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On the Fourier Properties of Disontinuous MotionSTEVEN S. BEAUCHEMINGRASP Laboratory, University of Pennsylvania, Philadelphia PA 19104-6228, USAJOHN L. BARRONThe University of Western Ontario, London, Canada N6A 5B7;Abstrat. Retinal image motion and optial ow as its approximation are fundamental onepts inthe �eld of vision, pereptual and omputational. However, the omputation of optial ow remains ahallenging problem as image motion inludes disontinuities and multiple values mostly due to senegeometry, surfae translueny and various photometri e�ets suh as reetane. In this ontribution,we analyze image motion in the frequeny spae with respet to motion disontinuities and transluene.We derive the frequeny struture of motion disontinuities due to olusion and we demonstrate itsvarious geometrial properties. The aperture problem is investigated and we show that the informationontent of an olusion almost always disambiguates the veloity of an oluding signal su�ering from theaperture problem. In addition, the theoretial framework an desribe the exat frequeny struture ofNon-Fourier motion and bridges the gap between Non-Fourier visual phenomena and their understandingin the frequeny domain.Keywords: Image motion, optial ow, olusion, aperture problem, non-Fourier motion1. IntrodutionA fundamental problem in proessing sequenes ofimages is the omputation of optial ow, an ap-proximation to image motion de�ned as the pro-jetion of veloities of 3D surfae points onto theimaging plane of a visual sensor. The importaneof motion in visual proessing annot be under-stated: in partiular, approximations to imagemotion may be used to estimate 3D sene proper-ties and motion parameters from a moving visualsensor [21, 30, 31, 42, 51, 50, 1, 5, 38, 22, 54, 56,34, 20, 16, 23℄, to perform motion segmentation[7, 40, 45, 36, 47, 14, 25, 8, 2, 46, 15℄, to omputethe fous of expansion and time-to-ollision [44,41, 48, 24, 49, 9℄, to perform motion-ompensated

image enoding [10, 13, 35, 37, 39, 55℄, to omputestereo disparity [3, 12, 26, 28℄, to measure bloodow and heart-wall motion in medial imagery[43℄, and, reently, to measure minute amountsof growth in orn seedlings [6, 29℄.1.1. Organization of PaperThis ontribution addresses the problem of mul-tiple image motions arising from olusion andtranslueny phenomena. We present a theoret-ial framework for disontinuous optial ow inthe Fourier domain. The onept of image veloi-ty as a geometri funtion is desribed in Setion1.



2 S. S. Beauhemin and J. L. BarronSetion 2 is an analysis of olusion in Fouri-er spae with a onstant model of veloity. Ourapproah fouses on the frequeny struture ofoluding surfaes and the theoretial results areonstruted inrementally. For instane, a sim-ple model of veloity is used to develop the stru-ture of olusion with sinusoidal signals whih arethen generalized to arbitrary signals. These theo-retial results demonstrate that olusion may bedi�erentiated from translueny and the motionsassoiated with both the oluding and oludedsurfaes an be disriminated.Setion 3 is an investigation of the apertureproblem and degenerate1 signals, as they appearin the theoretial framework. For example, it isshown that the full veloity of a degenerate signalis almost always omputable at the olusion.Setion 4 is a study of related issues suhas translueny phenomena, Non-Fourier motion,generalized olusion boundaries and phase shifts.Numerial experiments supporting the frameworkare presented. Results obtained with sets of sinu-soidal signals reated synthetially are omparedwith their orresponding theoretial preditions.Setion 5 summarizes our results.1.2. ContributionThe motivation for the theoretial framework e-manates from the observation that olusion andtranslueny in the ontext of omputing optialow onstitute diÆult hallenges and threatensits preise omputation. The theoretial resultsast light on the exat struture of olusion andtranslueny in the frequeny domain.The results are essentially theoretial and stat-ed in the form of Theorems and Corollaries. Rel-evant numerial experiments whih support thetheoretial results are presented. In addition, thisontribution bridges what is seen as an importantgap between Non-Fourier models of visual stim-uli and optial ow methods in Computer Vision.In fat, Non-Fourier visual stimuli, to whih be-long translueny and olusion e�ets, have beenstudied mainly with respet to the motion per-ept these stimuli eliit among human subjets[11, 52, 53℄. However, more reently, it has beenonjetured that a viable omputational analysisof Non-Fourier motion ould be arried out with

Fourier analysis, sine many Non-Fourier stimuliturn out to have simple frequeny harateriza-tions [19℄. The results presented herein extend theonept of Non-Fourier stimuli suh as olusionand translueny from being not at all explainedby its Fourier harateristis to the establishmentof exat frequeny models of visual stimuli exhibit-ing olusions and transluenies.As a �rst attempt to understand olusion, thesimplest set of ontrollable parameters were used,suh as the struture of olusion boundaries andthe number of distint frequenies for representingthe oluding and oluded surfaes. A onstantmodel of veloity was also used and no signal de-formations (suh as those reated by perspetiveprojetion) were permitted. These preliminary re-sults are extended to image signals omposed of anarbitrary number of disrete frequenies. Dirih-let onditions are hypothesized for eah signal thusallowing to expand them as omplex exponentialseries.The potential use of the information-ontentof an olusion boundary is outlined. Oludingboundaries ontain a wealth of information that isnot exploited by onventional optial ow frame-works, due to a theoretial void. It is shown thata degenerate oluding signal exhibiting a linearspetrum is supplemented by the linear orienta-tion of its oluding boundary. These two spetraalmost always yield the full veloity of an olud-ing signal su�ering from the aperture problem.The struture of olusion when both signals aredegenerate is also shown. It is demonstrated thatthis partiular ase ollapses to a one-dimensionalstruture.The Corollaries show that additive transluenyphenomena may be understood as a speial ase ofthe theoretial framework. In addition, the velo-ities assoiated with both the oluding and o-luded signals may be identi�ed as suh, withoutthe need of seni information suh as depth.1.3. Image MotionImage motion is expressed in terms of the 3Dmotion parameters of the visual sensor and the3D environmental points of the sene: let PT =(X;Y; Z) be an environmental point, 
T =(
x;
y;
z) and TT = (Tx; Ty; Tz) be the visu-
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Fig. 1. The geometry of the visual sensor. 
T = (
x;
y;
z) and TT = (Tx; Ty ; Tz) are the instantaneous rotation andtranslation of the visual sensor. p(t) is the perspetive projetion of P(t) onto the imaging surfae.al sensor's respetive instantaneous rate of hangein rotation and translation and p = PP�ẑ the per-spetive projetion of P onto the imaging surfae(the foal length of the sensor is assumed to be 1),where ẑ is a normalized vetor along the line-of-sight axis Z. The setup is shown in Figure 1. Theinstantaneous 3D veloity of P is given byV = �T�
�P: (1)The relationship between the 3D motion parame-ters and 2D veloity that results from the proje-tion of V onto the image plane an be obtainedby temporally di�erentiating p:v(x) def= _p =  _XZ � X _ZZ2_YZ � Y _ZZ2 ! : (2)Using VT def= ( _X; _Y ; _Z) = (�Tx � 
yZ +
zY;�Ty � 
zX + 
xZ;�Tz + 
xY � 
yX) forsubstitution in (2), one obtains the image veloityequation [31℄:v(x) = � Z�1(xTz � Tx)Z�1(yTz � Ty) �+ � xy
x � (1 + x2)
y + y
z(1 + y2)
x � xy
y � x
z � : (3)

Hene, image motion is a purely geometri quan-tity and, onsequently, for optial ow to be ex-atly image motion, a number of onditions haveto be satis�ed. These are: a) uniform illumina-tion; b) Lambertian surfae reetane and ) puretranslation parallel to the image plane. Realisti-ally, these onditions are never entirely satis�edin senery. Instead, it is assumed that these ondi-tions hold loally in the sene and therefore loal-ly on the image plane. The degree to whih theseonditions are satis�ed partly determines the a-uray with whih optial ow approximates im-age motion.1.4. Multiple MotionsGiven an arbitrary environment and a moving vi-sual sensor, the motion �eld generated onto theimaging plane by a 3D sene within the visual�eld is represented as funtion (3) of the motionparameters of the visual sensor. Disontinuitiesin image motion are then introdued in (3) when-ever the depth Z is other than single-valued anddi�erentiable2. The ourrene of olusion aus-es the depth funtion to exhibit a disontinuity,whereas translueny leads to a multiple-valueddepth funtion.



4 S. S. Beauhemin and J. L. Barron1.5. Models of Optial FlowGenerally, the optial ow funtion may be ex-pressed as a polynomial in some loal oordinatesystem of the image spae of the visual sensor. Itis assumed that the enter of the neighborhoodoinides with the origin of the loal oordinatesystem. In this ase, we may write the Taylor se-ries expansion of a ith veloity about the originas:vi(x; t) =pXj=0 qXk=0 rXl=0 �j+k+lvij!k!l!�xj�yk�tlxjyktl ������ x;t=0(4)where p + q + r � n. However, we simply adoptin what follows Fleet and Jepson's [18℄ onstantmodel of optial ow denoted as:vi(x; t) = x� ait; (5)where ai is now the veloity vetor. Hene, a2D intensity pro�le I0 translating with veloityvi yields the following spatiotemporal image in-tensity translation:I(x; t) = I0(vi(x; t)): (6)We use a negative translational rate in (5) with-out loss of generality and for mere mathematialonveniene.1.6. Signal Translation in the Frequeny DomainConsider a signal Ii(x) translating at a onstantveloity vi(x; t). For this signal, the Fourier trans-form of the optial ow onstraint equation is ob-tained with the di�erentiation property as:F �rIi(x)T ai + Iit� = iÎi(k)Æ(kT ai + !); (7)where i is the imaginary number, Îi(k) is theFourier transform of Ii(x) and Æ(kT ai + !) isa Dira delta funtion. Expression (7) yieldskT ai + ! = 0 as a onstraint on veloity. Simi-larly, the Fourier transform of a translating imagesignal Ii(x; t) is obtained with the shift propertyas:̂I(k; !) = Z Z Ii(vi(x; t))e�i(kTx+!t)dxdt

= Z �Z Ii(vi(x; t))e�ikTxdx� e�i!tdt= Îi(k)Æ(kT ai + !); (8)whih also yields the onstraint kT ai + ! = 0.Hene, (7) and (8) demonstrate that the frequen-y analysis of image motion is in aordane withthe motion onstraint equation [18℄. It is also ob-served that kTai + ! = 0 represents, in the fre-queny domain, an oriented plane passing throughthe origin, with normal vetor ai desriptive of fullveloity, onto whih the Fourier spetrum of Ii(x)lies.1.7. Related LiteratureTraditionally, motion pereption has been equatedwith orientation of power in the frequeny domain.The many optial ow methods use what Chub-b and Sperling term the Motion-From-Fourier-Components (MFFC) priniple [11℄ in whih theorientation of the plane or line through the originof the frequeny spae that ontains most of thespetral power gives the rate of image translation.The MFFC priniple states that for a mov-ing stimulus, its Fourier transform has substantialpower over some regions of the frequeny domainwhose points spatiotemporally orrespond to sinu-soidal gratings with drift diretion onsonant withthe pereived motion [11℄. In addition, urrentmodels of human pereption involve some frequen-y analysis of the imagery, suh as band-pass �l-tering and similar proesses. However, some lass-es of moving stimuli whih eliit a strong pereptin subjets fail to show a oherent spatiotemporalfrequeny distribution of their power and annotbe understood in terms of the MFFC priniple.Examples inlude drift-balaned visual stim-uli [11℄, Fourier and Non-Fourier plaid superpo-sitions [52℄, amplitude envelopes, sinusoidal beatsand various multipliative phenomena [19℄. Bydrift-balaned it is meant that a visual stimuluswith two (leftward and rightward, for example) ormore di�erent motions shows idential ontents ofFourier power for eah motion and therefore, a-ording to the MFFC priniple, should not eliita oherent motion perept. However, some lass-es of drift-balaned stimuli de�ned by Chubb andSperling do eliit strong oherent motion perept-



On the Fourier Properties of Disontinuous Visual Motion 5s, ontrary to the preditions of the usual MFFCmodel.Soures of Non-Fourier motion also inlude themotion of texture boundaries and the motion ofmotion boundaries. For instane, transpareny asonsidered by Fleet and Langley [19℄ is an exam-ple of Non-Fourier motion, as transpareny aus-es the relative sattering of Fourier omponentsaway from the spetrum of the moving stimuli. Inaddition, olusion, modeled as in (13), is anoth-er example of Non-Fourier motion whih is loselyrelated to the Theta motion stimuli of Zanker [53℄,where the olusion window moves independent-ly from both the foreground and the bakground,thus involving three independent veloities.It has been observed by Fleet and Langley thatmany Non-Fourier motion stimuli have simpleharaterizations in the frequeny domain, namelypower distributions loated along lines or planeswhih do not ontain the origin of the frequen-y spae, as required by the MFFC idealization[19℄. Olusion and translueny being amongthose Non-Fourier visual stimuli, we develop theirexat frequeny representations, state their prop-erties with respet to image motion (or optialow), onsider the aperture problem and inludeadditive translueny phenomena within the the-oretial framework.1.8. MethodologyTo analyze the frequeny struture of image sig-nals while preserving representations that are asgeneral as possible, an e�ort is made to only posethose hypotheses that would preserve the gener-ality of the analysis to follow. We desribe theassumptions and the proof tehniques with whihthe theoretial results were obtained.Image Signals The geometry of visual senesunder perspetive projetion generally yield-s omplex image signals. Coneptually, as-sumptions onerning sene struture shouldnot be made, as they onstrain the geometryof observable senes. In addition, any mea-sured physial signal, suh as image intensi-ties, satis�es Dirihlet onditions. Suh sig-nals admit a �nite number of �nite dison-tinuities, are absolutely integrable and may

be expanded into omplex exponential series.Dirihlet onditions onstitute the sum of as-sumptions made on image signals.Veloity On a loal basis, onstant models ofsignal translation may be adequate to desribeveloity. However, linear models admit an in-reased number of deformations, suh as sig-nal dilation. Hene, the extent used for signalanalysis may be larger with linear models. Weonsidered a onstant model of veloity, leav-ing deformations of higher order for furtheranalysis.Oluding Boundaries Objet frontiers andtheir projetion onto the imaging plane aretypially unonstrained in shape and are diÆ-ult to model on a large spatial sale. Simpler,loal models appear to be more appropriate.The framework inludes olusion boundariesas loally straight edges, represented with stepfuntions. This hypothesis only approximatesreality and limits the analysis to loal imageregions. However, we outline in whih waythis hypothesis an be relaxed to inlude o-lusion boundaries of any shape.Proof Tehniques The Theorems and theirCorollaries established in this analysis em-anate from a general approah to modelingvisual senes exhibiting olusion disontinu-ities or translueny. An equation whih de-sribes the spatio-temporal pattern of the su-perposition of a bakground and an oludingsignal is established [17℄, in whih a hara-teristi funtion desribing the position of anoluding signal within the imaging spae ofthe visual sensor is de�ned:�(x) = � 1 if x within the oluding signal0 otherwise (9)and two image signals I1(x) and I2(x), or-responding to the oluding and oluded sig-nals respetively, are de�ned to form the over-all signal pattern:I(x; t) =�(v1(x; t))I1(v1(x; t)) +[1� �(v1(x; t))℄ I2(v2(x; t)); (10)where vi(x; t) is onstant veloity. Note thatthe harateristi funtion desribing the ob-jet has the same veloity as its orresponding



6 S. S. Beauhemin and J. L. Barronintensity pattern I1(x). In (10) are insertedthe hypotheses made on its various ompo-nents and the struture of olusion in the fre-queny domain is developed. That is to say,signal strutures are expanded into omplexexponential series, suh as:Ii(x) = ~1Xn=� ~1 ineixTNki ; (11)where Ii(x) is the ith intensity pattern, inare omplex oeÆients, ki are fundamentalfrequenies, nT = (n1; n2; : : : nn) are integersand N = nT I . Olusion boundaries beomeloally straight edges, represented with stepfuntions suh as:U(x) = � 1 if xTn1 � 00 otherwise; (12)where n1 is a vetor normal to the tangent ofthe oluding boundary. In addition, degen-erate image signals under olusion are inves-tigated, thus desribing the aperture problemin the ontext of the framework. Whenev-er tehnially possible, the theoretial result-s were ompared with numerial experimentsusing Fast Fourier Transforms operating onsynthetially generated image sequenes.Relevane of Fourier Analysis Many algo-rithms operating in the Fourier domain forwhih a laim of multiple motions apability ismade have been developed [27℄. However, thisis performed without a omplete knowledgeof the frequeny struture of olusion phe-nomena. In addition, Non-Fourier spetra,inluding olusion and translueny e�etshave been onjetured to have mathematiallysimple haraterizations in Fourier spae [19℄.Consequently, the use of Fourier analysis asa loal tool is justi�ed as long as one realizesthat it onstitutes a global idealization of loalphenomena. In that sense, Fourier analysis isused as a loal tool whenever Gabor �lters,wavelets or loal Disrete Fourier Transformsare employed for signal analysis.Experimental Tehnique Given the theoreti-al nature of this ontribution, the purposeof the numerial experiments is to verify thevalidity of the theoretial results. In order toaomplish this, the frequeny ontent of the

image signals used in the experiments mustbe entirely known to the experimenter, thusforbidding the use of natural image sequenes.In addition, image signals with single frequen-y omponents are used in order to faili-tate the interpretation of experiments involv-ing 3D Fast Fourier transforms. The use ofmore omplex signals impedes a areful ex-amination of the numerial results and do notextend the understanding of the phenomenaunder study in any partiular way.2. Spetral Struture of OlusionThe analysis begins with the onsideration of asimple ase of olusion onsisting of two translat-ing sinusoidal signals. These preliminary resultsare then generalized to arbitrary signals and theaperture problem is examined.2.1. Sinusoidal Image SignalsThe ase in whih two sinusoidals play the role ofthe objet and the bakground is �rst onsidered.Let Ii(x) be an image signal translating with ve-loity vi(x; t) suh that Ii(x; t) = Ii(vi(x; t)). ItsFourier transform is Îi(k; !) = Îi(k)Æ(kT ai + !).Let I1(x) be oluding another image signal I2(x),with respetive veloities v1(x; t) and v2(x; t).The resulting olusion sene an then be ex-pressed as:I(x; t) =U(v1(x; t))I1(v1(x; t)) +(1�U(v1(v; t)))I2(v2(x; t)); (13)where U(x) is (12). The Fourier transform of (13)is:̂I(k; !) =[Û(k)Æ(kT a1 + !)℄ � [Î1(k)Æ(kT a1 + !)℄�[Û(k)Æ(kT a1 + !)℄ � [Î2(k)Æ(kT a2 + !)℄ +Î2(k)Æ(kT a2 + !); (14)where Û(k) is the Fourier transform of a step fun-tion U(x) written asÛ(k) = �Æ(k) � iÆ(kTn?1 )kTn1 ; (15)



On the Fourier Properties of Disontinuous Visual Motion 7THEOREM 1. Let I1(x) and I2(x) be osine funtions with respetive angular frequenies kT1 =2�(f1x; 0) and 2�(0; f1y), kT2 = 2�(f2x; 0) and 2�(0; f2y) and let I1(v1(x; t)) = 1(os(k1xx � a13t) +os(k1yy � b13t)) and I2(v2(x; t)) = 2(os(k2xx � a23t) + os(k2yy � b23t)). The frequeny spetrum ofthe olusion is:Î(k; !) = �4 1Æ(k � k1; ! � kT1 a1) + (1� �)4 2Æ(k� k2; ! � kT2 a2)+ i2Æ((k� k1)Tn?1 ;kT a1 + ! � kT2 �a)4(k� k2)Tn1 � i1Æ((k � k1)Tn?1 ;kT a1 + !4(k� k1)Tn1 ; (16)where �a = a1 � a2 and n1 is a normal vetor perpendiular to the oluding boundary.with n1 as a vetor normal to the olusion bound-ary and n?1 as its negative reiproal (�ny; nx)T .Theorem 1 is derived to examine olusion withthe simplest set of parameters, suh as the form ofolusion boundaries, the number of distint fre-quenies required to represent both the oludingand oluded image signals, and a onstant modelof veloity. Even with this onstrained domain ofderivation, a number of fundamental observationsare made, suh as: the olusion in frequeny s-pae is formed of the Fourier transform of a stepfuntion onvolved with every existing frequenyof both the oluding and oluded sinusoidal sig-nals and, the power ontent of the distortion ter-m is entirely imaginary, forming lines of dereas-ing power whih do not ontain the origin, aroundthe frequenies of both the oluding and oludedsignals. Their orientation is parallel to the spe-trum of the oluding signal, and the detetion oftheir orientation allows to identify the oludingveloity, leaving the oluded veloity to be inter-preted as suh.We performed a series of experiments to graphi-ally demonstrate the omposition of a simple o-lusion sene. To simplify the interpretation ofthe experiments, we used 1D sinusoidal signalsomposed of single frequenies. In addition, thesignals are Gaussian-windowed in order to avoidthe Gibbs phenomenon when omputing their FastFourier Transforms (FFTs). Figure 2a), b) and )show the omponents of a simple olusion sene,pitured in 2d). Figure 2a) is the oluding signalwith spatial frequeny 2�16 and veloity �1:0, suhthat I1(x; t) = os�2�16 (x+ t)� (17)

and in 2b) is the oluded signal with spatial fre-queny 2�8 and veloity 1:0, yieldingI2(x; t) = os�2�8 (x� t)� : (18)The oluding boundary in Figure 2) is a 1D stepfuntion, written asU(x) = � 1 if x � 00 otherwise (19)and translates with a veloity idential to that ofI1.The resulting olusion sene in Figure 2d) isonstruted with the following 1D version of (13):I(x; t) =I1(v1(x; t))�(v1(x; t)) +[1� �(v1(x; t))℄ I2(v2(x; t)); (20)where I1 is (17), I2 is (18) and � is (19). Fig-ures 2e) through h) show the amplitude spetraof �gures 2a) through d) respetively, where it iseasily observed the the spetrum of the step fun-tion (19) is onvolved with eah frequeny of bothsinusoidals. Further, Theorem 1 predits Fourierspetra suh as 2h) in their entirety as is demon-strated by the experiments in setion 2.3.2.2. Generalized Image SignalsFor this analysis to gain generality, we need to�nd a suitable set of mathematial funtions torepresent physial quantities suh as image signalsthat lend themselves to the analysis to follow andwhih do not impose unneessary hypotheses onthe struture of those signals.
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6-t x a) b) ) d)
6-! kx e) f) g) h)

i) j) k) l)
Amplitude Spectrum of Sinusoid 1 Amplitude Spectrum of Sinusoid 2 Amplitude Spectrum of Step Function Amplitude Spectrum of Occlusion

Fig. 2. (top): The omposition of a simple 1D olusion sene. a) The oluding sinusoidal signal with frequeny 2�16 andveloity �1:0. b) The oluded sinusoidal signal with frequeny 2�8 and veloity 1:0. ) The translating step funtion usedto reate the olusion sene. d) The olusion as a ombination of a), b) and ). (enter): Image plots of amplitudespetra and (bottom): amplitude spetra as 3D graphs.For this purpose we hypothesize that image sig-nals satisfy Dirihlet onditions in the sense thatfor any interval x1 � x � x2, the funtion f(x)representing the signal must be single-valued, havea �nite number of maxima and minima and a �-nite number of �nite disontinuities. Finally, f(x)should be absolutely integrable in suh a way that,within the interval, we obtainZ x2x1 jf(x)jdx <1: (21)In addition, any funtion representing a physi-al quantity satis�es Dirihlet onditions. Hene,

those onditions an be assumed for visual signalswithout loss of generality and, in this ontext, theomplex exponential series expansion, or Fourierseries 1Xn=�1 neink0x (22)onverges uniformly to f(x).Theorem 2 generalizes Theorem 1 from sinu-soidal to arbitrary signals. Theorems 1 and 2introdue the approximation of oluding bound-aries with step funtions and, as surfaes of anyshape may be imaged, the forms of their bound-aries are typially unonstrained. On a loal basis,however, as long as the spatial extent of analy-



On the Fourier Properties of Disontinuous Visual Motion 9THEOREM 2. Let I1(x) and I2(x) be 2D funtions satisfying Dirihlet onditions suh that they maybe expressed as omplex exponential series expansions:I1(x) = ~1Xn=� ~1 1neixTNk1 and I2(x) = ~1Xn=� ~1 2neixTNk2 ; (23)where n = (nx; ny)T and N = nT I are integers, x are spatial oordinates, k1 = (k1x; k1y)T andk2 = (k2x; k2y)T are fundamental frequenies and 1n and 2n are omplex oeÆients. Let I1(x; t) =I1(v1(x; t)), I2(x; t) = I2(v2(x; t)) and the oluding boundary be represented by:U(x) = � 1 if xTn1 � 00 otherwise, (24)where n1 is a vetor normal to the oluding boundary. The frequeny spetrum of the olusion is:Î(k; !) = � ~1Xn=� ~1 1nÆ(k�Nk1; ! + aT1 Nk1) + (1� �) ~1Xn=� ~1 2nÆ(k�Nk2; ! + aT2 Nk2)�� i ~1;Xn=� ~1�1nÆ((k �Nk1)Tn?1 ;kTa1 + !)(k�Nk1)Tn1 + 2nÆ((k�Nk2)Tn?1 ;kT a1 + ! ��aTNk2)(k�Nk2)Tn1 � ;(25)where �a = a1 � a2.sis remains suÆiently small, the approximationof oluding boundaries as straight-edged lines issuÆient and greatly simpli�es the derivation ofthe results. Also for simpliity, a onstant mod-el of veloity is adopted, whih is thought of as avalid loal approximation of reality [4, 32℄. How-ever, the onstraint on the shape of the oludingboundary may be removed while preserving thevalidity of most of the theoretial results, as welater demonstrate. As expeted, the sum of prop-erties identi�ed in Theorem 1 hold for Theorem2. For instane, it is found that the Fourier spe-trum of the oluding boundary is onvolved withevery existing frequeny of both the oluding andoluded signals in a manner onsonant with itsveloity. That is to say, its spetral orientation isdesriptive of the motion of the oluding signal.Hene we state the following orollary:

COROLLARY 1. Under an olusion phe-nomenon, the veloities of the oluding and o-luded signals an always be identi�ed as suh.Under olusion, the spetral orientation of theoluding boundary is parallel to the plane de-sriptive of the oluding veloity and detetingthe spetral orientation of the boundary amountsto identify the oluding veloity, leaving the o-luded veloity to be onsidered as suh.Figure 3 demonstrates the omposition of a sim-ple 2D olusion sene and the Fourier spetra ofits omponents. Figure 3a) is the oluding sig-nal with spatial frequeny ( 2�16 ; 2�16 ) and veloity(�1:0;�1:0) suh thatI1(x; t) = os�2�16 (x+ t)�+ os�2�16 (y + t)�and Figure 3b) is the oluded signal with spatialfrequeny ( 2�8 ; 2�8 ) and veloity (1:0; 1:0), yieldingI2(x; t) = os�2�8 (x� t)�+ os�2�8 (y � t)� :
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6-y x a) b) ) d)

PPq��) 6!kx ky e) f) g) h)Fig. 3. (top): The omposition of a simple 2D olusion sene. a) The oluding sinusoidal signal with frequeny ( 2�16 ; 2�16 )and veloity (�1:0;�1:0). b) The oluded sinusoidal signal with frequeny ( 2�8 ; 2�8 ) and veloity (1:0; 1:0). ) The stepfuntion used to reate the olusion sene with normal vetor (p22 ; p22 ). d) The olusion as a ombination of a), b) and). (bottom) e) through h): Image plots of orresponding amplitude spetra.The oluding boundary in Figure 3) is a 2Dstep funtion idential to (12) and translates witha veloity whih equals that of I1, the oludingsignal. The resulting olusion sene in Figure3d) is onstruted with (13). Figures 3e) throughh) show the 3D amplitude spetra of Figures 3a)through d), respetively.In the experiments with 2D signals depitedin Figure 4, the spatial frequenies of the o-luding and oluded signals are kT1 = ( 2�16 ; 2�16 )and kT2 = ( 2�8 ; 2�8 ) respetively. Only the velo-ities and the orientation of the olusion bound-ary vary. The veloities of the oluding and o-luded signals and the olusion boundary nor-mal vetors, from left to right in Figure 3, area) aT1 = (�1:0;�1:0), aT2 = (1:0; 1:0) and nT1 =(p22 ; p22 ); b) aT1 = (1:0; 1:0), aT2 = (�1:0;�1:0)and nT1 = (p22 ; p22 ); ) aT1 = (�1;�1), aT2 = (1; 1)and nT1 = (1:0; 0), respetively.As per Theorem 1, the spetral extrema lo-ated at �(k1;�kT1 a1) and �(k2;�kT2 a2) depi-t the spatiotemporal frequenies of both signals

and �t the onstraint planes kT a1 + ! = 0 andkTa2 + ! = 0. The oblique spetra intersetingthe peaks are the onvolutions of the spetrum ofthe step funtion with the frequenies of both sig-nals and �t lines desribed by the intersetion ofplanes (k�k1)Tn?1 = 0 and kT1 a1+!�kT2 a2 = 0.These spetra are parallel to the onstraint planeof the oluding signal and are onsonant with itsveloity.Theorem 2 is the generalization of Theorem 1from sinusoidal to arbitrary signals and its ge-ometri interpretation is similar. For instane,frequenies (Nk1;�aT1 Nk1) and (Nk2;�aT2 Nk2)�t the onstraint planes of the oluding and o-luded signals, de�ned as kT a1 + ! = 0 andkTa2 + ! = 0. In the distortion term, the DiraÆ funtion with arguments (k � Nk2)Tn?1 andkTa1+!��aTNk2 represent a set of lines paral-lel to the onstraint plane of the oluding signalkTa1 + ! = 0 and, for every disrete frequenyNk1 and Nk2 exhibited by both signals, there isa frequeny spetrum �tting the lines given by theintersetion of planes kTa1 + ! � �aTNk2 = 0
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6-y x a) b) ) d)��� �����	a1 a2 ��� �����	a2 a1 �����	a1 a2 ��� ��	��	a1 a2

PPq��) 6!kx ky e) f) g) h)
PPq��) 6!kx ky i) j) k) l)Fig. 4. Four ases of predited and omputed Fourier spetra of olusion senes. In all ases the frequenies of theoluding and the oluded signals are ( 2�16 ; 2�16 ) and ( 2�8 ; 2�8 ). (top): a) Oluding and oluded veloities a1 = (�1:0;�1:0)and a2 = (1:0; 1:0). b) Oluding and oluded veloities a1 = (1:0; 1:0) and a2 = (�1:0;�1:0). ) Oluding and oludedveloities a1 = (�1:0;�1:0) and a2 = (1:0; 1:0) and boundary normal (1:0; 0). d) Oluding and oluded veloitiesa1 = a2 = (�1:0;�1:0). (enter) e) through h): Computed FFTs of orresponding olusion senes. (bottom) i)through l): Fourier spetra predited by theoretial results.and (k � Nk1)Tn?1 = 0. The magnitudes ofthese spetra are determined by their orrespond-ing saling funtions 1n[(k � Nk1)Tn1 ℄�1 and2n[(k �Nk2)Tn1 ℄�1. Theorem 2 reveals usefulonstraint planes, as the power spetra of bothsignals peak within planes kTa1 + ! = 0 andkT a2 + ! = 0 and the onstraint planes arisingfrom the distortion are parallel to the spetrum ofthe oluding signal I1(x; t).

3. The Aperture Problem: DegenerateCasesIn the Fourier domain, the power spetrum of adegenerate signal is onentrated along a linearrather than a planar struture. To see this, on-sider a 1D signal moving with a onstant modelof veloity in a 2D spae, in the diretion of thegradient normal ni and with speed si:I(x; t) = Ii(xTni � sit) (26)



12 S. S. Beauhemin and J. L. BarronThe Fourier transform of this signal is given byÎ(k; !) = Îi �kTni� Æ �kTn?i � Æ �sikTni + !� ;(27)where n?i is the negative reiproal of ni. TheDira delta funtions represent planar spetra andtheir intersetion forms a linear onstraint ontowhih the spetrum of the degenerate signal re-sides. Therefore, the planar orientation desribingfull veloity is undetermined. However, the pres-ene of an olusion boundary disambiguates themeasurement of a degenerate oluding signal inmost ases as a straight-edged olusion boundaryprovides one onstraint on normal veloity and sodoes its orresponding degenerate oluding sig-nal. Sine these strutures have an idential ful-l veloity, these onstraints should be onsistentwith it, allowing to form a system of equation-s to obtain full veloity. For instane, onsiderthe Fourier transform of a translating oludingdegenerate signal expressed as its omplex expo-nential series expansion:Z I1(xTn1 � s1t)e�i(kTx+!t)dx =1Xn=�1 inÆ(k� nk1n1; ! + s1nk1); (28)where n1 is the normal of the signal, s1 is its speedand k1 = kTn1 is the fundamental frequeny. Ad-ditionally, onsider the Fourier transform of theoluding boundary with normal vetor n2 andspeed s2:�Æ(k; !)� iÆ(kTn?2 )Æ(s2kTn2 + !)kTn2 : (29)The onvolution of (4) and (29) yields the follow-ing spetrum:� 1Xn=�1 1nÆ(k� nk1n1; ! + s1nk1)� i 1Xn=�1�1n Æ(kTn?2 � nk1nT1 n?2 )(k� nk1n1)Tn2 �Æ(s1kTn2 + ! + nk1(s1 � s2nT1 n2))(k� nk1n1)Tn2 � :(30)Expression (30) allows to derive two diretionalvetors, �tting the spetra of the degenerate o-

luding signal and boundary respetively, whihare dT1 = (nT1 ;�s1) and dT2 = (nT2 ;�s2). Theirross produt yields a vetor a1 normal to theplanar struture ontaining both spetra, whihis the full veloity of the degenerate oluding sig-nal. The onstraints on normal veloities form thefollowing system of equationsaT1 n1 � s1 = 0aT1 n2 � s2 = 0 (31)and its solution, obtained by dividing d1�d2 withits third omponent, isa1 = 1nT1 n?2 �s1n?2 � s2n?1 � ; (32)whih is full veloity when a onstant model isused. This system has a unique solution if andonly if n1 6= n2. Otherwise, if n1 = n2 then s1 =s2 and (31) has no unique solution. Thus, we statethe following Theorem:THEOREM 3. The full veloity of a degener-ate oluding signal is obtainable from the stru-ture of the Fourier spetrum if and only if its nor-mal is di�erent from the normal of the olusionboundary.We performed experiments with degenerate sig-nals as shown in Figure 5. An oluding degen-erate sinusoidal pattern with spatial orientationn1 = (�1:0; 1:0) and translating with normal ve-loity s1 = 1:0 is depited in Figure 5a). Thepattern was generated aording toI1(x; t) = os�2�16 (xTn1 � s1t)� : (33)As an be seen from its Fourier transform 5e), thefrequeny ontent is omposed of two Æ funtionsfrom whih only a normal veloity estimate an beobtained by omputing the orientation of the linepassing through the spetral peaks and the originof the frequeny spae.Figure 5b) shows the oluding signal and theolusion edge ombination. The normal vetorto the edge is n = (1:0; 1:0). The Fourier trans-form is shown in 5f), where the spetrum of theedge is onvolved with the peaks of the signal.In this ase, the full veloity of the degeneratesignal is obtained by omputing the normal ve-tor to the plane ontaining the entire spetrum
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6-y x a) b) ) d)

PPq��) 6!kx ky e) f) g) h)Fig. 5. Cases of degenerate oluding signals. (top): a) Oluding signal with normal n1 = (�1:0; 1:0). b) Oludingsignal and boundary with normal n = (1:0; 1:0). ) Oluded signal with normal n2 = (2:0; 1:0). d) Complete olusionsene. (bottom) e) through h): Corresponding frequeny spetra.and the origin of the frequeny spae. Figure 5)shows the oluded signal with spatial orientationn2 = (2:0; 1:0) and translating with normal veloi-ty s2 = 2:0. This pattern was generated aordingto I2(x; t) = os�2�8 (xTn2 � s2t)� (34)and its frequeny ontent appears in 5g).The omplete olusion sene is shown in 5d)and the orresponding frequeny ontent is depit-ed in 5h). To disambiguate the normal veloity ofthe oluding signal, it is �rst neessary to identi-fy the oluding veloity. This is aomplished by�nding a line that is parallel to the spetral ori-entation of the Fourier transform of the oludingedge and that also ontains the frequeny ontentof one signal. In this ase, this signal is said to beoluding, and the normal to the plane ontainingits frequeny spetrum, inluding the spetrum ofthe oluding edge onvolved with its disrete fre-quenies, yields a full veloity measurement.

4. Related ConsiderationsIn this setion we onsider the relationship be-tween additive translueny and the theoretialframework, the e�ets of oluding edges awayfrom the origin of the spatiotemporal domain, o-luding boundaries of various shapes and the rel-evany of the theoretial model with respet toNon-Fourier motions suh as Zanker's Theta mo-tions [53℄.4.1. TransluenyTransmission of light through transluent materi-al may ause multiple motions to arise within animage region. Generally, this e�et is depited onthe image plane asI(x; t) = f(�1)(v1(x; t))I2(v2(x; t)); (35)where f(�1) is a funtion of the density of thetransluent material [17℄. Under the loal assump-tion of spatially onstant f(�1) with transluenyfator ', (35) is reformulated as a weighted super-
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6-t x 6-! kxa) b) ) d)Fig. 6. The omposition of an additive transpareny sene. a): First sinusoidal signal with frequeny k1 = 2�8 and veloitya1 = 1:0. b): Seond sinusoidal signal with frequeny k2 = 2�16 and veloity a2 = �1:0. ): Transpareny reated with thesuperposition of �rst and seond sinusoidal signal. d): Frequeny spetrum of transpareny.position of intensity pro�les, written asI(x; t) = 'I1(v1(x; t))+ (1�')I2(v2(x; t)); (36)where I1(v1(x; t)) is the intensity pro�le of thetransluent material and I2(v2(x; t)) is the inten-sity pro�le of the bakground. With I1(v1(x; t))and I2(v2(x; t)) satisfying Dirihlet onditions,the frequeny spetrum of (36) is written as:Î(k; !) =' ~1Xn=� ~1 1nÆ(k �Nk1; ! + aT1 Nk1) +(1� ') ~1Xn=� ~1 2nÆ(k�Nk2; ! + aT2 Nk2):(37)Hene, with respet to its frequeny struture,translueny may be redued to a speial ase ofolusion for whih the distortion terms vanish.Figure 6 shows the Fourier transform of an addi-tive translueny omposed of two sinusoidals.4.2. Phase ShiftsFor reasons of simpliity and larity, in eah Theo-rem and numerial result, the oluding boundaryontained the origin of the oordinate system. Wegeneralize this by desribing the olusion bound-ary as U(x) = � 1 if xTn+ y0 � 00 otherwise ; (38)

where y0 is the y-axis interept. The Fourier spe-trum of suh a boundary inludes a phase shift andis written as:eiy0kTni ��Æ(k) � iÆ(kTn?i )kTni � Æ(kT ai + !) (39)Equation (39) an be further simpli�ed as:�Æ(k)� ieiy0kTniÆ(kTn?i ;kT ai + !)kTni (40)The Fourier spetrum of the boundary is to beonvolved with the omplex exponential series ex-pansions of the oluding and oluded signals andsubsequently with the Fourier transform of theGaussian window. In the ase of the oludingsignal, the onvolution with the the shifted olu-sion boundary an be written as:� ~1Xn=� ~1 1nÆ(k�Nk1; ! + aT1 Nk1)�ieiy0(k�Nk1)Tn1 1nÆ((k�Nk1)Tn?1 ; ! + kT a1)(k�Nk1)Tn1 (41)and, similarly for the oluded signal:� ~1Xn=� ~1 2nÆ(k�Nk2; ! + aT2 Nk2)�ieiy0(k�Nk2)Tn1 2nÆ((k�Nk2)Tn?1 ; ! + kT a2)(k�Nk2)Tn1 (42)These onvolutions are ombined together as be-fore to obtain the Fourier spetrum of olusion
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6-t x a) b) ) d)
6-! kx e) f) g) h)Fig. 7. Phase shifts from oluding edge. (top): a) y0 = �20:0. b) y0 = �10:0. ) y0 = 10:0. d) y0 = 20:0. (bottom)e) through h): Corresponding frequeny spetra. The relative magnitude between the oluding and oluded signals dependon their respetive visible areas under the Gaussian envelope. For instane, The frequenies of the oluding signal dominateover those of the oluded signal in e), and vie versa in h).with an oluding boundary not ontaining the o-rigin of the spae.We onduted experiments with 1D image sig-nals and shifted the olusion point with di�eren-t values of y0 in (38). As observed in Figure 7,these phase shifts do not alter the struture of o-lusion in frequeny spae. The variations in theamplitude spetra are due to the Gaussian win-dowing of the olusion sene. For instane, thefrequeny peaks of the oluding signal in Figure7e) show more power than those of the oludedsignal, owing to the fat that the signal is domi-nant within the Gaussian window. The ontrary isobserved when the oluded signal oupies mostof the window, as shown in Figure 7h).4.3. Generalized Oluding BoundariesTypially, olusion boundaries are unonstrainedin shape, yielding a variety of oluding situations.Under the hypothesis that the motion of the o-luding boundary is rigid on the image plane, wean derive the frequeny struture of suh olu-

sion events. For instane, onsider a generalizedolusion boundary represented by the harater-isti funtion �(x) in the oordinates of the imageplane and the Fourier transforms of the omplexexponential series expansions of both the olud-ing and oluded signals I1 and I2. Substitutingthese terms into (13) yields the following FourierspetrumÎ(k; !) =~1Xn=� ~1 1n�̂(k�Nk1)Æ(aT1 k+ !)�~1Xn=� ~1 2n�̂(k�Nk2)Æ(aT2 k+ ! ��aTNk2)+ ~1Xn=� ~1 2nÆ(k�Nk2; ! + aT2 Nk2) (43)from whih it is easily observed that the spetrumof the oluding boundary is repeated at everynon-zero frequeny of both signals. The spetrum
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6-y x a) b) ) d)Fig. 8. Generalized oluding boundaries. a), b) and ): Images from a sequene in whih the oluding pattern moveswith veloity aT1 = (�1:0;�1:0). Spatial frequeny of the sinusoidal texture within the irular boundary is kT1 = ( 2�16 ; 2�16 ).d): The frequeny spetrum of the sequene, where the plane ontains the spetrum of the boundary onvolved with thefrequeny of the texture.oupies a plane desriptive of full veloity andan be used to perform suh measurements.Figure 8 shows an experiment where the olud-ing signal is within a irular olusion boundary.The signal and boundary are moving at a on-stant veloity aT1 = (�1:0;�1:0) and the oludedsignal is a bakground of onstant intensity. Fig-ures 8a) through ) show the motion of the olud-ing region while Figure 8d) is the frequeny spe-trum of the sequene, from whih we observe thespetrum of the irular boundary and the peaksrepresenting the frequenies of the oluding sinu-soidal texture are on�ned to a planar region fullydesriptive of the image motion.4.4. Non-Fourier MotionNon-Fourier motion is haraterized by its inabili-ty to be explained by the MFFC priniple. In oth-er terms, suh motions generate power distribu-tions that are inonsistent with translational mo-tion. Soures of Non-Fourier motion inlude suhphenomena as translueny and olusion and, inpartiular, Zanker's Theta motion stimuli involv-ing olusion [53℄. This ategory of motion is de-sribed by an olusion window that translateswith a veloity that is unorrelated with the ve-loities of the oluding and oluded signals. For1D image signals, suh an olusion sene an beexpressed as:I(x; t) = �(x� v3t)I1(x� v1t)

� �(x� v3t)I2(x� v2t)+ I2(x� v2t): (44)As Zanker and Fleet [53, 19℄, we model the o-lusion window with a retangle funtion in thespatial oordinate as��x� x0b � =8>>>><>>>>: 0 if ��x�x0b �� > 1212 if ��x�x0b �� = 121 if ��x�x0b �� < 12 : (45)Suh a funtion has a non-zero value in the in-terval [x0� b2 ; x0+ b2 ℄ and zero otherwise. We thenwrite the Fourier transform of the olusion sene(8) as:I(k; !) =K 1Xn=�1 sin(k � nk1)1nÆ(kv3 � nk1�v3)�K 1Xn=�1 sin(k � nk2)2nÆ(kv3 � nk2�v2) +1Xn=�1 2nÆ(k � nk2; ! + nk2v2); (46)where sin(k) = sin kk , �v3 = v3 � v1, �v2 =v2 � v1 and the phase shift from x0 in (45) K =b�1e�ikx0b�1 . The spetra Æ(kv3 + ! � nk1�v3)and Æ(kv3 + ! � nk2�v2) are onsonant with themotion of the oluding window and represent a
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6-t x 6-! kx 6-t x 6-! kxa) b) ) d)Fig. 9. Examples of Theta Motion. a): Veloities of olusion window, oluding and oluded signals are v3 = 0:5,v1 = 1:0 and v2 = �2:0 respetively. b): Frequeny spetrum of a). ): Veloities of olusion window, oluding andoluded signals are v3 = �0:5, v1 = �2:0 and v2 = 1:0 respetively. d): Frequeny spetrum of ).ase of Non-Fourier motion, as they do not ontainthe origin.We performed two experiments with Theta mo-tions as pitured in Figure 9. It is easily observedthat the spetrum of the sin funtion is onvolvedwith eah frequeny of both signals and that itsorientation is desriptive of the veloity of the win-dow. As expeted, the visible peaks represent themotions of both signals in the MFFC sense.5. ConlusionRetinal image motion and optial ow as its ap-proximation are fundamental onepts in the �eldof vision. The omputation of optial ow isa hallenging problem as image motion inludesdisontinuities and multiple values mostly due tosene geometry, surfae translueny and variousphotometri e�ets suh as surfae reetane. Inthis ontribution, we analyzed image motion infrequeny spae with respet to motion disonti-nuities and surfae transluene. The motivationfor suh a study emanated from the observationthat the frequeny struture of olusion, translu-eny and Non-Fourier motion in frequeny spaewas not known. The results ast light on the exa-t struture of olusion, translueny, Theta mo-tion, the aperture problem and signal degenerayfor a onstant model of image motion in the fre-queny domain with related geometrial proper-ties.

AppendixProof Method of Theorem 2The Fourier transform of the omplex exponentialseries expansion of a 2D signal is:Ii(k) = Z ~1Xn=� ~1 ineixTNkie�ikTxdx= ~1Xn=� ~1 inÆ(k�Nki)(A1)and the Fourier transform of 2D step funtion un-der onstant veloity is:Û(k) = Z U(vi(x))e�ikTxdx= ��Æ(k)� i Æ(kTn?i )kTni � Æ(kT ai + !);(A2)where ni is a vetor normal to the olusionboundary. Introduing (A1) and (A2) into theFourier transform of (13) under onstant veloityand solving the onvolutions leads to Theorem 2.
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