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Abstract. Retinal image motion and optical flow as its approximation are fundamental concepts in
the field of vision, perceptual and computational. However, the computation of optical flow remains a
challenging problem as image motion includes discontinuities and multiple values mostly due to scene
geometry, surface translucency and various photometric effects such as reflectance. In this contribution,
we analyze image motion in the frequency space with respect to motion discontinuities and translucence.
We derive the frequency structure of motion discontinuities due to occlusion and we demonstrate its
various geometrical properties. The aperture problem is investigated and we show that the information
content of an occlusion almost always disambiguates the velocity of an occluding signal suffering from the
aperture problem. In addition, the theoretical framework can describe the exact frequency structure of
Non-Fourier motion and bridges the gap between Non-Fourier visual phenomena and their understanding
in the frequency domain.
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image encoding [10, 13, 35, 37, 39, 55], to compute
stereo disparity [3, 12, 26, 28], to measure blood
flow and heart-wall motion in medical imagery
[43], and, recently, to measure minute amounts
of growth in corn seedlings [6, 29].

1. Introduction

A fundamental problem in processing sequences of
images is the computation of optical flow, an ap-
proximation to image motion defined as the pro-
jection of velocities of 3D surface points onto the

imaging plane of a visual sensor. The importance 1.1.

of motion in visual processing cannot be under-
stated: in particular, approximations to image
motion may be used to estimate 3D scene proper-
ties and motion parameters from a moving visual
sensor [21, 30, 31, 42, 51, 50, 1, 5, 38, 22, 54, 56,
34, 20, 16, 23], to perform motion segmentation
[7, 40, 45, 36, 47, 14, 25, 8, 2, 46, 15], to compute
the focus of expansion and time-to-collision [44,
41, 48, 24, 49, 9], to perform motion-compensated

Organization of Paper

This contribution addresses the problem of mul-
tiple image motions arising from occlusion and
translucency phenomena. We present a theoret-
ical framework for discontinuous optical flow in
the Fourier domain. The concept of image veloci-
ty as a geometric function is described in Section
1.
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Section 2 is an analysis of occlusion in Fouri-
er space with a constant model of velocity. Our
approach focuses on the frequency structure of
occluding surfaces and the theoretical results are
constructed incrementally. For instance, a sim-
ple model of velocity is used to develop the struc-
ture of occlusion with sinusoidal signals which are
then generalized to arbitrary signals. These theo-
retical results demonstrate that occlusion may be
differentiated from translucency and the motions
associated with both the occluding and occluded
surfaces can be discriminated.

Section 3 is an investigation of the aperture
problem and degenerate! signals, as they appear
in the theoretical framework. For example, it is
shown that the full velocity of a degenerate signal
is almost always computable at the occlusion.

Section 4 is a study of related issues such
as translucency phenomena, Non-Fourier motion,
generalized occlusion boundaries and phase shifts.
Numerical experiments supporting the framework
are presented. Results obtained with sets of sinu-
soidal signals created synthetically are compared
with their corresponding theoretical predictions.
Section 5 summarizes our results.

1.2.  Contribution

The motivation for the theoretical framework e-
manates from the observation that occlusion and
translucency in the context of computing optical
flow constitute difficult challenges and threatens
its precise computation. The theoretical results
cast light on the exact structure of occlusion and
translucency in the frequency domain.

The results are essentially theoretical and stat-
ed in the form of Theorems and Corollaries. Rel-
evant numerical experiments which support the
theoretical results are presented. In addition, this
contribution bridges what is seen as an important
gap between Non-Fourier models of visual stim-
uli and optical flow methods in Computer Vision.
In fact, Non-Fourier visual stimuli, to which be-
long translucency and occlusion effects, have been
studied mainly with respect to the motion per-
cept these stimuli elicit among human subjects
[11, 52, 53]. However, more recently, it has been
conjectured that a viable computational analysis
of Non-Fourier motion could be carried out with

Fourier analysis, since many Non-Fourier stimuli
turn out to have simple frequency characteriza-
tions [19]. The results presented herein extend the
concept of Non-Fourier stimuli such as occlusion
and translucency from being not at all explained
by its Fourier characteristics to the establishment
of exact frequency models of visual stimuli exhibit-
ing occlusions and translucencies.

As a first attempt to understand occlusion, the
simplest set of controllable parameters were used,
such as the structure of occlusion boundaries and
the number of distinct frequencies for representing
the occluding and occluded surfaces. A constant
model of velocity was also used and no signal de-
formations (such as those created by perspective
projection) were permitted. These preliminary re-
sults are extended to image signals composed of an
arbitrary number of discrete frequencies. Dirich-
let conditions are hypothesized for each signal thus
allowing to expand them as complex exponential
series.

The potential use of the information-content
of an occlusion boundary is outlined. Occluding
boundaries contain a wealth of information that is
not exploited by conventional optical flow frame-
works, due to a theoretical void. It is shown that
a degenerate occluding signal exhibiting a linear
spectrum is supplemented by the linear orienta-
tion of its occluding boundary. These two spectra
almost always yield the full velocity of an occlud-
ing signal suffering from the aperture problem.
The structure of occlusion when both signals are
degenerate is also shown. It is demonstrated that
this particular case collapses to a one-dimensional
structure.

The Corollaries show that additive translucency
phenomena may be understood as a special case of
the theoretical framework. In addition, the veloc-
ities associated with both the occluding and oc-
cluded signals may be identified as such, without
the need of scenic information such as depth.

1.3. Image Motion

Image motion is expressed in terms of the 3D
motion parameters of the visual sensor and the
3D environmental points of the scene: let PT =
(X,Y,Z) be an environmental point, Q7 =
(Qz,9Q,,Q.) and T = (Tw, Ty, T.) be the visu-
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Fig. 1. The geometry of the visual sensor. QT = (Q2,0y,9:) and T — (I%,Ty,T.) are the instantaneous rotation and
translation of the visual sensor. p(t) is the perspective projection of P(t) onto the imaging surface.

al sensor’s respective instantaneous rate of change
in rotation and translation and p = % the per-
spective projection of P onto the imaging surface
(the focal length of the sensor is assumed to be 1),
where z is a normalized vector along the line-of-
sight axis Z. The setup is shown in Figure 1. The
instantaneous 3D velocity of P is given by

V=-T-QxP. (1)

The relationship between the 3D motion parame-
ters and 2D velocity that results from the projec-
tion of V onto the image plane can be obtained
by temporally differentiating p:

> : (2)

Using VI % (X,v.,2) = (-7, - 0,2 +
.Y, T, — QX + 0,2, —T. + QY — Q,X) for
substitution in (2), one obtains the image velocity
equation [31]:

voo = (7651

ryQ, — (14 2)Q, +yQ. )
1+ 93 — 2y, —2Q, )

N <A<
NN

Hence, image motion is a purely geometric quan-
tity and, consequently, for optical flow to be ex-
actly image motion, a number of conditions have
to be satisfied. These are: a) uniform illumina-
tion; b) Lambertian surface reflectance and c) pure
translation parallel to the image plane. Realisti-
cally, these conditions are never entirely satisfied
in scenery. Instead, it is assumed that these condi-
tions hold locally in the scene and therefore local-
ly on the image plane. The degree to which these
conditions are satisfied partly determines the ac-
curacy with which optical flow approximates im-
age motion.

1.4. Multiple Motions

Given an arbitrary environment and a moving vi-
sual sensor, the motion field generated onto the
imaging plane by a 3D scene within the visual
field is represented as function (3) of the motion
parameters of the visual sensor. Discontinuities
in image motion are then introduced in (3) when-
ever the depth Z is other than single-valued and
differentiable?. The occurrence of occlusion caus-
es the depth function to exhibit a discontinuity,
whereas translucency leads to a multiple-valued
depth function.
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1.5. Models of Optical Flow

Generally, the optical flow function may be ex-
pressed as a polynomial in some local coordinate
system of the image space of the visual sensor. It
is assumed that the center of the neighborhood
coincides with the origin of the local coordinate
system. In this case, we may write the Taylor se-
ries expansion of a i*" velocity about the origin
as:

vi(x,t) =

P r 6]+k+l

q
gl
ZZ |k|l|awyaykatl vyt (4)

J=0k=0i= x,t=0

where p + ¢ + r < n. However, we simply adopt
in what follows Fleet and Jepson’s [18] constant
model of optical flow denoted as:

vi(x,t) = x — a;t, (5)

where a; is now the velocity vector. Hence, a
2D intensity profile Iy translating with velocity
v; yields the following spatiotemporal image in-
tensity translation:

I(x,t) = Io(vi(x,1)). (6)

We use a negative translational rate in (5) with-
out loss of generality and for mere mathematical
convenience.

1.6.  Signal Translation in the Frequency Domain

Consider a signal I;(x) translating at a constant
velocity v;(x,t). For this signal, the Fourier trans-
form of the optical flow constraint equation is ob-
tained with the differentiation property as:

FIVLx)Ta; + 1] = iLi(k)d(kTa; +w), (7)

where i is the imaginary number, I;(k) is the
Fourier transform of I;(x) and §(k"a; + w) is
a Dirac delta function. Expression (7) yields
kTa; + w = 0 as a constraint on velocity. Simi-
larly, the Fourier transform of a translating image
signal I;(x,t) is obtained with the shift property

as:
w) = / / L (v (x, t))e 04wl gy

= / ['/I,;(v,;(x,t))e"’kadx et

= Lik)o(k"a; +w), (8)

which also yields the constraint kTa; + w = 0.
Hence, (7) and (8) demonstrate that the frequen-
cy analysis of image motion is in accordance with
the motion constraint equation [18]. It is also ob-
served that kTa; + w = 0 represents, in the fre-
quency domain, an oriented plane passing through
the origin, with normal vector a; descriptive of full
velocity, onto which the Fourier spectrum of I, (x)
lies.

1.7. Related Literature

Traditionally, motion perception has been equated
with orientation of power in the frequency domain.
The many optical flow methods use what Chub-
b and Sperling term the Motion-From-Fourier-
Components (MFFC) principle [11] in which the
orientation of the plane or line through the origin
of the frequency space that contains most of the
spectral power gives the rate of image translation.

The MFFC principle states that for a mov-
ing stimulus, its Fourier transform has substantial
power over some regions of the frequency domain
whose points spatiotemporally correspond to sinu-
soidal gratings with drift direction consonant with
the perceived motion [11]. In addition, current
models of human perception involve some frequen-
cy analysis of the imagery, such as band-pass fil-
tering and similar processes. However, some class-
es of moving stimuli which elicit a strong percept
in subjects fail to show a coherent spatiotemporal
frequency distribution of their power and cannot
be understood in terms of the MFFC principle.

Examples include drift-balanced visual stim-
uli [11], Fourier and Non-Fourier plaid superpo-
sitions [52], amplitude envelopes, sinusoidal beats
and various multiplicative phenomena [19]. By
drift-balanced it is meant that a visual stimulus
with two (leftward and rightward, for example) or
more different motions shows identical contents of
Fourier power for each motion and therefore, ac-
cording to the MFFC principle, should not elicit
a coherent motion percept. However, some class-
es of drift-balanced stimuli defined by Chubb and
Sperling do elicit strong coherent motion percept-
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s, contrary to the predictions of the usual MFFC
model.

Sources of Non-Fourier motion also include the
motion of texture boundaries and the motion of
motion boundaries. For instance, transparency as
considered by Fleet and Langley [19] is an exam-
ple of Non-Fourier motion, as transparency caus-
es the relative scattering of Fourier components
away from the spectrum of the moving stimuli. In
addition, occlusion, modeled as in (13), is anoth-
er example of Non-Fourier motion which is closely
related to the Theta motion stimuli of Zanker [53],
where the occlusion window moves independent-
ly from both the foreground and the background,
thus involving three independent velocities.

It has been observed by Fleet and Langley that
many Non-Fourier motion stimuli have simple
characterizations in the frequency domain, namely
power distributions located along lines or planes
which do not contain the origin of the frequen-
cy space, as required by the MFFC idealization
[19]. Occlusion and translucency being among
those Non-Fourier visual stimuli, we develop their
exact frequency representations, state their prop-
erties with respect to image motion (or optical
flow), consider the aperture problem and include
additive translucency phenomena within the the-
oretical framework.

1.8.  Methodology

To analyze the frequency structure of image sig-
nals while preserving representations that are as
general as possible, an effort is made to only pose
those hypotheses that would preserve the gener-
ality of the analysis to follow. We describe the
assumptions and the proof techniques with which
the theoretical results were obtained.

Image Signals The geometry of visual scenes
under perspective projection generally yield-
s complex image signals. Conceptually, as-
sumptions concerning scene structure should
not be made, as they constrain the geometry
of observable scenes. In addition, any mea-
sured physical signal, such as image intensi-
ties, satisfies Dirichlet conditions. Such sig-
nals admit a finite number of finite discon-
tinuities, are absolutely integrable and may

be expanded into complex exponential series.
Dirichlet conditions constitute the sum of as-
sumptions made on image signals.

Velocity On a local basis, constant models of
signal translation may be adequate to describe
velocity. However, linear models admit an in-
creased number of deformations, such as sig-
nal dilation. Hence, the extent used for signal
analysis may be larger with linear models. We
considered a constant model of velocity, leav-
ing deformations of higher order for further
analysis.

Occluding Boundaries Object frontiers and
their projection onto the imaging plane are
typically unconstrained in shape and are diffi-
cult to model on a large spatial scale. Simpler,
local models appear to be more appropriate.
The framework includes occlusion boundaries
as locally straight edges, represented with step
functions. This hypothesis only approximates
reality and limits the analysis to local image
regions. However, we outline in which way
this hypothesis can be relaxed to include oc-
clusion boundaries of any shape.

Proof Techniques The Theorems and their
Corollaries established in this analysis em-
anate from a general approach to modeling
visual scenes exhibiting occlusion discontinu-
ities or translucency. An equation which de-
scribes the spatio-temporal pattern of the su-
perposition of a background and an occluding
signal is established [17], in which a charac-
teristic function describing the position of an
occluding signal within the imaging space of
the visual sensor is defined:

(x) = 1 if x within the occluding signal
XXT= 10 otherwise
(9)

and two image signals I;(x) and I, (x), cor-
responding to the occluding and occluded sig-
nals respectively, are defined to form the over-
all signal pattern:

I(x,t) =
x(vi(x, )i (vi(x,1)) +
[T = x(vi(x, 1) Ta(va(x, 1)), (10)
where v;(x,t) is constant velocity. Note that

the characteristic function describing the ob-
ject has the same velocity as its corresponding
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intensity pattern I;(x). In (10) are inserted
the hypotheses made on its various compo-
nents and the structure of occlusion in the fre-
quency domain is developed. That is to say,
signal structures are expanded into complex
exponential series, such as:

o

Li(x) = Z (:,;neixTNk", (11)

n=—a&

where I;(x) is the i*" intensity pattern, c;,
are complex coefficients, k; are fundamental
frequencies, n” = (ny,n,... n,) are integers
and N = n"I. Occlusion boundaries become
locally straight edges, represented with step
functions such as:

Ux) = {

1 ifx"™n; >0

0 otherwise, (12)

where n; is a vector normal to the tangent of
the occluding boundary. In addition, degen-
erate image signals under occlusion are inves-
tigated, thus describing the aperture problem
in the context of the framework. Whenev-
er technically possible, the theoretical result-
s were compared with numerical experiments
using Fast Fourier Transforms operating on
synthetically generated image sequences.
Relevance of Fourier Analysis Many algo-
rithms operating in the Fourier domain for
which a claim of multiple motions capability is
made have been developed [27]. However, this
is performed without a complete knowledge
of the frequency structure of occlusion phe-
nomena. In addition, Non-Fourier spectra,
including occlusion and translucency effects
have been conjectured to have mathematically
simple characterizations in Fourier space [19].
Consequently, the use of Fourier analysis as
a local tool is justified as long as one realizes
that it constitutes a global idealization of local
phenomena. In that sense, Fourier analysis is
used as a local tool whenever Gabor filters,
wavelets or local Discrete Fourier Transforms
are employed for signal analysis.
Experimental Technique Given the theoreti-
cal nature of this contribution, the purpose
of the numerical experiments is to verify the
validity of the theoretical results. In order to
accomplish this, the frequency content of the

image signals used in the experiments must
be entirely known to the experimenter, thus
forbidding the use of natural image sequences.
In addition, image signals with single frequen-
cy components are used in order to facili-
tate the interpretation of experiments involv-
ing 3D Fast Fourier transforms. The use of
more complex signals impedes a careful ex-
amination of the numerical results and do not
extend the understanding of the phenomena
under study in any particular way.

2. Spectral Structure of Occlusion

The analysis begins with the consideration of a
simple case of occlusion consisting of two translat-
ing sinusoidal signals. These preliminary results
are then generalized to arbitrary signals and the
aperture problem is examined.

2.1.  Sinusoidal Image Signals

The case in which two sinusoidals play the role of
the object and the background is first considered.
Let I;(x) be an image signal translating with ve-
locity v;(x,t) such that I;(x,t) = L;i(v;(x,t)). Its
Fourier transform is I;(k,w) = I;(k)d(kTa; + w).
Let I (x) be occluding another image signal I»(x),
with respective velocities vy (x,t) and va(x,t).
The resulting occlusion scene can then be ex-
pressed as:

I(x,t) =
Ui (x, ) (vi(x, 1)) +
(1 =UWvi(v, )L (va(x,1)),  (13)

where U(x) is (12). The Fourier transform of (13)
is:

I(k,w) =

K)ok a; + w)] * [I (k)d(k"a; + w)] —
k)6(kTa; + w)] * [L(k)6(kTay + w)] +

2 (k)o(k"ay + w), (14)

U
U

oy —— ——

where U (k) is the Fourier transform of a step func-
tion U(x) written as

. B i6(k"ni)

(k) = mo(k) — =yt (15)
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THEOREM 1. Let I1(x) and I5(x) be cosine functions with respective angular frequencies kT =
27(f12,0) and 27(0, f1,), k3 = 27(f22,0) and 27(0, fo,) and let I;(v1(x,t)) = ci(cos(kizo — aist) +
cos(kiyy — bist)) and Io(va(x,t)) = ca(cos(kazx — asst) + cos(kayy — bast)). The frequency spectrum of

the occlusion is:

I&M):Zqﬂkihw$k%ﬂ+

icad((k £ ki) n k"a; +w+ kI Aa)

(1)
4

CQ(S(k + kz,w T kgag)
ic16((k £kq) i kTa; +w

4(1( + kg)Tnl

B 4(kik1)Tn1 ’ (16)

where Aa = a; — as and ny is a normal vector perpendicular to the occluding boundary.

with n; as a vector normal to the occlusion bound-
ary and ni" as its negative reciprocal (—n,,n;)"

Theorem 1 is derived to examine occlusion with
the simplest set of parameters, such as the form of
occlusion boundaries, the number of distinct fre-
quencies required to represent both the occluding
and occluded image signals, and a constant model
of velocity. Even with this constrained domain of
derivation, a number of fundamental observations
are made, such as: the occlusion in frequency s-
pace is formed of the Fourier transform of a step
function convolved with every existing frequency
of both the occluding and occluded sinusoidal sig-
nals and, the power content of the distortion ter-
m is entirely imaginary, forming lines of decreas-
ing power which do not contain the origin, around
the frequencies of both the occluding and occluded
signals. Their orientation is parallel to the spec-

their orientation allows to identify the occluding
velocity, leaving the occluded velocity to be inter-
preted as such.

We performed a series of experiments to graphi-
cally demonstrate the composition of a simple oc-
clusion scene. To simplify the interpretation of
the experiments, we used 1D sinusoidal signals
composed of single frequencies. In addition, the
signals are Gaussian-windowed in order to avoid
the Gibbs phenomenon when computing their Fast
Fourier Transforms (FFTs). Figure 2a), b) and c)
show the components of a simple occlusion scene,
pictured in 2d). Figure 2a) is the occluding signal
with spatial frequency f—’ﬁf and velocity —1.0, such
that

L (2, 1) = cos G—g(a« + t)> (17)

and in 2b) is the occluded signal with spatial fre-

quency %’T and velocity 1.0, yielding

I,(z,t) = cos (%”(x - t)) . (18)

The occluding boundary in Figure 2c) is a 1D step
function, written as

lifz >0
U(z) = { 0 otherwise (19)

and translates with a velocity identical to that of
I] .

The resulting occlusion scene in Figure 2d) is
constructed with the following 1D version of (13):

I(z,t) =
L (01 (2, ) x (1 (2, 1)) +
1 X1 (@ L), (20)

where Iy is (17), I, is (18) and x is (19). Fig-
ures 2e) through h) show the amplitude spectra
of figures 2a) through d) respectively, where it is
easily observed the the spectrum of the step func-
tion (19) is convolved with each frequency of both
sinusoidals. Further, Theorem 1 predicts Fourier
spectra such as 2h) in their entirety as is demon-
strated by the experiments in section 2.3.

2.2.  Generalized Image Signals

For this analysis to gain generality, we need to
find a suitable set of mathematical functions to
represent, physical quantities such as image signals
that lend themselves to the analysis to follow and
which do not impose unnecessary hypotheses on
the structure of those signals.
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f)

Amplitude Spectrum of Sinusoid 2

g)

Amplitude Spectrum of Step Function Amplitude Spectrum of Occlusion

k) 1)

27

Fig. 2. (top): The composition of a simple 1D occlusion scene. a) The occluding sinusoidal signal with frequency 15 and

velocity —1.0. b) The occluded sinusoidal signal with frequency

QT" and velocity 1.0. ¢) The translating step function used

to create the occlusion scene. d) The occlusion as a combination of a), b) and c). (center): Image plots of amplitude

spectra and (bottom): amplitude spectra as 8D graphs.

For this purpose we hypothesize that image sig-
nals satisfy Dirichlet conditions in the sense that
for any interval z; < x < m9, the function f(x)
representing the signal must be single-valued, have
a finite number of maxima and minima and a fi-
nite number of finite discontinuities. Finally, f(z)
should be absolutely integrable in such a way that,
within the interval, we obtain

/m |f(z)|dz < cc. (21)

1

In addition, any function representing a physi-
cal quantity satisfies Dirichlet conditions. Hence,

those conditions can be assumed for visual signals
without loss of generality and, in this context, the
complex exponential series expansion, or Fourier
series

o
Z cpeikor (22)

n=—od

converges uniformly to f(z).

Theorem 2 generalizes Theorem 1 from sinu-
soidal to arbitrary signals. Theorems 1 and 2
introduce the approximation of occluding bound-
aries with step functions and, as surfaces of any
shape may be imaged, the forms of their bound-
aries are typically unconstrained. On a local basis,
however, as long as the spatial extent of analy-
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THEOREM 2. LetI(x) and I,(x) be 2D functions satisfying Dirichlet conditions such that they may
be expressed as complex erponential series expansions:
< T 2 T
Li(x) = Z cine™ N and  Iy(x) = Z Cone™ Nkz, (23)
n——a n=—3%
where n = (ng,n,)" and N = n"I are integers, x are spatial coordinates, ki = (ki k1,)" and

ky = (sz,kgy)T are fundamental frequencies and c1n and con are complex coefficients. Let I;(x,t) =
I (vi(x,t)), In(x,t) = Io(va(x,t)) and the occluding boundary be represented by:

U(x) = {

1 ifx"m; >0
0 otherwise,

(24)

where ny is a vector normal to the occluding boundary. The frequency spectrum of the occlusion is:

n=—a&

o0

Ikw) =7 > cind(k—Nkj,w+a] Nki)+(1=7) Y cond(k — Nky,w + a3 Nky) —

n=—a&

,iz

n=—oo

(k — Nk])Tn]

where Aa = a; — as.

sis remains sufficiently small, the approximation
of occluding boundaries as straight-edged lines is
sufficient and greatly simplifies the derivation of
the results. Also for simplicity, a constant mod-
el of velocity is adopted, which is thought of as a
valid local approximation of reality [4, 32]. How-
ever, the constraint on the shape of the occluding
boundary may be removed while preserving the
validity of most of the theoretical results, as we
later demonstrate. As expected, the sum of prop-
erties identified in Theorem 1 hold for Theorem
2. For instance, it is found that the Fourier spec-
trum of the occluding boundary is convolved with
every existing frequency of both the occluding and
occluded signals in a manner consonant with its
velocity. That is to say, its spectral orientation is
descriptive of the motion of the occluding signal.
Hence we state the following corollary:

= <cln6((k — Nky)Tni kTa; +w)

N comd((k — Nky)Tni kTa; +w — AaTNk2)>

(k — ng)Tn1
(25)

COROLLARY 1. Under an occlusion phe-
nomenon, the velocities of the occluding and oc-
cluded signals can always be identified as such.

Under occlusion, the spectral orientation of the
occluding boundary is parallel to the plane de-
scriptive of the occluding velocity and detecting
the spectral orientation of the boundary amounts
to identify the occluding velocity, leaving the oc-
cluded velocity to be considered as such.

Figure 3 demonstrates the composition of a sim-
ple 2D occlusion scene and the Fourier spectra of
its components. Figure 3a) is the occluding sig-
nal with spatial frequency (2%,2Z) and velocity
(—1.0,—1.0) such that

I (x,t) = cos G—Z(m + t)) + cos G—g(y + t))

and Figure 3b) is the occluded signal with spatial
frequency (25, 20) and velocity (1.0,1.0), yielding

(z — t)) + cos (%”(u - t)> .

00| ¥

I,(x,t) = cos (
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e) f) g) h)
Fig. 3. (top): The composition of a simple 2D occlusion scene. a) The occluding sinusoidal signal with frequency (i—g, i—g)
and velocity (—1.0, —1.0). b) The occluded sinusoidal signal with frequency (%", 2?’7) and velocity (1.0,1.0). c) The step

function used to create the occlusion scene with normal vector (%=

V2 V2

i 2). d) The occlusion as a combination of a), b) and

c). (bottom) e) through h): Image plots of corresponding amplitude spectra.

The occluding boundary in Figure 3c) is a 2D
step function identical to (12) and translates with
a velocity which equals that of I, the occluding
signal. The resulting occlusion scene in Figure
3d) is constructed with (13). Figures 3e) through
h) show the 3D amplitude spectra of Figures 3a)
through d), respectively.

In the experiments with 2D signals depicted
in Figure 4, the spatial frequencies of the oc-

cluding and occluded signals are ki = (3%, 2Z)
and kI = (%’T, %’r) respectively. Only the veloc-

ities and the orientation of the occlusion bound-
ary vary. The velocities of the occluding and oc-
cluded signals and the occlusion boundary nor-
mal vectors, from left ‘ro right in Figure 3, are
a) a] = (—1.0 —-1.0), aJ = (10 1.0) and n] =

(%2, 42); b) al = (1.0,1.0), al = (~1.0,-1.0)
andn] - ?:4))0) a] *(_11 1) a2 *( )

(
and n = (1.0, 0), respectively.

As per Theorem 1, the spectral extrema lo-
cated at +(ki, —kTa;) and +(ks, —kIa,) depic-
t the spatiotemporal frequencies of both signals

and fit the constraint planes kTa; + w = 0 and
kTay +w = 0. The oblique spectra intersecting
the peaks are the convolutions of the spectrum of
the step function with the frequencies of both sig-
nals and fit lines described by the intersection of
planes (k+k;)Tni" = 0 and kTa; +w+kla, = 0.
These spectra are parallel to the constraint plane
of the occluding signal and are consonant with its
velocity.

Theorem 2 is the generalization of Theorem 1
from sinusoidal to arbitrary signals and its ge-
ometric interpretation is similar. For instance,
frequencies (Nk;, —a] Nk;) and (Nky, —al Nk,)
fit the constraint planes of the occluding and oc-
cluded signals, defined as k"a; + w = 0 and
kTay + w = 0. In the distortion term, the Dira(’
§ function with arguments (k — Nks)"n; and
k"a; +w— Aa” Nk, represent a set of lines paral-
lel to the constraint plane of the occluding signal
k"a; + w = 0 and, for every discrete frequency
Nk; and Nk, exhibited by both signals, there is
a frequency spectrum fitting the lines given by the
intersection of planes kTa; +w — AaTNky = 0



On the Fourier Properties of Discontinuous Visual Motion 11

e
N—

k) 1)

Fig. 4. Four cases of predicted and computed Fourier spectra of occlusion scenes. In all cases the frequencies of the
occluding and the occluded signals are (2%, 2%) and (%r, %") (top): a) Occluding and occluded velocities a1 = (—1.0,—1.0)

16° 16

and as = (1.0,1.0). b) Occluding and occluded velocities a; = (1.0,1.0) and ax = (—1.0,—1.0). ¢) Occluding and occluded
velocities a1 = (—1.0,—1.0) and as = (1.0,1.0) and boundary normal (1.0,0). d) Occluding and occluded velocities
a; = ap = (—1.0,-1.0). (center) e) through h): Computed FFTs of corresponding occlusion scenes. (bottom) i)

through 1): Fourier spectra predicted by theoretical results.

and (k — Nk;)Tni = 0. The magnitudes of
these spectra are determined by their correspond-
ing scaling functions c¢in[(k — Nky)"n; 7! and
con[(k — Nky)"n; |~ Theorem 2 reveals useful
constraint planes, as the power spectra of both
signals peak within planes kTa; + w = 0 and
kTay + w = 0 and the constraint planes arising
from the distortion are parallel to the spectrum of
the occluding signal I (x, t).

3. The Aperture Problem:
Cases

Degenerate

In the Fourier domain, the power spectrum of a
degenerate signal is concentrated along a linear
rather than a planar structure. To see this, con-
sider a 1D signal moving with a constant model
of velocity in a 2D space, in the direction of the
gradient normal n; and with speed s;:

I(x,t) = Li(x"n; — st (26)
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The Fourier transform of this signal is given by

I(k,w) =1; (kK"n;) 6 (k"n}") & (sik"m; + ),

(27)
where n;- is the negative reciprocal of n;. The
Dirac delta functions represent planar spectra and
their intersection forms a linear constraint onto
which the spectrum of the degenerate signal re-
sides. Therefore, the planar orientation describing
full velocity is undetermined. However, the pres-
ence of an occlusion boundary disambiguates the
measurement of a degenerate occluding signal in
most cases as a straight-edged occlusion boundary
provides one constraint on normal velocity and so
does its corresponding degenerate occluding sig-
nal. Since these structures have an identical ful-
1 velocity, these constraints should be consistent
with it, allowing to form a system of equation-
s to obtain full velocity. For instance, consider
the Fourier transform of a translating occluding
degenerate signal expressed as its complex expo-
nential series expansion:

/11 (x"n; — 81t)e*"(kT"+“’t)dx =

Z cind(k —nkin;,w+ sinky), (28)

n=—od

where n; is the normal of the signal, s is its speed
and k; = k"'n; is the fundamental frequency. Ad-
ditionally, consider the Fourier transform of the
occluding boundary with normal vector ns and
speed ss:

i0(kTny)d(sokTny + w)
an2 '

mo(k,w) — (29)
The convolution of (4) and (29) yields the follow-
ing spectrum:

T Z c1nd(k — nking,w + synk;)

_ Z . d(k"ny — nk;nTni) y
n (k - nklnl)Tng

d(s1kTny + w + nki(s; — sonlny))
(k — nklnl)Tng '

(30)

Expression (30) allows to derive two directional
vectors, fitting the spectra of the degenerate oc-

cluding signal and boundary respectively, which
are dI' = (nT, —s;) and dI = (nl', —s5). Their
cross product yields a vector a; normal to the
planar structure containing both spectra, which
is the full velocity of the degenerate occluding sig-
nal. The constraints on normal velocities form the
following system of equations

a1Tn1 — 51
ajng —s; = 0 (31)

and its solution, obtained by dividing d; x d, with
its third component, is

1
a; = m (Sln2L — .egnll) , (32)
which is full velocity when a constant model is
used. This system has a unique solution if and
only if n; # ny. Otherwise, if n; = ny then s; =
s and (31) has no unique solution. Thus, we state
the following Theorem:

THEOREM 3.  The full velocity of a degener-
ate occluding signal is obtainable from the struc-
ture of the Fourier spectrum if and only if its nor-
mal is different from the normal of the occlusion
boundary.

We performed experiments with degenerate sig-
nals as shown in Figure 5. An occluding degen-
erate sinusoidal pattern with spatial orientation
n; = (—1.0,1.0) and translating with normal ve-
locity s1 = 1.0 is depicted in Figure 5a). The
pattern was generated according to

I; (x,t) = cos (%(XTIM - slt)> . (33)
As can be seen from its Fourier transform 5e), the
frequency content is composed of two ¢ functions
from which only a normal velocity estimate can be
obtained by computing the orientation of the line
passing through the spectral peaks and the origin
of the frequency space.

Figure 5b) shows the occluding signal and the
occlusion edge combination. The normal vector
to the edge is n = (1.0,1.0). The Fourier trans-
form is shown in 5f), where the spectrum of the
edge is convolved with the peaks of the signal.
In this case, the full velocity of the degenerate
signal is obtained by computing the normal vec-
tor to the plane containing the entire spectrum
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e) f)

g) h)

Fig. 5. Cases of degenerate occluding signals. (top): a) Occluding signal with normal n; = (—1.0,1.0). b) Occluding
signal and boundary with normal n = (1.0,1.0). ¢) Occluded signal with normal ny = (2.0,1.0). d) Complete occlusion
scene. (bottom) e) through h): Corresponding frequency spectra.

and the origin of the frequency space. Figure 5¢)
shows the occluded signal with spatial orientation
n, = (2.0,1.0) and translating with normal veloci-
ty so = 2.0. This pattern was generated according
to

Io(x,1) = cos (%”(xﬁa2 - SQt)> (34)

and its frequency content appears in 5g).

The complete occlusion scene is shown in 5d)
and the corresponding frequency content is depict-
ed in 5h). To disambiguate the normal velocity of
the occluding signal, it is first necessary to identi-
fy the occluding velocity. This is accomplished by
finding a line that is parallel to the spectral ori-
entation of the Fourier transform of the occluding
edge and that also contains the frequency content
of one signal. In this case, this signal is said to be
occluding, and the normal to the plane containing
its frequency spectrum, including the spectrum of
the occluding edge convolved with its discrete fre-
quencies, yields a full velocity measurement.

4. Related Considerations

In this section we consider the relationship be-
tween additive translucency and the theoretical
framework, the effects of occluding edges away
from the origin of the spatiotemporal domain, oc-
cluding boundaries of various shapes and the rel-
evancy of the theoretical model with respect to
Non-Fourier motions such as Zanker’s Theta mo-
tions [53].

4.1.  Translucency

Transmission of light through translucent materi-
al may cause multiple motions to arise within an
image region. Generally, this effect is depicted on
the image plane as

I(x,1) = f(p1)(vi(x, 1) L2 (va(x, 1)), (35)

where f(p1) is a function of the density of the
translucent material [17]. Under the local assump-
tion of spatially constant f(p;) with translucency
factor ¢, (35) is reformulated as a weighted super-
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Fig. 6. The composition of an additive transparency scene. a): First sinusoidal signal with frequency k1 = 2 und velocity

a1 = 1.0. b): Second sinusoidal signal with frequency ko =

8

and velocity ax = —1.0. ¢): Transparency created with the

superposition of first and second sinusoidal signal. d): Frequency spectrum of transparency.

position of intensity profiles, written as
I(x,1) = ¢l (vi(x, 1)) + (1 = o)L (va(x, 1)), (36)

where I;(vy(x,t)) is the intensity profile of the
translucent material and Iy(va(x,t)) is the inten-
sity profile of the background. With I;(vy(x,1%))
and Ip(va(x,t)) satisfying Dirichlet conditions,
the frequency spectrum of (36) is written as:

I(k,w) =
¢ Y cind(k — Nki,w+a{ Nk;) +

(1 - QO) Z CZn(s(k - Nk2,W+agNk2).

(37)

Hence, with respect to its frequency structure,
translucency may be reduced to a special case of
occlusion for which the distortion terms vanish.
Figure 6 shows the Fourier transform of an addi-
tive translucency composed of two sinusoidals.

4.2.  Phase Shifts

For reasons of simplicity and clarity, in each Theo-
rem and numerical result, the occluding boundary
contained the origin of the coordinate system. We
generalize this by describing the occlusion bound-
ary as

lif x"n+y>0
0 otherwise

U = { S

where yq is the y-axis intercept. The Fourier spec-

trum of such a boundary includes a phase shift and

is written as:

i0(k"n;)
kTIli

iyngni

€ mo(k) — S(k"a; +w) (39)

Equation (39) can be further simplified as:

. 5 T .
ieok i §(kTnl kTa; + w)
kTIli

The Fourier spectrum of the boundary is to be
convolved with the complex exponential series ex-
pansions of the occluding and occluded signals and
subsequently with the Fourier transform of the
Gaussian window. In the case of the occluding
signal, the convolution with the the shifted occlu-
sion boundary can be written as:

7o(k) —

(40)

T Z cind(k — Nky,w + alTNkl)f
i (k= Nkey) Ty cind((k — Nki)"ni,w + k"a;)
’ (k — Nk])Tn]
(41)
and, similarly for the occluded signal:
T Z cond(k — Nko,w + agng)f
Z'Piyo(k*Nkz)Tﬂl an(s((k — ng)Tnf‘, w + kTag)
’ (k — Nkz)Tn]
(42)

These convolutions are combined together as be-
fore to obtain the Fourier spectrum of occlusion
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Fig. 7. Phase shifts from occluding edge. (top): a) yo = —20.0. b) yo = —10.0. ¢) yo = 10.0. d) yo = 20.0. (bottom)
e) through h): Corresponding frequency spectra. The relative magnitude between the occluding and occluded signals depend
on their respective visible areas under the Gaussian envelope. For instance, The frequencies of the occluding signal dominate

over those of the occluded signal in e), and vice versa in h).

with an occluding boundary not containing the o-
rigin of the space.

We conducted experiments with 1D image sig-
nals and shifted the occlusion point with differen-
t values of yo in (38). As observed in Figure 7,
these phase shifts do not alter the structure of oc-
clusion in frequency space. The variations in the
amplitude spectra are due to the Gaussian win-
dowing of the occlusion scene. For instance, the
frequency peaks of the occluding signal in Figure
7e) show more power than those of the occluded
signal, owing to the fact that the signal is domi-
nant within the Gaussian window. The contrary is
observed when the occluded signal occupies most
of the window, as shown in Figure 7h).

4.3.  Generalized Occluding Boundaries

Typically, occlusion boundaries are unconstrained
in shape, yielding a variety of occluding situations.
Under the hypothesis that the motion of the oc-
cluding boundary is rigid on the image plane, we
can derive the frequency structure of such occlu-

sion events. For instance, consider a generalized
occlusion boundary represented by the character-
istic function y(x) in the coordinates of the image
plane and the Fourier transforms of the complex
exponential series expansions of both the occlud-
ing and occluded signals I; and I,. Substituting
these terms into (13) yields the following Fourier
spectrum

Ik,w) =

cinXx(k — Nkl)é(a?k +w)—

M

n=—a

conX(k — Nko)d(aj k + w — Aa” Nk)

o0

M

n

& ‘\l

+ ) cond(k — Nky,w +aj Nky) (43)

n=—X

from which it is easily observed that the spectrum
of the occluding boundary is repeated at every
non-zero frequency of both signals. The spectrum
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T_’ z a) b)

d)

Fig. 8. Generalized occluding boundaries. a), b) and c): Images from a sequence in which the occluding pattern moves

2 27

with velocity aT = (—1.0, —1.0). Spatial frequency of the sinusoidal texture within the circular boundary is kf = (2%,2%).

16° 16

d): The frequency spectrum of the sequence, where the plane contains the spectrum of the boundary convolved with the

frequency of the texture.

occupies a plane descriptive of full velocity and
can be used to perform such measurements.

Figure 8 shows an experiment where the occlud-
ing signal is within a circular occlusion boundary.
The signal and boundary are moving at a con-
stant velocity al’ = (—1.0, —1.0) and the occluded
signal is a background of constant intensity. Fig-
ures 8a) through c¢) show the motion of the occlud-
ing region while Figure 8d) is the frequency spec-
trum of the sequence, from which we observe the
spectrum of the circular boundary and the peaks
representing the frequencies of the occluding sinu-
soidal texture are confined to a planar region fully
descriptive of the image motion.

4.4. Non-Fourier Motion

Non-Fourier motion is characterized by its inabili-
ty to be explained by the MFFC principle. In oth-
er terms, such motions generate power distribu-
tions that are inconsistent with translational mo-
tion. Sources of Non-Fourier motion include such
phenomena as translucency and occlusion and, in
particular, Zanker’s Theta motion stimuli involv-
ing occlusion [53]. This category of motion is de-
scribed by an occlusion window that translates
with a velocity that is uncorrelated with the ve-
locities of the occluding and occluded signals. For
1D image signals, such an occlusion scene can be
expressed as:

I(z,t) = x(z —vst)ly(z — v1t)

— x(z —v3t)Ia(z — vat)
+ In(z — wot). (44)
As Zanker and Fleet [53, 19], we model the oc-

clusion window with a rectangle function in the
spatial coordinate as

0if |45 > 5

(I52) = bt ==y @)

Lif 252 < 1.

Such a function has a non-zero value in the in-
terval [zo — 2, 70 + £] and zero otherwise. We then
write the Fourier transform of the occlusion scene

(8) as:

I(k,w) =
K i sinc(k — nky)e1nd(kvs — nkiAvg) —
K i sinc(k — nks)cond(kvs — nkaAve) +
i Cand(k — nka,w + nkavs), (46)
where sinc(k) = SBE Ap; = v3 — vl, Avy =

vy — v1 and the phase shift from zg in (45) K =
b—le—ikz0b™"  The spectra §(kvz +w — nk;Avg)
and §(kvs + w — nkyAwvy) are consonant with the
motion of the occluding window and represent a
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Fig. 9. Ezamples of Theta Motion. a): Velocities of occlusion window, occluding and occluded signals are vz = 0.5,
vy = 1.0 and va = —2.0 respectively. b): Frequency spectrum of a). c): Velocities of occlusion window, occluding and
occluded signals are v3 = —0.5, v1 = —2.0 and vy = 1.0 respectively. d): Frequency spectrum of c).

case of Non-Fourier motion, as they do not contain
the origin.

We performed two experiments with Theta mo-
tions as pictured in Figure 9. It is easily observed
that the spectrum of the sinc function is convolved
with each frequency of both signals and that its
orientation is descriptive of the velocity of the win-
dow. As expected, the visible peaks represent the
motions of both signals in the MFFC sense.

5. Conclusion

Retinal image motion and optical flow as its ap-
proximation are fundamental concepts in the field
of vision. The computation of optical flow is
a challenging problem as image motion includes
discontinuities and multiple values mostly due to
scene geometry, surface translucency and various
photometric effects such as surface reflectance. In
this contribution, we analyzed image motion in
frequency space with respect to motion disconti-
nuities and surface translucence. The motivation
for such a study emanated from the observation
that the frequency structure of occlusion, translu-
cency and Non-Fourier motion in frequency space
was not known. The results cast light on the exac-
t structure of occlusion, translucency, Theta mo-
tion, the aperture problem and signal degeneracy
for a constant model of image motion in the fre-
quency domain with related geometrical proper-
ties.

Appendix
Proof Method of Theorem 2

The Fourier transform of the complex exponential
series expansion of a 2D signal is:

L(k) :/ 37 cine™ Nhiem K Xy
= 3 cind(k — Nk;)

(A1)
and the Fourier transform of 2D step function un-
der constant velocity is:

Uk) = ./U(vi(x))e*ik”dx

- <7r6(k) - z%) d(k"a; +w),

(A2)
where n; is a vector normal to the occlusion
boundary. Introducing (Al) and (A2) into the

Fourier transform of (13) under constant velocity
and solving the convolutions leads to Theorem 2.
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Notes
1. Signals that are termed as degenerate have a spatially

2.

constant intensity gradient or, in other words, a unique
texture orientation. This phenomenon is generally re-
ferred to as the aperture problem which arises when
the Fourier spectrum of I;(x) is concentrated on a line
rather than on a plane [18, 33]. Spatiotemporally, this
depicts the situation in which I;(x,t) exhibits a single
orientation. In this case, one only obtains the speed and
direction of motion normal to the orientation, noted as
v ;(x,t). If many normal velocities are found in a sin-
gle neighborhood, their respective spectra fit the plane
kTa; +w = 0 from which full velocity may be obtained.

This assertion assumes differentiable sensor motion.
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