

tion matrix and the translation vector between the reference

frame of the scene stereo system and that of the remote eye

tracker. The calibration process consists of asking the driver

to fixate pre-selected points for which depth estimates are

available and record the gaze vector and eye center location

,xi iy

gi

o

o’

ci

Fig. 2. The topology of the tracker and scene reference frames,
where xi and yi are coordinates of the fixated point in the scene,

o is the reference frame of the stereo scene system, o′ that of the
tracker, and ci and gi are the eye center position and gaze vector
respectively.

of the driver, along with the 3D position of the fixated points

in the scene for a brief period (2 s) per fixated point. This

data is then used to estimate the rotation matrix and the

translation vector relating the reference frames.

The eye center and gaze vector, both expressed within the

reference frame of the tracker, represent a 3D line passing

through the fixated point which in turn is expressed in the

reference frame of the stereo scene system. Let us assume

that the fixated points are known in both reference frames,

and find the rigid body transformation parameters that bring

the points from one reference frame to the other. The relation

between the fixated points and the reference frames is given

by:

yi = Rxi +T (2)

where xi is the position of the ith fixated point measured

in the scene reference frame, yi is the position of xi in the

reference frame of the tracker, and R and T are the rotation

matrix and translation vector between the reference frames.

We estimate the rigid transformation parameters following

the approaches devised by Arun [9] and Challis [10], and use

a confidence measure on the fixated points xi based on the

inverse of disparity.

The centers of mass of the fixated points in both reference

frames are given by:

x̄ =

∑n

i=1 w
2
i xi

∑n

i=1 w
2
i

and ȳ =

∑n

i=1 w
2
i yi

∑n

i=1 w
2
i

(3)

where wi is a weight factor reflecting the reliability of the

ith point, and n is the number of points (n > 2 [10]).

With the following substitution in variables:

x′

i = xi − x̄ and y′

i = yi − ȳ

a matrix can be formed as:

C =

∑n

i=1 w
2
i y

′

ix
′T
i

∑n

i=1 w
2
i

(4)

and decomposed with SVD as

C = UDV T (5)
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According to [10], setting

R = UV T (6)

minimizes the error in the least-squares sense. Since both

the reflection and the rotation matrices minimize the least-

squares error, then R is either the reflection or the rotation

matrix. If R is the reflection matrix, then det(R) = −1 and

the rotation matrix is obtained in the following way:

R = U





1 0 0
0 1 0
0 0 det(R)



V T (7)

and the translation vector is obtained as:

T = ȳ −Rx̄ (8)

The 3D fixated points are not directly known, as the eye

center and the gaze direction only yield a 3D line onto which

a fixated point lies. Additionally, these lines are expressed

within the reference frame of the eye tracker. In order to

overcome this difficulty, we assume that the transformation

is already known and write:

di = ‖Rxi +T‖ (9)

where di is the distance of the ith fixated point from the

origin of the reference frame of the eye tracker, and xi

is the 3D coordinate of the point in the scene reference

frame. Hence, the fixated points can be approximated in the

reference frame of the tracker as:

yi = digi + ci (10)

where yi is the 3D position of the fixated point in the

reference frame of the tracker, with gi and ci defined as

before. This set of fixated points allows us to approximate the

rotation matrix R and the translation vector T iteratively. It is

initially assumed that both reference frames coincide exactly,

starting the iterative process with R the identity matrix and

T a null vector. Since the reliability of the fixated points

(partly) depends on their distance to the stereo system (a

characterization of this error is provided in [1]), we use the

stereo disparity of the fixated points, defined as the inverse

of distance, to provide the weighting values wi in (3) and

(4). Algorithm 1 shows the detailed procedure for the cross-

calibration.

B. Calibration Data Collection

We proceed to describe the data-gathering procedure that

is used with the drivers of the experimental vehicle. For each

selected calibration point the driver is asked to fixate, the

gaze vector and the position of the eye center in the reference

frame of the eye tracker are recorded, along with the 3D

position of the calibration point in the reference frame of

the stereo imaging system. We refer to these captured data

elements as gaze data sets. While a minimum of three non

co-planar calibration points are needed, we generally use 15

to 20 points to ensure sufficient precision in the computation

of the calibration parameters. The calibration procedure is

defined as follows:

Algorithm 1 Cross Calibration Algorithm

R← I

T← initial estimate

repeat

for i = 0→ n do

di ← ‖Rxi +T‖
yi ← digi + ci

end for

C ←
∑

n

i=1
w2

i
y
′

i
x
′
T

i∑
n

i=1
w2

i

(U,D, V T )← SVD(C)
R← UV T

R← U





1 0 0
0 1 0
0 0 det(R)



 V T

T′ ← T

T← ȳ −Rx̄

until ‖T′ −T‖ < ǫ

1) Salient points provided by the stereo imaging sys-

tem are detected and the calibration operator selects

a suitable subset of these points (a suitable subset

contains 3D points that are visible to the driver and

that are found at various depths in the scene). We

use the GoodFeaturesToTrack function from the

OpenCV library to provide the initial set of salient

points (Figure 3a).

2) The software displays the calibration point the driver is

asked to fixate and records the current gaze data set for

a period of 2s (Figure 3b). A RANSAC algorithm is

used in cases when the driver experiences a saccade

while requested to fixate the calibration point. This

ensures the rejection of the saccade gaze data from

the sample.

3) When all the points have been fixated by the driver

and the gaze data recorded for each point, the operator

initiates the calibration stage. Once the systems are

cross-calibrated the gaze of the driver is in relation

with the depth map from the stereo imaging system in

real-time (see Figure 3a), b) and c)).

The eye tracker provides a real-time confidence measure

related to the quality of the computed gaze for each eye of the

driver. During the calibration process, we compute a set of

cross-calibration parameters R and T for each eye. Once the

systems are cross-calibrated and in use, we determine in real-

time which set of parameters to use based on the confidence

measures provided by the eye tracker. It is possible to force

the system to use a specified eye for both the calibration and

the gaze projection stages in case of abnormality of one of

the driver’s eyes.

C. Projection of the Gaze on the Scene Image

Once the cross-calibration process has completed, the

Line of Gaze (LoG) is projected onto the imaging plane

of the stereo system and, when this line intersects with a

valid depth estimate (which is most times), the PoG is then

identified as the region around this intersection. To perform
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Fig. 3. The calibration procedure a) (left): The operator selects calibration points from a set of Hessian salient points provided by
OpenCV. b) (center): The driver gazes at selected points one at a time while the gaze data and depth is recorded. c) (right): Driver gaze
transformed into the reference frame of the stereo imaging system and intersected with the depth-map at frame rate (30Hz).

this projection, we first compute the 3D parameters of the

LoG in the reference frame of the stereo system. The gaze

vector and eye center position in the scene frame are obtained

as:

g = RTge (11)

where g and ge represent the gaze direction in the stereo

imaging reference system and in that of the eye tracker,

respectively, and

c = RT (ce −T) (12)

where c and ce represent the eye center position in the

stereo imaging system reference system and in that of the

eye tracker, respectively. Then the LoG in the scene camera

coordinate system becomes

X − cx

gx
=

Y − cy

gy
=

Z − cz

gz
(13)

where c = (cx, cy, cz)
T and g = (gx, gy, gz)

T . Using x = X
Z

and y = Y
Z

(perspective projection) yields

(gxcz − gzcx)y − gxcy = (gycz − gzcy)x − gycx (14)

where x and y are 2D coordinates of the LoG stereo scene

camera frame of reference. To obtain the LoG in image

coordinates, the intrinsic calibration matrix of the stereo

scene system is applied to the equation, resulting in

(gxcz − gzcx)

(

y′ − oy

fy

)

− gxcy =

(gycz − gzcy)

(

x′ − ox

fx

)

− gycx (15)

where x′ and y′ are image coordinates of the perspective

projection of the LoG. ox, oy , fx, and fy are obtained from

the intrinsic calibration matrix K of the scene stereo system:

K =





fx 0 ox
0 fy oy
0 0 1



 (16)

Then, the 2D image coordinate of the PoG is that which

satisfies

(x′

p, y
′

p)
T = argmin

(x′,y′)

‖Zd − Zl‖ (17)

where (x′, y′) is a pixel on the projected LoG, Zl is its depth

component, and Zd is the corresponding depth value within

the depth map. Zd and Zl are obtained as:

Zd =
Z

W
(18)

Zl =
cz(gz − gx)

gz

(

x′−cx
fx

)

− gx

(19)

Here, Z and W originate from the re-projection in 3D of

points (x′, y′, d, 1)T :








X

Y

Z

W









= Q









x′

y′

d

1









(20)

where d is the disparity associated with (x′, y′)T and Q is the

re-projection matrix obtained with the StereoRectify

function from OpenCv:

Q =









1 0 0 −ox
0 1 0 −oy
0 0 0 f

0 0 −T−1
x (ox − o′x)Tx









(21)

As usual, (ox, oy)
T is the principal point in the left image,

and o′x the x coordinate of that of the right image [11].

Since the correct disparity dp is immediately available once

(x′

p, y
′

p)
T is obtained with (17), then the 3D PoG is directly

given by:

G = (Xp, Yp, Zp, 1)
T = W−1

s (Xs, Ys, Zs,Ws)
T (22)

where








Xs

Ys

Zs

Ws









= Q









x′

p

y′p
dp
1









(23)

III. EXPERIMENTAL PROTOCOL

Two important aspects of this technique need to be

evaluated. First, an empirical convergence study must be

conducted1 and second, an error analysis performed within

1Our algorithm is a straightforward extension to Arun et al.’s and
consequently subjected to identical noiseless and noisy degenerate cases
[9], justifying our decision to only study the numerical convergence rate.
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Fig. 4. A depiction of the convergence rate of the cross-calibration
algorithm for the four test subjects.

the conditions in which the experimental vehicle is used.

We performed the convergence rate and error analysis with

a group of four test drivers, composed of two males and two

females, averaging 26.5 years of age. This group was com-

posed of one Caucasian and three Middle-Eastern subjects

and had no known visual problems.

A. Convergence Rate

Our study of the convergence rate begins with initializing

the cross-calibration parameters R and T. The rotation

matrix is set to identity, while the translation vector is

given a manually measured (an therefore approximate) vector

between the centers of projection of both the eye tracker

inside the vehicle and the stereo scene system on its rooftop.

Figure 4 shows the progression of ‖T′ −T‖ toward 0 with

respect to the number of iterations. As it is observed, a

few hundred iterations (≈ 500) ensure adequate convergence

for all test subjects. Since the algorithm is numerically

simple, convergence is achieved within 1 s. Interestingly,

convergence is particularly rapid for two of the four subjects.

While only a conjecture, we believe this may be due to

an unusual precision of the gaze of the test subjects when

requested to fixate calibration points.

B. Error Analysis

In order to visually appreciate the error differences be-

tween calibration with coplanar (CoP) and non-coplanar

(NcP) points, we requested one of the test drivers to fixate

a number of pre-selected points on a test scene with a

CoP calibration configuration (Figure 7a)) and then another

set of pre-selected points on a test scene with an NcP

calibration configuration (Figure 7b)). We then projected the

difference of PoGs between points requested to be fixated

(displayed in green) and points actually fixated (displayed in

red) determined by the cross calibration parameters. These

results show a significant error reduction.

The error analysis we conducted included two distinct

scenarios: one for which the cross-calibration points were co-

planar (CoP), and the other for which the points experienced

significant non co-planarity (NcP). The aim was to compare

the effects on precision when the scene camera is monocular

(and hence the calibration must proceed with forcibly co-

planar image points, an assumption only valid when the

centers of projection of the scene camera and the eye tracker

coincide) and our technique. Figure 5 shows a typical CoP

scene along with an NcP scene, each used for CoP and NcP

calibrations, respectively.

In each scenario, we measured angular error for fixated

points within the scene used for calibration (which we refer

to as the training scene), and then within an altogether

different scene (which we refer to as the test scene), using

identical cross calibration parameters for both the training

and test scenes.

In all cases, we performed angular error analysis by

requesting test subjects to fixate pre-selected points p in the

scene for which the 3D position is known within the error

margin of the scene stereo system. For each point p, we

requested the test subject to fixate it for 2 s (using the same

technique as when calibrating), recorded the gaze data set,

and computed its LoG in 3D, where we measured the angle

between it and the LoG of p. This method of error evaluation

comprises the stereo scene system error (characterized in [1],

the eye tracker error (characterized by the manufacturer of

the eye tracker2), and whether the test subject is accurately

fixating the point (difficult to quantify).

Figure 6a) displays the angular errors obtained on a per

test subject basis. The green bars represent angular errors

for the test scenes and the blue bars those from the training

scenes, for both co-planar (CoP) and non co-planar (NcP)

calibration points. As expected, for experiments conducted

with CoP calibration, the errors for the test scenes (blue bars)

are significantly higher than those of the training scenes

(green bars). This experimental context clearly shows the

inadequacy of assuming coinciding projection centers for the

scene camera and the eye tracker. In the case of experiments

conducted with NcP calibration, the angular error differences

between the training and test scenes are significantly smaller,

empirically demonstrating the superiority of our approach.

This result is also clearly observed in Figure 6b), where

errors are averaged over the test subjects. The difference in

angular error between CoP and NcP calibration for the test

scenes is superior to 2◦, (or by a multiplicative factor just

under 3).

IV. CONCLUSION

In 2009, Hennessey and Lawrence claimed to be first in

devising a binocular system for estimating the 3D coordi-

nates of where one is looking in the 3D world, by using

vergence [5]. In their experiments, fixated objects were close

to test subjects and contained in a 1.725 m3 volume. They

obtained an average PoG error of 3.93 cm. We devised

a novel, superior method which remains precise for much

larger volumes and distances by combining a binocular eye

2FaceLAB 5, from SeeingMachines Inc.
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Fig. 5. a) (left): A wall and its depth map are used to perform experiments with co-planar calibration points. b) (right): A typical scene
used to perform experiments with non co-planar calibration points.
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Fig. 6. a) (top): Angular errors (with standard deviation bars)
obtained with the four test subjects on test and training scenes with
CoP and NcP calibrations. b) (bottom): Angular error averages
(with standard deviation bars) over the test subjects obtained on
test and training scenes with CoP and NcP calibrations.

gaze tracker with a binocular scene stereo system through an

innovative cross calibration procedure. Our system operates

in real time (30Hz) and is installed in an operational,

experimental vehicle. To our knowledge, this experimental

vehicle is the first of its kind, capable of computing the

absolute 3D PoG of its driver at 30Hz sufficiently precisely

to conduct scientific experiments addressing ocular behavior

in relation to visual stimuli.

Fig. 7. a) (left): 2D image errors in re-projection between points
requested to be fixated and points actually fixated under a CoP
calibration for a test scene b) (right): 2D image errors in re-
projection between points requested to be fixated and points actually
fixated under an NcP calibration for a test scene
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