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Abstract— This contribution consists of a frame-rate, vision-
based, on-board method which detects vehicles within the
attentional visual area of the driver. The method herein uses
the 3D absolute gaze point of the driver obtained through
the combined use of a front-view stereo imaging system and
a non-contact 3D gaze tracker, alongside hypothesis-generation
reducing techniques for vehicular detection such as horizon line
detection. Trained AdaBoost classifiers are used in the detection
process. This technique is the first of its kind in that it identifies
vehicles the driver is most likely to be aware of at any moment
while in the act of driving.

I. INTRODUCTION

It has been known for some time that driver ocular move-

ments often provide information on the very next maneuver

to be effected [1], such as in the case of negotiating a road

bend [2]. Our research program focuses on the development

of intelligent, Advanced Driving Assistance Systems (i-

ADAS) which include the driver as a pivotal element of

driving error prediction and correction.

A. Context

The underlying principle underpinning this research is

to determine to what extent current maneuvers and ocu-

lar behavior are predictive of the next maneuver and also

whether this predicted maneuver is consonant with the cur-

rent driving context (other vehicles, pedestrians, signage,

and lanes, among others). Our current vision for i-ADAS

is that of intervening (by a switch to autonomous driving)

only when the next predicted maneuver poses a measurable

traffic risk. Vehicular control is then returned once the danger

has abated and the driver is capable of correctly controlling

the vehicle. Such an i-ADAS, once realized, would certainly

significantly reduce vehicle accidents, injuries, and fatalities,

without removing the driver from the act of commuting.

The complexities involved in such an endeavor require

many stages of research, such as the study of driver behavior

as it pertains to ocular movements and current maneuvers,

the precise detection and understanding of traffic context

surrounding the vehicle, and a correct assessment of objects

that are perceived (or not) by the driver. This contribution

relates to the latter, as it consists of an attempt at detecting

vehicles located in the attentional visual field of the driver.
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B. Background

More than 30,000 people die in vehicle-related accidents

in the United States every year [3]. Current Driver Assistance

Systems (DAS) such as Electronic Stability Control have

reduced these grim numbers over the recent years. However

much more remains to be accomplished since driver actions,

maneuvers, and ocular behavior as they relate to the environ-

ment are usually not included in the retroactive mechanisms

composing DAS. Given that most vehicle accidents are

rooted in human error, the next steps in ADAS research are

clearly laid out. One crucial task is to automatically and

reliably detect relevant objects in the environment which the

driver may or may not have seen, as a starting point of a

driver-aware assistance system.

Many vision-based algorithms have been developed for the

purpose of detecting vehicles at frame rate in recent years,

but many such techniques lack the required accuracy and

speed to be of any practical use. Reducing the search space

for Hypothesis Generation (HG) and extracting only the

relevant information may assist in reaching higher efficiency.

The most relevant information concerning what a driver is

looking at comes from the 3D gazing point of the driver in

absolute coordinates and what type of objects are located

around it [4]. In this contribution our interest focuses on the

vehicles the driver is most likely to be aware of at any given

time. The experiments were conducted with an improved

version of the RoadLAB experimental vehicle described in

[5].

The remainder of this contribution is organized as follows:

Section II describes the current literature in the area of

vehicle detection. The proposed technique is presented in

Section III. Results and evaluations are given in Section IV.

Section V concludes this work.

II. LITERATURE SURVEY

Vehicle detection has been and continues to be an impor-

tant area of research in Computer Vision. Statistical methods

such as SVM [6], [7], PCA [8] or Neural Networks [9]

constituted the main body of early approaches. However,

these did not achieve the levels of efficiency required for

realistic use.

In 2001, Viola and Jones proposed a powerful method

for rapid object detection based on training a sequence

of classifiers using Haar-like features [10]. The authors

demonstrated high performance rates for their method by

applying it to the problem of facial recognition [11]. This

approach became widely used in areas including vehicle
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detection [12], and many researchers have focused on its

variants in recent years [13].

In general, any detection problem is formulated in two

stages: Hypothesis Generation (HG) and Hypothesis Verifi-

cation (HV). Various strategies have been used for HG. Some

authors used shadows cast on the pavement by the presence

of vehicles [14], while others exploited edge maps [15],

vehicle symmetry [16], and so on, as cues to finding vehicles

in sets of images. Reducing the range of probable vehicle

positions in HG is of utmost importance to achieve decent

frame rates in the vehicle detection process. In the case of

HV, most techniques apply AdaBoost as a strong classifier

to verify the existence of vehicles in the the image areas

identified as likely candidates by the hypothesis generation

mechanism. For instance, Khammari et al. used a gradient

based algorithm for hypothesis generation and AdaBoost

classifier for candidate verification [17]. Alternatively, Song

et al. generated candidate image regions by use of edge

maps and properties of vehicle symmetry followed by texture

analysis and AdaBoost for vehicle detection [18]. None of

these approaches are attempting to determine which vehicles

are in the attentional visual field of the driver. Rather, they

attempt to identify all vehicles within image sequences.

III. PROPOSED METHOD

For reasons cited above, our interest lies in the detection

of vehicles that a driver is most likely to be aware of at any

moment. For this reason, we have selected two approaches

developed in our laboratories and combined them into the

technique we present herein. The first of our techniques,

due to Kowsari et al. performs vehicle detection by using

Hypothesis Generation techniques that significantly reduce

the number of candidate image regions while preserving

excellent detection rates [19]. The second technique we

adopted in this contribution pertains to the identification of

the 3D point of gaze in absolute 3D coordinates given in

the frame of reference of the vehicle [20]. This technique is

unique in that it avoids the parallax errors introduced by

the combined usage of 3D gaze trackers with monocular

scene cameras. As expected, adjoining these two techniques

allows for even more stringent HG strategies since we are

only interested in vehicles around the driver point of gaze,

thus increasing the nominal frame rate for vehicle detection.

Our driving sequences for test purposes were recorded with

the RoadLAB experimental vehicle, as depicted in Figure 1.

Both the forward stereo scene system and the non-contact

3D gaze tracker operate in their own frames of reference.

While we define that of the scene stereo system to be that

of the vehicle, there is a need to transform the 3D driver

gaze, expressed in the coordinates of the tracker, into that

of the vehicle. Fortunately, the technique to perform this

transformation has been established by Kowsari et al. [20]

in our laboratories.

A. Hypothesis Generation

The objective of HG is to identify candidate image areas

likely to contain vehicles, in order to disregard image areas

Fig. 1. Vehicular instrumentation configuration. a) (top): In-vehicle non-

contact infra-red binocular gaze tracking system and forward scene stereo

imaging system mounted on the roof of the vehicle. b) (bottom): On-board

software systems.

Fig. 2. (top): A depiction of the driver attentional gaze cone. It is

generally accepted that the radius of the cone is approximately 13
◦ [21]

and (bottom): reprojection of 3D attentional circle onto the 2D ellipsoid

on image plane of the forward stereo scene system.
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Fig. 3. (left): Estimated horizon lines and (right): their corresponding

depth maps.

not likely to contain such objects (such as visible part of the

sky, for instance). A considerable number of false positives

may be removed by the suppression of image areas in the

HG stage for which we know no vehicle can be present. One

such powerful constraint applied to the HG process is the fact

that vehicles will appear in imagery within a horizontal band

centered around the horizon line (if we assume a relatively

flat landscape). Furthermore, since our interest is focused on

vehicles within an area around the 3D gaze of the driver, then

the HG stage need only consider the intersection of the band

around the horizon line and the 3D gaze area of the driver.

This intersection constitutes a Region of Interest (RoI) within

which the HG stage operates. Figure 2 depicts the attentional

gaze cone of a driver. The radius of the circular gaze area

depends on the distance between the fixated object and the

driver.

The horizon line is approximated by intersecting the plane

parallel to that of the ground plane and passing through

the focal point with the image plane of the forward stereo

scene system, and converting to image coordinates using

stereo calibration parameters. The ground plane estimation is

performed by grouping detected 3D ground points in areas of

the imagery where no obstacle is known to be present. These

points are then used in a robust plane-fitting computation to

obtain the ground plane parameters (implementation details

for both the ground plane and the horizon line are provided

in [19]).

Once provided with an estimate of the horizon line, the

first RoI is given by the horizontal band defined as

RoI1 : f(x) = mx+ b± δ (1)

where m and b specify the horizon line and δ determines

the vertical span of the RoI around it. Vehicles are expected

to be found within this image region. Figure 3 shows the

horizon line for two different frames from a test sequence.

The second RoI of interest consists of the circle formed by

the intersection of the visual cone of attention with the plane

perpendicular to the 3D Line of Gaze (LoG) and containing

the 3D Point of Gaze (PoG) of the driver. The hypothesis that

visal attention operates as a spotlight within the visual field

is corroborated by an number of studies [22]. Additionally,

it seems reasonable to equate the span of this spotlight to

±6.5◦ from the pitch and yaw angles of the gaze direction,

as it corresponds to the human central field of view [21],

resulting in the attentional gaze cone depicted in Figure 2.

Once the 3D eye position e = (ex, ey, ez)
T from which

the LoG is emanating, and the 3D PoG g = (gx, gy, gz)
T

have been transformed into the frame of reference of the

forward stereo scence system (as per [20]), the radius of the

circular gaze area onto the plane perpendicular to the LoG

and containing the PoG is obtained as

r = tan(θ)d(e,g) (2)

where θ = 6.5◦, and d is the Euclidean distance between e

and g, defined as

d(e,g) =
√

(e− g)T (e− g) (3)

At this point, the circle defined by the PoG and radius r

and contained in the 3D plane perpendicular to the LoG

is reprojected onto the image plane of the forward stereo

scene system and delineates the 2D portion of the scene

that falls onto the attentional visual area of the driver. Since

this plane is generally not parallel to the image plane of

the forward stereo scene system, the 3D attentional circle

projects to an ellipsoid as illustrated in Figure 2. The 3D

circle in parametric form can be written as

S(φ) = (X(φ), Y (φ), Z(φ))T = g+ r(u cosφ+ v sinφ)
(4)

where u = (ux, uy, uz)
T and v = (vx, vy, vz)

T are two

orthogonal unit vectors within the plane, and parameter φ

varies from 0 to 2π. This circle is transformed into the

reference frame of the stereo system as

S′(φ) = RT (S(φ) −T) (5)

where R is a rotation matrix and T is a translation vector

describing the rigid transformation from the reference frame

of the stereo system to that of the eye-tracker. The image

coordinates of the resulting ellipsoid are obtained as

s′(φ) =
1

Z ′(φ)
KS′(φ) (6)

where

K =





fx 0 ox
0 fy oy
0 0 1





is the matrix of intrinsic parameters related to the scene

stereo system [20].

The second region of interest RoI2 is thus defined as the

image region contained within the 2D circle as it reprojects

onto the image plane of the forward stereo scene system. The

final RoI of interest for the HG mechanism is consequently

defined as the intersection of RoI1 and RoI2. Given image

region RoI = RoI1 ∩ RoI2, the HG mechanism proceeds

according to the algorithm given in [19]. Figure 4 displays
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Fig. 4. Displays of various LoGs, PoGs, and attentional gaze areas
projected onto the forward stereo scene system of the vehicle.

several Lines of Gaze (LoGs), Points of Gaze (PoG), and

attentional visual areas for selected frames.

B. Hypothesis Verification

AdaBoost, introduced by Freund and Schapire [23], is a

method for choosing and combining a set of weak classifiers

to build a strong classifier. Adjoining the concept of the

integral image as an efficient way of computing Haar-like

features and cascaded AdaBoost, Viola and Jones introduced

a powerful method for object recognition [10]. We adopted

this approach for the HG stage and used four cascaded Ad-

aBoost classifiers to discriminate positive from false-positive

hypotheses. The Haar-training module from OpenCV is used

to train our classifiers. Figure 5 shows various Haar-like

features. We used in excess of two hundred vehicle images

as positive samples for each classifier. For the negative

examples, a set of more than five hundred images randomly

downloaded from the Internet was used.

Fig. 5. A depiction of Haar-like features.

IV. EXPERIMENTAL RESULTS

The proposed method was tested on 3,326 randomly

selected frames, in which 5,751 vehicles in various views

and lanes appeared. These were manually annotated for the

purpose of evaluating our method. Figure 6 shows a small

sample of our results where each green rectangular area

within the RoI indicates a vehicular detection. Rates of

TABLE I

DETECTION RATES AND FALSE POSITIVES PER FRAME FOR DIFFERENT

VIEWS AND VEHICLES

FV RV FSV & BSV SV ALL

DR 0.9877 0.9890 0.8401 0.8118 0.9867

FP/F 0.25 0.22 0.30 0.31 0.24

detection and false positives per frame for various vehicle

views are given Table I, where FV, RV, FSV & BSV, and

SV, stand for Front View, Rear View, Front-Side and Back

Side Views, and Side View, respectively, while DR and FP/F

are Detection Rate and False Positives per Frame.

TABLE II

COMPARISON ON FRAME RATES, HIT RATES, AND FALSE POSITIVES FOR

VARIOUS METHODS

Authors F/S HR FP

Chang and Cho [24] 5 99% 12%

Southall et al. [25] 16 99% 1.7%

Bergmiller et al. [26] 83.12% 16.7%

Sun et al. [27] 10 98.5% 2%

Alonso et al. [28] 92.63% 3.63%

Cheng et al. [29] 20 90% 10%

Kowsari et al. [19] 25 98.6% 13%

Our Method 30 98.9% 11%

Figure 7 shows the performance of our method measured

using a Receiver Operating Characteristics (ROC) curve,

characterizes the True Positive Ratio (TPR) versus False

Positives (FP). TPR is obtained by dividing True Positives

by the number of vehicles. Table II compares various ve-

hicle detection methods with ours, where F/S, HT, and FP

stand for Frames per Second, Hit Rate, and False Positives,

respectively.

V. CONCLUSION

We presented a method for the detection of vehicles

located within the attentional visual area of drivers as an

initial attempt at identifying which visual stimuli elicit ocular

responses from drivers. Our implementation is non-contact

and operated on-board an experimental vehicle at frame rate

(30Hz). We believe this contribution could easily be extended

to include other visual stimuli drivers routinely encounter and

attend to, such as pedestrians, cyclists, traffic lights, signs,

and more. Ultimately, such an augmented technique will be

integrated into i-ADAS as a means to identify objects drivers

attend to, and those that they do not, at frame rate.
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