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On the Fourier Properties of Dis
ontinuous MotionSTEVEN S. BEAUCHEMINGRASP Laboratory, University of Pennsylvania, Philadelphia PA 19104-6228, USAJOHN L. BARRONThe University of Western Ontario, London, Canada N6A 5B7;Abstra
t. Retinal image motion and opti
al 
ow as its approximation are fundamental 
on
epts inthe �eld of vision, per
eptual and 
omputational. However, the 
omputation of opti
al 
ow remains a
hallenging problem as image motion in
ludes dis
ontinuities and multiple values mostly due to s
enegeometry, surfa
e translu
en
y and various photometri
 e�e
ts su
h as re
e
tan
e. In this 
ontribution,we analyze image motion in the frequen
y spa
e with respe
t to motion dis
ontinuities and translu
en
e.We derive the frequen
y stru
ture of motion dis
ontinuities due to o

lusion and we demonstrate itsvarious geometri
al properties. The aperture problem is investigated and we show that the information
ontent of an o

lusion almost always disambiguates the velo
ity of an o

luding signal su�ering from theaperture problem. In addition, the theoreti
al framework 
an des
ribe the exa
t frequen
y stru
ture ofNon-Fourier motion and bridges the gap between Non-Fourier visual phenomena and their understandingin the frequen
y domain.Keywords: Image motion, opti
al 
ow, o

lusion, aperture problem, non-Fourier motion1. Introdu
tionA fundamental problem in pro
essing sequen
es ofimages is the 
omputation of opti
al 
ow, an ap-proximation to image motion de�ned as the pro-je
tion of velo
ities of 3D surfa
e points onto theimaging plane of a visual sensor. The importan
eof motion in visual pro
essing 
annot be under-stated: in parti
ular, approximations to imagemotion may be used to estimate 3D s
ene proper-ties and motion parameters from a moving visualsensor [21, 30, 31, 42, 51, 50, 1, 5, 38, 22, 54, 56,34, 20, 16, 23℄, to perform motion segmentation[7, 40, 45, 36, 47, 14, 25, 8, 2, 46, 15℄, to 
omputethe fo
us of expansion and time-to-
ollision [44,41, 48, 24, 49, 9℄, to perform motion-
ompensated

image en
oding [10, 13, 35, 37, 39, 55℄, to 
omputestereo disparity [3, 12, 26, 28℄, to measure blood
ow and heart-wall motion in medi
al imagery[43℄, and, re
ently, to measure minute amountsof growth in 
orn seedlings [6, 29℄.1.1. Organization of PaperThis 
ontribution addresses the problem of mul-tiple image motions arising from o

lusion andtranslu
en
y phenomena. We present a theoret-i
al framework for dis
ontinuous opti
al 
ow inthe Fourier domain. The 
on
ept of image velo
i-ty as a geometri
 fun
tion is des
ribed in Se
tion1.
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hemin and J. L. BarronSe
tion 2 is an analysis of o

lusion in Fouri-er spa
e with a 
onstant model of velo
ity. Ourapproa
h fo
uses on the frequen
y stru
ture ofo

luding surfa
es and the theoreti
al results are
onstru
ted in
rementally. For instan
e, a sim-ple model of velo
ity is used to develop the stru
-ture of o

lusion with sinusoidal signals whi
h arethen generalized to arbitrary signals. These theo-reti
al results demonstrate that o

lusion may bedi�erentiated from translu
en
y and the motionsasso
iated with both the o

luding and o

ludedsurfa
es 
an be dis
riminated.Se
tion 3 is an investigation of the apertureproblem and degenerate1 signals, as they appearin the theoreti
al framework. For example, it isshown that the full velo
ity of a degenerate signalis almost always 
omputable at the o

lusion.Se
tion 4 is a study of related issues su
has translu
en
y phenomena, Non-Fourier motion,generalized o

lusion boundaries and phase shifts.Numeri
al experiments supporting the frameworkare presented. Results obtained with sets of sinu-soidal signals 
reated syntheti
ally are 
omparedwith their 
orresponding theoreti
al predi
tions.Se
tion 5 summarizes our results.1.2. ContributionThe motivation for the theoreti
al framework e-manates from the observation that o

lusion andtranslu
en
y in the 
ontext of 
omputing opti
al
ow 
onstitute diÆ
ult 
hallenges and threatensits pre
ise 
omputation. The theoreti
al results
ast light on the exa
t stru
ture of o

lusion andtranslu
en
y in the frequen
y domain.The results are essentially theoreti
al and stat-ed in the form of Theorems and Corollaries. Rel-evant numeri
al experiments whi
h support thetheoreti
al results are presented. In addition, this
ontribution bridges what is seen as an importantgap between Non-Fourier models of visual stim-uli and opti
al 
ow methods in Computer Vision.In fa
t, Non-Fourier visual stimuli, to whi
h be-long translu
en
y and o

lusion e�e
ts, have beenstudied mainly with respe
t to the motion per-
ept these stimuli eli
it among human subje
ts[11, 52, 53℄. However, more re
ently, it has been
onje
tured that a viable 
omputational analysisof Non-Fourier motion 
ould be 
arried out with

Fourier analysis, sin
e many Non-Fourier stimuliturn out to have simple frequen
y 
hara
teriza-tions [19℄. The results presented herein extend the
on
ept of Non-Fourier stimuli su
h as o

lusionand translu
en
y from being not at all explainedby its Fourier 
hara
teristi
s to the establishmentof exa
t frequen
y models of visual stimuli exhibit-ing o

lusions and translu
en
ies.As a �rst attempt to understand o

lusion, thesimplest set of 
ontrollable parameters were used,su
h as the stru
ture of o

lusion boundaries andthe number of distin
t frequen
ies for representingthe o

luding and o

luded surfa
es. A 
onstantmodel of velo
ity was also used and no signal de-formations (su
h as those 
reated by perspe
tiveproje
tion) were permitted. These preliminary re-sults are extended to image signals 
omposed of anarbitrary number of dis
rete frequen
ies. Diri
h-let 
onditions are hypothesized for ea
h signal thusallowing to expand them as 
omplex exponentialseries.The potential use of the information-
ontentof an o

lusion boundary is outlined. O

ludingboundaries 
ontain a wealth of information that isnot exploited by 
onventional opti
al 
ow frame-works, due to a theoreti
al void. It is shown thata degenerate o

luding signal exhibiting a linearspe
trum is supplemented by the linear orienta-tion of its o

luding boundary. These two spe
traalmost always yield the full velo
ity of an o

lud-ing signal su�ering from the aperture problem.The stru
ture of o

lusion when both signals aredegenerate is also shown. It is demonstrated thatthis parti
ular 
ase 
ollapses to a one-dimensionalstru
ture.The Corollaries show that additive translu
en
yphenomena may be understood as a spe
ial 
ase ofthe theoreti
al framework. In addition, the velo
-ities asso
iated with both the o

luding and o
-
luded signals may be identi�ed as su
h, withoutthe need of s
eni
 information su
h as depth.1.3. Image MotionImage motion is expressed in terms of the 3Dmotion parameters of the visual sensor and the3D environmental points of the s
ene: let PT =(X;Y; Z) be an environmental point, 
T =(
x;
y;
z) and TT = (Tx; Ty; Tz) be the visu-
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Fig. 1. The geometry of the visual sensor. 
T = (
x;
y;
z) and TT = (Tx; Ty ; Tz) are the instantaneous rotation andtranslation of the visual sensor. p(t) is the perspe
tive proje
tion of P(t) onto the imaging surfa
e.al sensor's respe
tive instantaneous rate of 
hangein rotation and translation and p = PP�ẑ the per-spe
tive proje
tion of P onto the imaging surfa
e(the fo
al length of the sensor is assumed to be 1),where ẑ is a normalized ve
tor along the line-of-sight axis Z. The setup is shown in Figure 1. Theinstantaneous 3D velo
ity of P is given byV = �T�
�P: (1)The relationship between the 3D motion parame-ters and 2D velo
ity that results from the proje
-tion of V onto the image plane 
an be obtainedby temporally di�erentiating p:v(x) def= _p =  _XZ � X _ZZ2_YZ � Y _ZZ2 ! : (2)Using VT def= ( _X; _Y ; _Z) = (�Tx � 
yZ +
zY;�Ty � 
zX + 
xZ;�Tz + 
xY � 
yX) forsubstitution in (2), one obtains the image velo
ityequation [31℄:v(x) = � Z�1(xTz � Tx)Z�1(yTz � Ty) �+ � xy
x � (1 + x2)
y + y
z(1 + y2)
x � xy
y � x
z � : (3)

Hen
e, image motion is a purely geometri
 quan-tity and, 
onsequently, for opti
al 
ow to be ex-a
tly image motion, a number of 
onditions haveto be satis�ed. These are: a) uniform illumina-tion; b) Lambertian surfa
e re
e
tan
e and 
) puretranslation parallel to the image plane. Realisti-
ally, these 
onditions are never entirely satis�edin s
enery. Instead, it is assumed that these 
ondi-tions hold lo
ally in the s
ene and therefore lo
al-ly on the image plane. The degree to whi
h these
onditions are satis�ed partly determines the a
-
ura
y with whi
h opti
al 
ow approximates im-age motion.1.4. Multiple MotionsGiven an arbitrary environment and a moving vi-sual sensor, the motion �eld generated onto theimaging plane by a 3D s
ene within the visual�eld is represented as fun
tion (3) of the motionparameters of the visual sensor. Dis
ontinuitiesin image motion are then introdu
ed in (3) when-ever the depth Z is other than single-valued anddi�erentiable2. The o

urren
e of o

lusion 
aus-es the depth fun
tion to exhibit a dis
ontinuity,whereas translu
en
y leads to a multiple-valueddepth fun
tion.
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hemin and J. L. Barron1.5. Models of Opti
al FlowGenerally, the opti
al 
ow fun
tion may be ex-pressed as a polynomial in some lo
al 
oordinatesystem of the image spa
e of the visual sensor. Itis assumed that the 
enter of the neighborhood
oin
ides with the origin of the lo
al 
oordinatesystem. In this 
ase, we may write the Taylor se-ries expansion of a ith velo
ity about the originas:vi(x; t) =pXj=0 qXk=0 rXl=0 �j+k+lvij!k!l!�xj�yk�tlxjyktl ������ x;t=0(4)where p + q + r � n. However, we simply adoptin what follows Fleet and Jepson's [18℄ 
onstantmodel of opti
al 
ow denoted as:vi(x; t) = x� ait; (5)where ai is now the velo
ity ve
tor. Hen
e, a2D intensity pro�le I0 translating with velo
ityvi yields the following spatiotemporal image in-tensity translation:I(x; t) = I0(vi(x; t)): (6)We use a negative translational rate in (5) with-out loss of generality and for mere mathemati
al
onvenien
e.1.6. Signal Translation in the Frequen
y DomainConsider a signal Ii(x) translating at a 
onstantvelo
ity vi(x; t). For this signal, the Fourier trans-form of the opti
al 
ow 
onstraint equation is ob-tained with the di�erentiation property as:F �rIi(x)T ai + Iit� = iÎi(k)Æ(kT ai + !); (7)where i is the imaginary number, Îi(k) is theFourier transform of Ii(x) and Æ(kT ai + !) isa Dira
 delta fun
tion. Expression (7) yieldskT ai + ! = 0 as a 
onstraint on velo
ity. Simi-larly, the Fourier transform of a translating imagesignal Ii(x; t) is obtained with the shift propertyas:̂I(k; !) = Z Z Ii(vi(x; t))e�i(kTx+!t)dxdt

= Z �Z Ii(vi(x; t))e�ikTxdx� e�i!tdt= Îi(k)Æ(kT ai + !); (8)whi
h also yields the 
onstraint kT ai + ! = 0.Hen
e, (7) and (8) demonstrate that the frequen-
y analysis of image motion is in a

ordan
e withthe motion 
onstraint equation [18℄. It is also ob-served that kTai + ! = 0 represents, in the fre-quen
y domain, an oriented plane passing throughthe origin, with normal ve
tor ai des
riptive of fullvelo
ity, onto whi
h the Fourier spe
trum of Ii(x)lies.1.7. Related LiteratureTraditionally, motion per
eption has been equatedwith orientation of power in the frequen
y domain.The many opti
al 
ow methods use what Chub-b and Sperling term the Motion-From-Fourier-Components (MFFC) prin
iple [11℄ in whi
h theorientation of the plane or line through the originof the frequen
y spa
e that 
ontains most of thespe
tral power gives the rate of image translation.The MFFC prin
iple states that for a mov-ing stimulus, its Fourier transform has substantialpower over some regions of the frequen
y domainwhose points spatiotemporally 
orrespond to sinu-soidal gratings with drift dire
tion 
onsonant withthe per
eived motion [11℄. In addition, 
urrentmodels of human per
eption involve some frequen-
y analysis of the imagery, su
h as band-pass �l-tering and similar pro
esses. However, some 
lass-es of moving stimuli whi
h eli
it a strong per
eptin subje
ts fail to show a 
oherent spatiotemporalfrequen
y distribution of their power and 
annotbe understood in terms of the MFFC prin
iple.Examples in
lude drift-balan
ed visual stim-uli [11℄, Fourier and Non-Fourier plaid superpo-sitions [52℄, amplitude envelopes, sinusoidal beatsand various multipli
ative phenomena [19℄. Bydrift-balan
ed it is meant that a visual stimuluswith two (leftward and rightward, for example) ormore di�erent motions shows identi
al 
ontents ofFourier power for ea
h motion and therefore, a
-
ording to the MFFC prin
iple, should not eli
ita 
oherent motion per
ept. However, some 
lass-es of drift-balan
ed stimuli de�ned by Chubb andSperling do eli
it strong 
oherent motion per
ept-
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ontrary to the predi
tions of the usual MFFCmodel.Sour
es of Non-Fourier motion also in
lude themotion of texture boundaries and the motion ofmotion boundaries. For instan
e, transparen
y as
onsidered by Fleet and Langley [19℄ is an exam-ple of Non-Fourier motion, as transparen
y 
aus-es the relative s
attering of Fourier 
omponentsaway from the spe
trum of the moving stimuli. Inaddition, o

lusion, modeled as in (13), is anoth-er example of Non-Fourier motion whi
h is 
loselyrelated to the Theta motion stimuli of Zanker [53℄,where the o

lusion window moves independent-ly from both the foreground and the ba
kground,thus involving three independent velo
ities.It has been observed by Fleet and Langley thatmany Non-Fourier motion stimuli have simple
hara
terizations in the frequen
y domain, namelypower distributions lo
ated along lines or planeswhi
h do not 
ontain the origin of the frequen-
y spa
e, as required by the MFFC idealization[19℄. O

lusion and translu
en
y being amongthose Non-Fourier visual stimuli, we develop theirexa
t frequen
y representations, state their prop-erties with respe
t to image motion (or opti
al
ow), 
onsider the aperture problem and in
ludeadditive translu
en
y phenomena within the the-oreti
al framework.1.8. MethodologyTo analyze the frequen
y stru
ture of image sig-nals while preserving representations that are asgeneral as possible, an e�ort is made to only posethose hypotheses that would preserve the gener-ality of the analysis to follow. We des
ribe theassumptions and the proof te
hniques with whi
hthe theoreti
al results were obtained.Image Signals The geometry of visual s
enesunder perspe
tive proje
tion generally yield-s 
omplex image signals. Con
eptually, as-sumptions 
on
erning s
ene stru
ture shouldnot be made, as they 
onstrain the geometryof observable s
enes. In addition, any mea-sured physi
al signal, su
h as image intensi-ties, satis�es Diri
hlet 
onditions. Su
h sig-nals admit a �nite number of �nite dis
on-tinuities, are absolutely integrable and may

be expanded into 
omplex exponential series.Diri
hlet 
onditions 
onstitute the sum of as-sumptions made on image signals.Velo
ity On a lo
al basis, 
onstant models ofsignal translation may be adequate to des
ribevelo
ity. However, linear models admit an in-
reased number of deformations, su
h as sig-nal dilation. Hen
e, the extent used for signalanalysis may be larger with linear models. We
onsidered a 
onstant model of velo
ity, leav-ing deformations of higher order for furtheranalysis.O

luding Boundaries Obje
t frontiers andtheir proje
tion onto the imaging plane aretypi
ally un
onstrained in shape and are diÆ-
ult to model on a large spatial s
ale. Simpler,lo
al models appear to be more appropriate.The framework in
ludes o

lusion boundariesas lo
ally straight edges, represented with stepfun
tions. This hypothesis only approximatesreality and limits the analysis to lo
al imageregions. However, we outline in whi
h waythis hypothesis 
an be relaxed to in
lude o
-
lusion boundaries of any shape.Proof Te
hniques The Theorems and theirCorollaries established in this analysis em-anate from a general approa
h to modelingvisual s
enes exhibiting o

lusion dis
ontinu-ities or translu
en
y. An equation whi
h de-s
ribes the spatio-temporal pattern of the su-perposition of a ba
kground and an o

ludingsignal is established [17℄, in whi
h a 
hara
-teristi
 fun
tion des
ribing the position of ano

luding signal within the imaging spa
e ofthe visual sensor is de�ned:�(x) = � 1 if x within the o

luding signal0 otherwise (9)and two image signals I1(x) and I2(x), 
or-responding to the o

luding and o

luded sig-nals respe
tively, are de�ned to form the over-all signal pattern:I(x; t) =�(v1(x; t))I1(v1(x; t)) +[1� �(v1(x; t))℄ I2(v2(x; t)); (10)where vi(x; t) is 
onstant velo
ity. Note thatthe 
hara
teristi
 fun
tion des
ribing the ob-je
t has the same velo
ity as its 
orresponding
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hemin and J. L. Barronintensity pattern I1(x). In (10) are insertedthe hypotheses made on its various 
ompo-nents and the stru
ture of o

lusion in the fre-quen
y domain is developed. That is to say,signal stru
tures are expanded into 
omplexexponential series, su
h as:Ii(x) = ~1Xn=� ~1 
ineixTNki ; (11)where Ii(x) is the ith intensity pattern, 
inare 
omplex 
oeÆ
ients, ki are fundamentalfrequen
ies, nT = (n1; n2; : : : nn) are integersand N = nT I . O

lusion boundaries be
omelo
ally straight edges, represented with stepfun
tions su
h as:U(x) = � 1 if xTn1 � 00 otherwise; (12)where n1 is a ve
tor normal to the tangent ofthe o

luding boundary. In addition, degen-erate image signals under o

lusion are inves-tigated, thus des
ribing the aperture problemin the 
ontext of the framework. Whenev-er te
hni
ally possible, the theoreti
al result-s were 
ompared with numeri
al experimentsusing Fast Fourier Transforms operating onsyntheti
ally generated image sequen
es.Relevan
e of Fourier Analysis Many algo-rithms operating in the Fourier domain forwhi
h a 
laim of multiple motions 
apability ismade have been developed [27℄. However, thisis performed without a 
omplete knowledgeof the frequen
y stru
ture of o

lusion phe-nomena. In addition, Non-Fourier spe
tra,in
luding o

lusion and translu
en
y e�e
tshave been 
onje
tured to have mathemati
allysimple 
hara
terizations in Fourier spa
e [19℄.Consequently, the use of Fourier analysis asa lo
al tool is justi�ed as long as one realizesthat it 
onstitutes a global idealization of lo
alphenomena. In that sense, Fourier analysis isused as a lo
al tool whenever Gabor �lters,wavelets or lo
al Dis
rete Fourier Transformsare employed for signal analysis.Experimental Te
hnique Given the theoreti-
al nature of this 
ontribution, the purposeof the numeri
al experiments is to verify thevalidity of the theoreti
al results. In order toa

omplish this, the frequen
y 
ontent of the

image signals used in the experiments mustbe entirely known to the experimenter, thusforbidding the use of natural image sequen
es.In addition, image signals with single frequen-
y 
omponents are used in order to fa
ili-tate the interpretation of experiments involv-ing 3D Fast Fourier transforms. The use ofmore 
omplex signals impedes a 
areful ex-amination of the numeri
al results and do notextend the understanding of the phenomenaunder study in any parti
ular way.2. Spe
tral Stru
ture of O

lusionThe analysis begins with the 
onsideration of asimple 
ase of o

lusion 
onsisting of two translat-ing sinusoidal signals. These preliminary resultsare then generalized to arbitrary signals and theaperture problem is examined.2.1. Sinusoidal Image SignalsThe 
ase in whi
h two sinusoidals play the role ofthe obje
t and the ba
kground is �rst 
onsidered.Let Ii(x) be an image signal translating with ve-lo
ity vi(x; t) su
h that Ii(x; t) = Ii(vi(x; t)). ItsFourier transform is Îi(k; !) = Îi(k)Æ(kT ai + !).Let I1(x) be o

luding another image signal I2(x),with respe
tive velo
ities v1(x; t) and v2(x; t).The resulting o

lusion s
ene 
an then be ex-pressed as:I(x; t) =U(v1(x; t))I1(v1(x; t)) +(1�U(v1(v; t)))I2(v2(x; t)); (13)where U(x) is (12). The Fourier transform of (13)is:̂I(k; !) =[Û(k)Æ(kT a1 + !)℄ � [Î1(k)Æ(kT a1 + !)℄�[Û(k)Æ(kT a1 + !)℄ � [Î2(k)Æ(kT a2 + !)℄ +Î2(k)Æ(kT a2 + !); (14)where Û(k) is the Fourier transform of a step fun
-tion U(x) written asÛ(k) = �Æ(k) � iÆ(kTn?1 )kTn1 ; (15)
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ontinuous Visual Motion 7THEOREM 1. Let I1(x) and I2(x) be 
osine fun
tions with respe
tive angular frequen
ies kT1 =2�(f1x; 0) and 2�(0; f1y), kT2 = 2�(f2x; 0) and 2�(0; f2y) and let I1(v1(x; t)) = 
1(
os(k1xx � a13t) +
os(k1yy � b13t)) and I2(v2(x; t)) = 
2(
os(k2xx � a23t) + 
os(k2yy � b23t)). The frequen
y spe
trum ofthe o

lusion is:Î(k; !) = �4 
1Æ(k � k1; ! � kT1 a1) + (1� �)4 
2Æ(k� k2; ! � kT2 a2)+ i
2Æ((k� k1)Tn?1 ;kT a1 + ! � kT2 �a)4(k� k2)Tn1 � i
1Æ((k � k1)Tn?1 ;kT a1 + !4(k� k1)Tn1 ; (16)where �a = a1 � a2 and n1 is a normal ve
tor perpendi
ular to the o

luding boundary.with n1 as a ve
tor normal to the o

lusion bound-ary and n?1 as its negative re
ipro
al (�ny; nx)T .Theorem 1 is derived to examine o

lusion withthe simplest set of parameters, su
h as the form ofo

lusion boundaries, the number of distin
t fre-quen
ies required to represent both the o

ludingand o

luded image signals, and a 
onstant modelof velo
ity. Even with this 
onstrained domain ofderivation, a number of fundamental observationsare made, su
h as: the o

lusion in frequen
y s-pa
e is formed of the Fourier transform of a stepfun
tion 
onvolved with every existing frequen
yof both the o

luding and o

luded sinusoidal sig-nals and, the power 
ontent of the distortion ter-m is entirely imaginary, forming lines of de
reas-ing power whi
h do not 
ontain the origin, aroundthe frequen
ies of both the o

luding and o

ludedsignals. Their orientation is parallel to the spe
-trum of the o

luding signal, and the dete
tion oftheir orientation allows to identify the o

ludingvelo
ity, leaving the o

luded velo
ity to be inter-preted as su
h.We performed a series of experiments to graphi-
ally demonstrate the 
omposition of a simple o
-
lusion s
ene. To simplify the interpretation ofthe experiments, we used 1D sinusoidal signals
omposed of single frequen
ies. In addition, thesignals are Gaussian-windowed in order to avoidthe Gibbs phenomenon when 
omputing their FastFourier Transforms (FFTs). Figure 2a), b) and 
)show the 
omponents of a simple o

lusion s
ene,pi
tured in 2d). Figure 2a) is the o

luding signalwith spatial frequen
y 2�16 and velo
ity �1:0, su
hthat I1(x; t) = 
os�2�16 (x+ t)� (17)

and in 2b) is the o

luded signal with spatial fre-quen
y 2�8 and velo
ity 1:0, yieldingI2(x; t) = 
os�2�8 (x� t)� : (18)The o

luding boundary in Figure 2
) is a 1D stepfun
tion, written asU(x) = � 1 if x � 00 otherwise (19)and translates with a velo
ity identi
al to that ofI1.The resulting o

lusion s
ene in Figure 2d) is
onstru
ted with the following 1D version of (13):I(x; t) =I1(v1(x; t))�(v1(x; t)) +[1� �(v1(x; t))℄ I2(v2(x; t)); (20)where I1 is (17), I2 is (18) and � is (19). Fig-ures 2e) through h) show the amplitude spe
traof �gures 2a) through d) respe
tively, where it iseasily observed the the spe
trum of the step fun
-tion (19) is 
onvolved with ea
h frequen
y of bothsinusoidals. Further, Theorem 1 predi
ts Fourierspe
tra su
h as 2h) in their entirety as is demon-strated by the experiments in se
tion 2.3.2.2. Generalized Image SignalsFor this analysis to gain generality, we need to�nd a suitable set of mathemati
al fun
tions torepresent physi
al quantities su
h as image signalsthat lend themselves to the analysis to follow andwhi
h do not impose unne
essary hypotheses onthe stru
ture of those signals.
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6-t x a) b) 
) d)
6-! kx e) f) g) h)

i) j) k) l)
Amplitude Spectrum of Sinusoid 1 Amplitude Spectrum of Sinusoid 2 Amplitude Spectrum of Step Function Amplitude Spectrum of Occlusion

Fig. 2. (top): The 
omposition of a simple 1D o

lusion s
ene. a) The o

luding sinusoidal signal with frequen
y 2�16 andvelo
ity �1:0. b) The o

luded sinusoidal signal with frequen
y 2�8 and velo
ity 1:0. 
) The translating step fun
tion usedto 
reate the o

lusion s
ene. d) The o

lusion as a 
ombination of a), b) and 
). (
enter): Image plots of amplitudespe
tra and (bottom): amplitude spe
tra as 3D graphs.For this purpose we hypothesize that image sig-nals satisfy Diri
hlet 
onditions in the sense thatfor any interval x1 � x � x2, the fun
tion f(x)representing the signal must be single-valued, havea �nite number of maxima and minima and a �-nite number of �nite dis
ontinuities. Finally, f(x)should be absolutely integrable in su
h a way that,within the interval, we obtainZ x2x1 jf(x)jdx <1: (21)In addition, any fun
tion representing a physi-
al quantity satis�es Diri
hlet 
onditions. Hen
e,

those 
onditions 
an be assumed for visual signalswithout loss of generality and, in this 
ontext, the
omplex exponential series expansion, or Fourierseries 1Xn=�1 
neink0x (22)
onverges uniformly to f(x).Theorem 2 generalizes Theorem 1 from sinu-soidal to arbitrary signals. Theorems 1 and 2introdu
e the approximation of o

luding bound-aries with step fun
tions and, as surfa
es of anyshape may be imaged, the forms of their bound-aries are typi
ally un
onstrained. On a lo
al basis,however, as long as the spatial extent of analy-
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ontinuous Visual Motion 9THEOREM 2. Let I1(x) and I2(x) be 2D fun
tions satisfying Diri
hlet 
onditions su
h that they maybe expressed as 
omplex exponential series expansions:I1(x) = ~1Xn=� ~1 
1neixTNk1 and I2(x) = ~1Xn=� ~1 
2neixTNk2 ; (23)where n = (nx; ny)T and N = nT I are integers, x are spatial 
oordinates, k1 = (k1x; k1y)T andk2 = (k2x; k2y)T are fundamental frequen
ies and 
1n and 
2n are 
omplex 
oeÆ
ients. Let I1(x; t) =I1(v1(x; t)), I2(x; t) = I2(v2(x; t)) and the o

luding boundary be represented by:U(x) = � 1 if xTn1 � 00 otherwise, (24)where n1 is a ve
tor normal to the o

luding boundary. The frequen
y spe
trum of the o

lusion is:Î(k; !) = � ~1Xn=� ~1 
1nÆ(k�Nk1; ! + aT1 Nk1) + (1� �) ~1Xn=� ~1 
2nÆ(k�Nk2; ! + aT2 Nk2)�� i ~1;Xn=� ~1�
1nÆ((k �Nk1)Tn?1 ;kTa1 + !)(k�Nk1)Tn1 + 
2nÆ((k�Nk2)Tn?1 ;kT a1 + ! ��aTNk2)(k�Nk2)Tn1 � ;(25)where �a = a1 � a2.sis remains suÆ
iently small, the approximationof o

luding boundaries as straight-edged lines issuÆ
ient and greatly simpli�es the derivation ofthe results. Also for simpli
ity, a 
onstant mod-el of velo
ity is adopted, whi
h is thought of as avalid lo
al approximation of reality [4, 32℄. How-ever, the 
onstraint on the shape of the o

ludingboundary may be removed while preserving thevalidity of most of the theoreti
al results, as welater demonstrate. As expe
ted, the sum of prop-erties identi�ed in Theorem 1 hold for Theorem2. For instan
e, it is found that the Fourier spe
-trum of the o

luding boundary is 
onvolved withevery existing frequen
y of both the o

luding ando

luded signals in a manner 
onsonant with itsvelo
ity. That is to say, its spe
tral orientation isdes
riptive of the motion of the o

luding signal.Hen
e we state the following 
orollary:

COROLLARY 1. Under an o

lusion phe-nomenon, the velo
ities of the o

luding and o
-
luded signals 
an always be identi�ed as su
h.Under o

lusion, the spe
tral orientation of theo

luding boundary is parallel to the plane de-s
riptive of the o

luding velo
ity and dete
tingthe spe
tral orientation of the boundary amountsto identify the o

luding velo
ity, leaving the o
-
luded velo
ity to be 
onsidered as su
h.Figure 3 demonstrates the 
omposition of a sim-ple 2D o

lusion s
ene and the Fourier spe
tra ofits 
omponents. Figure 3a) is the o

luding sig-nal with spatial frequen
y ( 2�16 ; 2�16 ) and velo
ity(�1:0;�1:0) su
h thatI1(x; t) = 
os�2�16 (x+ t)�+ 
os�2�16 (y + t)�and Figure 3b) is the o

luded signal with spatialfrequen
y ( 2�8 ; 2�8 ) and velo
ity (1:0; 1:0), yieldingI2(x; t) = 
os�2�8 (x� t)�+ 
os�2�8 (y � t)� :
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6-y x a) b) 
) d)

PPq��) 6!kx ky e) f) g) h)Fig. 3. (top): The 
omposition of a simple 2D o

lusion s
ene. a) The o

luding sinusoidal signal with frequen
y ( 2�16 ; 2�16 )and velo
ity (�1:0;�1:0). b) The o

luded sinusoidal signal with frequen
y ( 2�8 ; 2�8 ) and velo
ity (1:0; 1:0). 
) The stepfun
tion used to 
reate the o

lusion s
ene with normal ve
tor (p22 ; p22 ). d) The o

lusion as a 
ombination of a), b) and
). (bottom) e) through h): Image plots of 
orresponding amplitude spe
tra.The o

luding boundary in Figure 3
) is a 2Dstep fun
tion identi
al to (12) and translates witha velo
ity whi
h equals that of I1, the o

ludingsignal. The resulting o

lusion s
ene in Figure3d) is 
onstru
ted with (13). Figures 3e) throughh) show the 3D amplitude spe
tra of Figures 3a)through d), respe
tively.In the experiments with 2D signals depi
tedin Figure 4, the spatial frequen
ies of the o
-
luding and o

luded signals are kT1 = ( 2�16 ; 2�16 )and kT2 = ( 2�8 ; 2�8 ) respe
tively. Only the velo
-ities and the orientation of the o

lusion bound-ary vary. The velo
ities of the o

luding and o
-
luded signals and the o

lusion boundary nor-mal ve
tors, from left to right in Figure 3, area) aT1 = (�1:0;�1:0), aT2 = (1:0; 1:0) and nT1 =(p22 ; p22 ); b) aT1 = (1:0; 1:0), aT2 = (�1:0;�1:0)and nT1 = (p22 ; p22 ); 
) aT1 = (�1;�1), aT2 = (1; 1)and nT1 = (1:0; 0), respe
tively.As per Theorem 1, the spe
tral extrema lo-
ated at �(k1;�kT1 a1) and �(k2;�kT2 a2) depi
-t the spatiotemporal frequen
ies of both signals

and �t the 
onstraint planes kT a1 + ! = 0 andkTa2 + ! = 0. The oblique spe
tra interse
tingthe peaks are the 
onvolutions of the spe
trum ofthe step fun
tion with the frequen
ies of both sig-nals and �t lines des
ribed by the interse
tion ofplanes (k�k1)Tn?1 = 0 and kT1 a1+!�kT2 a2 = 0.These spe
tra are parallel to the 
onstraint planeof the o

luding signal and are 
onsonant with itsvelo
ity.Theorem 2 is the generalization of Theorem 1from sinusoidal to arbitrary signals and its ge-ometri
 interpretation is similar. For instan
e,frequen
ies (Nk1;�aT1 Nk1) and (Nk2;�aT2 Nk2)�t the 
onstraint planes of the o

luding and o
-
luded signals, de�ned as kT a1 + ! = 0 andkTa2 + ! = 0. In the distortion term, the Dira
Æ fun
tion with arguments (k � Nk2)Tn?1 andkTa1+!��aTNk2 represent a set of lines paral-lel to the 
onstraint plane of the o

luding signalkTa1 + ! = 0 and, for every dis
rete frequen
yNk1 and Nk2 exhibited by both signals, there isa frequen
y spe
trum �tting the lines given by theinterse
tion of planes kTa1 + ! � �aTNk2 = 0
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6-y x a) b) 
) d)��� �����	a1 a2 ��� �����	a2 a1 �����	a1 a2 ��� ��	��	a1 a2

PPq��) 6!kx ky e) f) g) h)
PPq��) 6!kx ky i) j) k) l)Fig. 4. Four 
ases of predi
ted and 
omputed Fourier spe
tra of o

lusion s
enes. In all 
ases the frequen
ies of theo

luding and the o

luded signals are ( 2�16 ; 2�16 ) and ( 2�8 ; 2�8 ). (top): a) O

luding and o

luded velo
ities a1 = (�1:0;�1:0)and a2 = (1:0; 1:0). b) O

luding and o

luded velo
ities a1 = (1:0; 1:0) and a2 = (�1:0;�1:0). 
) O

luding and o

ludedvelo
ities a1 = (�1:0;�1:0) and a2 = (1:0; 1:0) and boundary normal (1:0; 0). d) O

luding and o

luded velo
itiesa1 = a2 = (�1:0;�1:0). (
enter) e) through h): Computed FFTs of 
orresponding o

lusion s
enes. (bottom) i)through l): Fourier spe
tra predi
ted by theoreti
al results.and (k � Nk1)Tn?1 = 0. The magnitudes ofthese spe
tra are determined by their 
orrespond-ing s
aling fun
tions 
1n[(k � Nk1)Tn1 ℄�1 and
2n[(k �Nk2)Tn1 ℄�1. Theorem 2 reveals useful
onstraint planes, as the power spe
tra of bothsignals peak within planes kTa1 + ! = 0 andkT a2 + ! = 0 and the 
onstraint planes arisingfrom the distortion are parallel to the spe
trum ofthe o

luding signal I1(x; t).

3. The Aperture Problem: DegenerateCasesIn the Fourier domain, the power spe
trum of adegenerate signal is 
on
entrated along a linearrather than a planar stru
ture. To see this, 
on-sider a 1D signal moving with a 
onstant modelof velo
ity in a 2D spa
e, in the dire
tion of thegradient normal ni and with speed si:I(x; t) = Ii(xTni � sit) (26)
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hemin and J. L. BarronThe Fourier transform of this signal is given byÎ(k; !) = Îi �kTni� Æ �kTn?i � Æ �sikTni + !� ;(27)where n?i is the negative re
ipro
al of ni. TheDira
 delta fun
tions represent planar spe
tra andtheir interse
tion forms a linear 
onstraint ontowhi
h the spe
trum of the degenerate signal re-sides. Therefore, the planar orientation des
ribingfull velo
ity is undetermined. However, the pres-en
e of an o

lusion boundary disambiguates themeasurement of a degenerate o

luding signal inmost 
ases as a straight-edged o

lusion boundaryprovides one 
onstraint on normal velo
ity and sodoes its 
orresponding degenerate o

luding sig-nal. Sin
e these stru
tures have an identi
al ful-l velo
ity, these 
onstraints should be 
onsistentwith it, allowing to form a system of equation-s to obtain full velo
ity. For instan
e, 
onsiderthe Fourier transform of a translating o

ludingdegenerate signal expressed as its 
omplex expo-nential series expansion:Z I1(xTn1 � s1t)e�i(kTx+!t)dx =1Xn=�1 
inÆ(k� nk1n1; ! + s1nk1); (28)where n1 is the normal of the signal, s1 is its speedand k1 = kTn1 is the fundamental frequen
y. Ad-ditionally, 
onsider the Fourier transform of theo

luding boundary with normal ve
tor n2 andspeed s2:�Æ(k; !)� iÆ(kTn?2 )Æ(s2kTn2 + !)kTn2 : (29)The 
onvolution of (4) and (29) yields the follow-ing spe
trum:� 1Xn=�1 
1nÆ(k� nk1n1; ! + s1nk1)� i 1Xn=�1�
1n Æ(kTn?2 � nk1nT1 n?2 )(k� nk1n1)Tn2 �Æ(s1kTn2 + ! + nk1(s1 � s2nT1 n2))(k� nk1n1)Tn2 � :(30)Expression (30) allows to derive two dire
tionalve
tors, �tting the spe
tra of the degenerate o
-


luding signal and boundary respe
tively, whi
hare dT1 = (nT1 ;�s1) and dT2 = (nT2 ;�s2). Their
ross produ
t yields a ve
tor a1 normal to theplanar stru
ture 
ontaining both spe
tra, whi
his the full velo
ity of the degenerate o

luding sig-nal. The 
onstraints on normal velo
ities form thefollowing system of equationsaT1 n1 � s1 = 0aT1 n2 � s2 = 0 (31)and its solution, obtained by dividing d1�d2 withits third 
omponent, isa1 = 1nT1 n?2 �s1n?2 � s2n?1 � ; (32)whi
h is full velo
ity when a 
onstant model isused. This system has a unique solution if andonly if n1 6= n2. Otherwise, if n1 = n2 then s1 =s2 and (31) has no unique solution. Thus, we statethe following Theorem:THEOREM 3. The full velo
ity of a degener-ate o

luding signal is obtainable from the stru
-ture of the Fourier spe
trum if and only if its nor-mal is di�erent from the normal of the o

lusionboundary.We performed experiments with degenerate sig-nals as shown in Figure 5. An o

luding degen-erate sinusoidal pattern with spatial orientationn1 = (�1:0; 1:0) and translating with normal ve-lo
ity s1 = 1:0 is depi
ted in Figure 5a). Thepattern was generated a

ording toI1(x; t) = 
os�2�16 (xTn1 � s1t)� : (33)As 
an be seen from its Fourier transform 5e), thefrequen
y 
ontent is 
omposed of two Æ fun
tionsfrom whi
h only a normal velo
ity estimate 
an beobtained by 
omputing the orientation of the linepassing through the spe
tral peaks and the originof the frequen
y spa
e.Figure 5b) shows the o

luding signal and theo

lusion edge 
ombination. The normal ve
torto the edge is n = (1:0; 1:0). The Fourier trans-form is shown in 5f), where the spe
trum of theedge is 
onvolved with the peaks of the signal.In this 
ase, the full velo
ity of the degeneratesignal is obtained by 
omputing the normal ve
-tor to the plane 
ontaining the entire spe
trum
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6-y x a) b) 
) d)

PPq��) 6!kx ky e) f) g) h)Fig. 5. Cases of degenerate o

luding signals. (top): a) O

luding signal with normal n1 = (�1:0; 1:0). b) O

ludingsignal and boundary with normal n = (1:0; 1:0). 
) O

luded signal with normal n2 = (2:0; 1:0). d) Complete o

lusions
ene. (bottom) e) through h): Corresponding frequen
y spe
tra.and the origin of the frequen
y spa
e. Figure 5
)shows the o

luded signal with spatial orientationn2 = (2:0; 1:0) and translating with normal velo
i-ty s2 = 2:0. This pattern was generated a

ordingto I2(x; t) = 
os�2�8 (xTn2 � s2t)� (34)and its frequen
y 
ontent appears in 5g).The 
omplete o

lusion s
ene is shown in 5d)and the 
orresponding frequen
y 
ontent is depi
t-ed in 5h). To disambiguate the normal velo
ity ofthe o

luding signal, it is �rst ne
essary to identi-fy the o

luding velo
ity. This is a

omplished by�nding a line that is parallel to the spe
tral ori-entation of the Fourier transform of the o

ludingedge and that also 
ontains the frequen
y 
ontentof one signal. In this 
ase, this signal is said to beo

luding, and the normal to the plane 
ontainingits frequen
y spe
trum, in
luding the spe
trum ofthe o

luding edge 
onvolved with its dis
rete fre-quen
ies, yields a full velo
ity measurement.

4. Related ConsiderationsIn this se
tion we 
onsider the relationship be-tween additive translu
en
y and the theoreti
alframework, the e�e
ts of o

luding edges awayfrom the origin of the spatiotemporal domain, o
-
luding boundaries of various shapes and the rel-evan
y of the theoreti
al model with respe
t toNon-Fourier motions su
h as Zanker's Theta mo-tions [53℄.4.1. Translu
en
yTransmission of light through translu
ent materi-al may 
ause multiple motions to arise within animage region. Generally, this e�e
t is depi
ted onthe image plane asI(x; t) = f(�1)(v1(x; t))I2(v2(x; t)); (35)where f(�1) is a fun
tion of the density of thetranslu
ent material [17℄. Under the lo
al assump-tion of spatially 
onstant f(�1) with translu
en
yfa
tor ', (35) is reformulated as a weighted super-
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6-t x 6-! kxa) b) 
) d)Fig. 6. The 
omposition of an additive transparen
y s
ene. a): First sinusoidal signal with frequen
y k1 = 2�8 and velo
itya1 = 1:0. b): Se
ond sinusoidal signal with frequen
y k2 = 2�16 and velo
ity a2 = �1:0. 
): Transparen
y 
reated with thesuperposition of �rst and se
ond sinusoidal signal. d): Frequen
y spe
trum of transparen
y.position of intensity pro�les, written asI(x; t) = 'I1(v1(x; t))+ (1�')I2(v2(x; t)); (36)where I1(v1(x; t)) is the intensity pro�le of thetranslu
ent material and I2(v2(x; t)) is the inten-sity pro�le of the ba
kground. With I1(v1(x; t))and I2(v2(x; t)) satisfying Diri
hlet 
onditions,the frequen
y spe
trum of (36) is written as:Î(k; !) =' ~1Xn=� ~1 
1nÆ(k �Nk1; ! + aT1 Nk1) +(1� ') ~1Xn=� ~1 
2nÆ(k�Nk2; ! + aT2 Nk2):(37)Hen
e, with respe
t to its frequen
y stru
ture,translu
en
y may be redu
ed to a spe
ial 
ase ofo

lusion for whi
h the distortion terms vanish.Figure 6 shows the Fourier transform of an addi-tive translu
en
y 
omposed of two sinusoidals.4.2. Phase ShiftsFor reasons of simpli
ity and 
larity, in ea
h Theo-rem and numeri
al result, the o

luding boundary
ontained the origin of the 
oordinate system. Wegeneralize this by des
ribing the o

lusion bound-ary as U(x) = � 1 if xTn+ y0 � 00 otherwise ; (38)

where y0 is the y-axis inter
ept. The Fourier spe
-trum of su
h a boundary in
ludes a phase shift andis written as:eiy0kTni ��Æ(k) � iÆ(kTn?i )kTni � Æ(kT ai + !) (39)Equation (39) 
an be further simpli�ed as:�Æ(k)� ieiy0kTniÆ(kTn?i ;kT ai + !)kTni (40)The Fourier spe
trum of the boundary is to be
onvolved with the 
omplex exponential series ex-pansions of the o

luding and o

luded signals andsubsequently with the Fourier transform of theGaussian window. In the 
ase of the o

ludingsignal, the 
onvolution with the the shifted o

lu-sion boundary 
an be written as:� ~1Xn=� ~1 
1nÆ(k�Nk1; ! + aT1 Nk1)�ieiy0(k�Nk1)Tn1 
1nÆ((k�Nk1)Tn?1 ; ! + kT a1)(k�Nk1)Tn1 (41)and, similarly for the o

luded signal:� ~1Xn=� ~1 
2nÆ(k�Nk2; ! + aT2 Nk2)�ieiy0(k�Nk2)Tn1 
2nÆ((k�Nk2)Tn?1 ; ! + kT a2)(k�Nk2)Tn1 (42)These 
onvolutions are 
ombined together as be-fore to obtain the Fourier spe
trum of o

lusion



On the Fourier Properties of Dis
ontinuous Visual Motion 15
6-t x a) b) 
) d)
6-! kx e) f) g) h)Fig. 7. Phase shifts from o

luding edge. (top): a) y0 = �20:0. b) y0 = �10:0. 
) y0 = 10:0. d) y0 = 20:0. (bottom)e) through h): Corresponding frequen
y spe
tra. The relative magnitude between the o

luding and o

luded signals dependon their respe
tive visible areas under the Gaussian envelope. For instan
e, The frequen
ies of the o

luding signal dominateover those of the o

luded signal in e), and vi
e versa in h).with an o

luding boundary not 
ontaining the o-rigin of the spa
e.We 
ondu
ted experiments with 1D image sig-nals and shifted the o

lusion point with di�eren-t values of y0 in (38). As observed in Figure 7,these phase shifts do not alter the stru
ture of o
-
lusion in frequen
y spa
e. The variations in theamplitude spe
tra are due to the Gaussian win-dowing of the o

lusion s
ene. For instan
e, thefrequen
y peaks of the o

luding signal in Figure7e) show more power than those of the o

ludedsignal, owing to the fa
t that the signal is domi-nant within the Gaussian window. The 
ontrary isobserved when the o

luded signal o

upies mostof the window, as shown in Figure 7h).4.3. Generalized O

luding BoundariesTypi
ally, o

lusion boundaries are un
onstrainedin shape, yielding a variety of o

luding situations.Under the hypothesis that the motion of the o
-
luding boundary is rigid on the image plane, we
an derive the frequen
y stru
ture of su
h o

lu-

sion events. For instan
e, 
onsider a generalizedo

lusion boundary represented by the 
hara
ter-isti
 fun
tion �(x) in the 
oordinates of the imageplane and the Fourier transforms of the 
omplexexponential series expansions of both the o

lud-ing and o

luded signals I1 and I2. Substitutingthese terms into (13) yields the following Fourierspe
trumÎ(k; !) =~1Xn=� ~1 
1n�̂(k�Nk1)Æ(aT1 k+ !)�~1Xn=� ~1 
2n�̂(k�Nk2)Æ(aT2 k+ ! ��aTNk2)+ ~1Xn=� ~1 
2nÆ(k�Nk2; ! + aT2 Nk2) (43)from whi
h it is easily observed that the spe
trumof the o

luding boundary is repeated at everynon-zero frequen
y of both signals. The spe
trum



16 S. S. Beau
hemin and J. L. Barron
6-y x a) b) 
) d)Fig. 8. Generalized o

luding boundaries. a), b) and 
): Images from a sequen
e in whi
h the o

luding pattern moveswith velo
ity aT1 = (�1:0;�1:0). Spatial frequen
y of the sinusoidal texture within the 
ir
ular boundary is kT1 = ( 2�16 ; 2�16 ).d): The frequen
y spe
trum of the sequen
e, where the plane 
ontains the spe
trum of the boundary 
onvolved with thefrequen
y of the texture.o

upies a plane des
riptive of full velo
ity and
an be used to perform su
h measurements.Figure 8 shows an experiment where the o

lud-ing signal is within a 
ir
ular o

lusion boundary.The signal and boundary are moving at a 
on-stant velo
ity aT1 = (�1:0;�1:0) and the o

ludedsignal is a ba
kground of 
onstant intensity. Fig-ures 8a) through 
) show the motion of the o

lud-ing region while Figure 8d) is the frequen
y spe
-trum of the sequen
e, from whi
h we observe thespe
trum of the 
ir
ular boundary and the peaksrepresenting the frequen
ies of the o

luding sinu-soidal texture are 
on�ned to a planar region fullydes
riptive of the image motion.4.4. Non-Fourier MotionNon-Fourier motion is 
hara
terized by its inabili-ty to be explained by the MFFC prin
iple. In oth-er terms, su
h motions generate power distribu-tions that are in
onsistent with translational mo-tion. Sour
es of Non-Fourier motion in
lude su
hphenomena as translu
en
y and o

lusion and, inparti
ular, Zanker's Theta motion stimuli involv-ing o

lusion [53℄. This 
ategory of motion is de-s
ribed by an o

lusion window that translateswith a velo
ity that is un
orrelated with the ve-lo
ities of the o

luding and o

luded signals. For1D image signals, su
h an o

lusion s
ene 
an beexpressed as:I(x; t) = �(x� v3t)I1(x� v1t)

� �(x� v3t)I2(x� v2t)+ I2(x� v2t): (44)As Zanker and Fleet [53, 19℄, we model the o
-
lusion window with a re
tangle fun
tion in thespatial 
oordinate as��x� x0b � =8>>>><>>>>: 0 if ��x�x0b �� > 1212 if ��x�x0b �� = 121 if ��x�x0b �� < 12 : (45)Su
h a fun
tion has a non-zero value in the in-terval [x0� b2 ; x0+ b2 ℄ and zero otherwise. We thenwrite the Fourier transform of the o

lusion s
ene(8) as:I(k; !) =K 1Xn=�1 sin
(k � nk1)
1nÆ(kv3 � nk1�v3)�K 1Xn=�1 sin
(k � nk2)
2nÆ(kv3 � nk2�v2) +1Xn=�1 
2nÆ(k � nk2; ! + nk2v2); (46)where sin
(k) = sin kk , �v3 = v3 � v1, �v2 =v2 � v1 and the phase shift from x0 in (45) K =b�1e�ikx0b�1 . The spe
tra Æ(kv3 + ! � nk1�v3)and Æ(kv3 + ! � nk2�v2) are 
onsonant with themotion of the o

luding window and represent a
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6-t x 6-! kx 6-t x 6-! kxa) b) 
) d)Fig. 9. Examples of Theta Motion. a): Velo
ities of o

lusion window, o

luding and o

luded signals are v3 = 0:5,v1 = 1:0 and v2 = �2:0 respe
tively. b): Frequen
y spe
trum of a). 
): Velo
ities of o

lusion window, o

luding ando

luded signals are v3 = �0:5, v1 = �2:0 and v2 = 1:0 respe
tively. d): Frequen
y spe
trum of 
).
ase of Non-Fourier motion, as they do not 
ontainthe origin.We performed two experiments with Theta mo-tions as pi
tured in Figure 9. It is easily observedthat the spe
trum of the sin
 fun
tion is 
onvolvedwith ea
h frequen
y of both signals and that itsorientation is des
riptive of the velo
ity of the win-dow. As expe
ted, the visible peaks represent themotions of both signals in the MFFC sense.5. Con
lusionRetinal image motion and opti
al 
ow as its ap-proximation are fundamental 
on
epts in the �eldof vision. The 
omputation of opti
al 
ow isa 
hallenging problem as image motion in
ludesdis
ontinuities and multiple values mostly due tos
ene geometry, surfa
e translu
en
y and variousphotometri
 e�e
ts su
h as surfa
e re
e
tan
e. Inthis 
ontribution, we analyzed image motion infrequen
y spa
e with respe
t to motion dis
onti-nuities and surfa
e translu
en
e. The motivationfor su
h a study emanated from the observationthat the frequen
y stru
ture of o

lusion, translu-
en
y and Non-Fourier motion in frequen
y spa
ewas not known. The results 
ast light on the exa
-t stru
ture of o

lusion, translu
en
y, Theta mo-tion, the aperture problem and signal degenera
yfor a 
onstant model of image motion in the fre-quen
y domain with related geometri
al proper-ties.

AppendixProof Method of Theorem 2The Fourier transform of the 
omplex exponentialseries expansion of a 2D signal is:Ii(k) = Z ~1Xn=� ~1 
ineixTNkie�ikTxdx= ~1Xn=� ~1 
inÆ(k�Nki)(A1)and the Fourier transform of 2D step fun
tion un-der 
onstant velo
ity is:Û(k) = Z U(vi(x))e�ikTxdx= ��Æ(k)� i Æ(kTn?i )kTni � Æ(kT ai + !);(A2)where ni is a ve
tor normal to the o

lusionboundary. Introdu
ing (A1) and (A2) into theFourier transform of (13) under 
onstant velo
ityand solving the 
onvolutions leads to Theorem 2.
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ase, one only obtains the speed anddire
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