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Abstract

Spherical cameras are variable-resolution imaging systems and promising de-
vices for autonomous navigation purposes, mainly because of their wide viewing
angle which increases the capabilities of vision-based obstacle avoidance schemes.
In addition, spherical lenses resemble the primate eye in their projective mod-
els and are biologically relevant. However, the calibration of spherical lenses for
Computer Vision is a recent research topic and current procedures for pinhole
camera calibration are inadequate when applied to spherical lenses. We present
a novel method for spherical-lens camera calibration which models the lens radi-
al and tangential distortions and determines the optical center and the angular
deviations of the CCD sensor array within a unified numerical procedure. Con-
trary to other methods, there is no need for special equipment such as low-power
laser beams or non-standard numerical procedures for finding the optical center.
Numerical experiments, convergence and robustness analyses are presented.

1 Introduction

Spherical cameras are variable-resolution imaging systems useful for autonomous
navigation purposes, mainly because of their wide viewing angle which increases
the capabilities of vision-based obstacle avoidance schemes [11]. In addition,
spherical lenses resemble the primate eye in their projective models and are
biologically relevant [4]. In spite of this, the calibration of spherical lenses is not
well understood [10] and contributions to this topic have only recently begun to
appear in the literature.

Current standard procedures for pinhole camera calibration are inadequate
for spherical lenses as such devices introduce significant amounts of image dis-
tortion. Calibration methods such as Tsai’s [13] only consider the first term of
radial distortion which is insufficient to account for the distortion typically in-
duced by spherical lenses. Other calibration procedures for high distortion and
spherical lenses such as Shah and Aggarwal’s [9] and Basu and Licradie’s [3] have
been defined. However, these methods use special equipment such as low-power



laser beams or ad-hoc numerical procedures for determining the optical center
of spherical lenses. We propose a novel method which only requires an adequate
calibration plane and a unified numerical procedure for determining the optical
center, among other intrinsic parameters.

1.1 Types of Distortion

The calibration of optical sensors in computer vision is an important issue in
autonomous navigation, stereo vision and numerous other applications where
accurate positional observations are required. Various techniques have been de-
veloped for the calibration of sensors based on the traditional pinhole camera
model. Typically, the following types of geometrical distortion have been recog-
nized and dealt with [14]:

— Radial Distortion: This type of distortion is point-symmetric at the optical
center of the lens and causes an inward or outward shift of image points from
their initial perspective projection. About the optical center, radial distortion
is expressed as

F=r+ K17 4+ Kor® + k3r’ -, (1)

where k; are radial distortion coefficients, r is the observed radial component
of a projected point and 7, its predicted perspective projection [7].

— Decentering Distortion: The misalignment of the optical centers of var-
ious lens elements in the sensor induces a decentering distortion which has
both a radial and a tangential component. They are expressed as

7 +3(mr? +mort +nar® + ) sin(8 — 6p)
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where 7; are the decentering distortion coefficients, € is the observed angular
component of a projected point, 6 is its predicted perspective projection
and 6 is the angle between the positive y-axis and the axis of maximum
tangential distortion due to decentering [7].

— Thin Prism: Manufacturing imperfections of lens elements and misalign-
ment of CCD sensor arrays from thier ideal, perpendicular orientation to the
optical axis introduce additional radial and tangential distortions which are

given by

F=r+(Gr?+ Grt + Gré+ ) sin(@ — 6;)
=0+ (Cr®+ Gr* + Gr +-- ) cos(d — 6,), (3)

where (; are the thin prism distortion coefficients and 6, is the angle between
the positive y-axis and the axis of maximum tangential distortion due to thin
prism [7].



1.2 Related Literature

The need for foveated visual fields in active vision applications has motivated the
design of special-purpose spherical lenses [4] and catadioptric sensors [2]. These
imaging systems introduce significant amounts of radial and possibly tangential
distortions (see Figure 2) and traditional methods that only calibrate for the
perspective projection matrix and neglect to compensate for these distortions
are inadequate [12].

The calibration methods designed for high-distortion lenses typically model
the radial and tangential distortion components with polynomial curve-fitting.
Examples of such methods are Shah and Aggarwal’s [10] and Basu and Licardie’s
[3]. Both of these methods calibrate the optical center by using procedures that
are not elegantly integrated into the curve-fitting procedure which recovers dis-
tortion coefficients. For instance, Basu and Licaride’s method consists of a mini-
mization of vertical and horizontal calibration-line curvatures whereas Shah and
Aggarwal’s requires the use of a low-power laser beam based on a partial reflec-
tion beam-alignment technique.

Other, similar methods perform minimizations of functionals representing
measures of the accuracy of the image transformation with respect to calibra-
tion parameters [6,14]. These methods rely on the point-symmetry of radial
distortion at the location of the optical center onto the image plane to reduce
the dimensionality of the parameter space [6] or to iteratively refine calibration
parameters initially obtained with a distortion-free pinhole camera model [14].

In addition to these calibration techniques, Miyamoto [5] defined mappings
relating the world plane angle 6; to the image plane angle #,. One such mapping
is given by #; = tan 6, (see Figure 1). Alternatively, Anderson et al. [1] defined a
similar mapping this time based on Snell’s law of diffraction. Unfortunately, the
accuracy of these models is limited to the neighborood of the optical center [10].
Basu and Licardie also proposed alternative models for fish-eye lenses based
in log-polar transformations [3] but, in this case, they demonstrate that the
small number of calibration parameters does not permit to accurately model a
spherical lens.

2 Standard Procedure for Fish-Eye Lens Calibration

The number of free intrinsic parameters for a typical high distortion lens is large,
especially when one considers sources or radial distortions, decentering and thin
prism, manufacturing misalignments such as tilt, yaw and roll angles of the CCD
sensor array with respect to its ideal position, image center versus optical center,
etc. We encompass radial and tangential distortions in two polynomials for which
the coefficients are to be determined with respect to the sources of distortion
emanating from the location of the optical center and the pitch and yaw angles
of the CCD sensor. We proceed by describing the least-squares method chosen
to perform the polynomial fits for both radial and tangential distortions.
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Fig. 1. The image plane and world plane angles 61 and 0> are the angles formed by
the projective rays between the image plane and the world plane, both orthogonal to the
optical axis.

2.1 Radial and Tangential Polynomials

Given a set of calibration points and their image locations, the equations de-
scribing the transformation from fish-eye to pinhole are

L L
0ij =Y apbl; and iy =) bprk (4)
k=0 k=0

where L is the order of the polynomials and éij and 7;; are the corrected polar
coordinates of the calibration points. We use a calibration pattern for which
the points align into horizontal, diagonal and vertical lines. These n? calibration
points may be arranged in matrix form consistent with their geometric location
on the calibration plane:

Py Pz ... Py, P11 P12 --- Pin Pi1 P12 --- Pin
Py Py ... Py, P21 D22 --- Pan P21 P22 --- P2n

(5)
[P-m P ... PnnJ [f);n Pn2 .- f)nnJ [P;u Pn2 - - PnnJ

where P;; = (X;;,Y35, Zi;) are the 3D calibration points expressed in the coor-
dinate system of the camera, p;; = (f,;j,éij) are the 2D projection of P;; onto
the pinhole camera and p;; = (r;,6;;) are projection of P;; as imaged by the
spherical lens.

Various minimization methods may be applied to the polynomials in order
to determine their coefficients. For instance, Lagrangian minimzation and least-

squares have been used. For our purposes, we adopt a least-squares approach to
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Fig. 2. Radial and tangential distortions. The original point, expressed as (r,0) is the
expected observation. The distorted point as observed, is expressed as (r + or,0 + §6),
where dr and 66 are the radial and tangential distortions, respectively.

find the polynomial coefficients and perform the correction. This least-squares
fit for the radial and tangential distortion polynomial can be expressed as

n n L 2 n n L 2
Z Z (é” — Z akél’-“j> and Z Z (f” — Z bk’l“l,-cj> . (6)
i=1 j=1 k=0 i=1 j=1 k=0

Deriving the polynomials with respect to coefficients yields the following systems
of linear equations

a’® =0;;0;; and b'R;; =71y (7)
where
a=(ag,...,ar)"
b = (bo,...,br)"
rij = (r?j, . ,rfj)T
0ij = (0. 05)"
Rij = I‘”I‘g;
O;; = 0;;6];.



We write the general least-squares system of equations in matrix form as

n n L n n
k.0 _ A .0
Z Z Z brijriy = Z Z TijTij

i=1 j=1 k=0 i=1 j=1
n o n L n on

ko1 _ L1
E E E biriri; = E E TijTij
i=1 j=1 k=0 i=1 j=1

n n L

SNSTS bkl =30 drl (8)

i=1 j=1 k=0 i=1 j=1

and

n n L n o n
DD D wbil = 06

i=1 j=1 k=0 i=1 j=1
n n L n o n
kol _ h pl
DD D b =D D 66
i=1 j=1 k=0 i=1 j=1
n n L n n
k oL __ 0 L
E E E bkr,;jﬂ,;j = E E 9”9” (9)
i=1 j=1 k=0 i=1 j=1

The least-squares matrices may be written as

0 L 0 L

T‘_[l)_l P T'_lL_l 0_[1)_1 ... e_lL_l

Ti2 = " T2 0y - 01y

_ 0 L _ 0 L
A, = r%)n rlin Ay = 0})” 91[n (10)

Ta1 " Ty 031 - b,

0 L 0 L

and we form the least-squares systems of equations as Rya = 6 and R,b = r,
where Ry = AgAg7 R, = AZAT, r= Ag’cr7 0= AECQ and

f11 T11

012 12
Cyp = ) Cr =

Gnn T'nn

The coefficients a and b are such that they should minimze x5 = [Aga — cg|?
and x2 = |A,;b — c,|%. We use Singular Value Decomposition (SVD) to perform



the least-squares fits
a = Vydiag(Wy)(Uj cy) (11)

b = V,diag(W,)(U/c,) (12)

where Ay = UgW4 V] and A, = U, W, V) and to compute x3 and x2. We
use the notation a(x.,x,), b(Xc, Xp, Ou,0v), Xa(Xe, x,) and x2(Xc, Xp, Ou, Oy) tO
indicate that the least-squares solutions for tangential distortion coefficients a
and the residual x3 depend on x., the location of the optical center with respect
to the coordinate system in which the fit is performed and x,, the translation
parallel to the calibration surface, and that the radial distortion coefficients b
and the residual x? depend on the optical center x., the camera translation x,,
and 6, and 6y, the pitch and yaw angles of the CCD sensor array with respect to
a plane perpendicular to the optical axis. We further explain and experimentally

demonstrate these dependencies in sections 2.3 and 2.4.

2.2 Polynomial Order

The overfit of data, or polynomial orders that exceed the intrinsic order of the
data, constitutes our primary motivation for using SVD in the least-squares so-
lutions of the polynomial coefficients. For instance, if any of the singular values
is less than a tolerance level of 1075, we set its reciprocal to zero, rather than let-
ting it go to some arbitrarily high value. We thus avoid overfits of the calibration
data when solving for a(x.,xp) and b(x.,xp,0u,6v) in (11) and (12). Because
of this capability and considering that the computational cost of calibration is
usually not critical when compared with real-time vision computations, we use
polynomials of order L = 12.

2.3 The Optical Center

The optical center of a lens is defined as the point where the optical axis passing
through the lens intersects the image plane of the camera. Alternatively, the
optical center is the image point where no distortions appear, radial or tangen-
tial. That is to say, where 7;; = r;; and éij = 6;;. In addition, radial distortion
is point-symmetric at the optical center and, consequently, the one-dimensional
polynomial in r is accurate only when aligned with the optical center. Figure
3 shows plots of (;,7i;) and (8;;,6;;) at and away from the optical center,
in which the point-scattering effect becomes apparent as the ploynomial fit is
gradually decentered from the optical center. This effect is reflected in the val-
ues of x2(X¢,Xp,0u,0v) and x3(x., x,) functions around the optical center, as
illustrated by Figure 4.

2.4 CCD Sensor Array Misalignments

CCD sensor misalignments are due to imperfections at the time of assembly.
These imperfections, however minute, introduce additional noise as some types
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Fig. 3. Plots of (i,7i;) and (6:;,0:;). a) (top, from left to right): 7i; and ri;
at the optical center, (2.5,2.5) and (5.0,5.0) image units away from it. b) (bottom,
from left to right): 6;; and 6,; at the optical center, (25.0,25.0) and (50.0,50.0)
image units away from it. The increasing scattering of the plots as the distance from
the optical center increases prevents accurate modelling of the lens. The effect is most
apparent for the ri;’s, yet it is also observed with the 6;;’s.
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Fig. 4. Effect of translation from the optical center on x2(Xc, Xp, Ou, 0y) and xa(Xc, X,).
a) (left): Plot of the x2(x — X, Xp, Ou, Bv) function. b) (center): Plot of the xj(x —
X¢,%p) function. ¢) (right): Plot of the x2(X —X¢, Xp, Ou, Ov) + X5 (X — Xc, X,) function.

of misalignments influence the value of the x2(x., X, fu, fy) function. We have
studied the effect of such misalignments by rotating the image plane of the
synthetic camera model about its origin. Figure 5 shows the x2(x.,Xp,0u,6v)
and Xg (x¢,%p) functions for rotations 6y, 6y and 6, about the u, v and n axes of
the synthetic camera. The effects have been studied in isolation to one another
and, in these experiments, the optical center projected onto the origin of the
synthetic camera.

As expected, rotations about the line of sight axis n have no effect on the
X2(X¢, Xp, 0w, By) function, as they do not break the point-symmetry of radial
distortion. However, rotations about the axes of the image plane u and v intro-



duce errors reflected in x2(x.,Xp,u,fv) (see Figure 5a). As expected, this type
of rotation breaks the point-symmetry of radial distortion.

In all three types of rotations, the xj(x.,%,) function remains undisturbed,
as shown in Figure 5b. Since the position of the optical center is not shifted by
the rotations, no violation of the line-symmetry of the tangential distortion is
introduced. If such rotations were to be centered away from the image position
of the optical center, then errors would be introduced because of the breaking
of the line-symmetry. This is also illustrated by Figure 6 where, for the three
types of rotation, the plots of (;;,6;;) describe a bijection and do not indroduce
approximation errors in the fit, contrary to the plots of (7;;,7;;) in Figure 3a.
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Fig. 5. Effect of CCD array rotation on x2(Xc, Xp, Ou, 0v) and xj(Xe,%,) functions. a)
(top, from left to right): The x2(X¢,Xp, Ou, Oyv) resudual function against rotations
around the u, v and n azes. b) (bottom, from left to right): The x3(x., x,) residual
function against rotations around the u, v and n azes.

Another phenomenon affecting the value of the residual is the alignment of
the synthetic pinhole calibration dots with the spherical points as imaged by the
lens. Given an ideal situation in which the central calibration point is imaged
at the image center and that this location coincides with the optical center,
then the residual is at a minimum. However, any deviation from this situation
substantially increases the value of the residual, and for certain is by no means
related to the calibration parameters of the camera. Additionally, we cannot
require that the central calibration dot be imaged at the optical center, since it
is one of the parameters to be estimated.

In light of this, we also model translation of the camera parallel to the cali-
bration plane as translation of the synthetic pinhole calibration points p;;. Con-



sequently, the calibrtation method must minimize the residual with respect to
the following parameters:

— X.: The amount of translation of imaged spherical points p;;, which models
translation of the CCD sensor array in the (u,v) plane. In other words, x.
is the translation from the image center to the optical center.

— %, The amount of translation of the synthetic pinhole calibration points
pij, which models the translation of the camera in the (X,Y) plane, parallel
to the calibration surface.

— By, 0y: The pitch and yaw angles of the CCD sensor array.
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Fig. 6. Plots of (0ij,0:;) under rotations of 0.8 radians around a) (left): the u awis,
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3 Synthetic Camera Model

We calibrate against a standard, synthetic pinhole camera described by linear
transformation matrices containing the instrinsic parameters to be calibrated.
The first transformation is from the world coordinate system to that of the syn-
thetic camera, expressed by the camera position r in world coordinates and or-
thogonal unit vectors u = (uy, uy,u.)", v = (vg,v,,v,)" and n = (ng,n,,n.)".
In addition, since the vector joining the image plane at the optical center and
the focal point may not be perpendicular to the image plane, we model the focal
length in the coordinate system of the camera as a vector £ = (fy, fu, fn)T. The
translation from optical center to image center x, = (z.,9.)” and the scaling
factors s, and s, from synthetic camera image to real image also are parameters
forming the synthetic camera model. Combining these into a homogeneous linear
transformation yields the matrix C":

Szuz_frjlnw(fusz_wC) Sva_frflnw(fvsy_yc) Ny _f;]nw
Szuy_fr:]ny(fusz_wc) Syvy_fr:]ny(fvsy_yc) Ty _fr;]ny
Spthy — frin.(fuse — xc) $yvs — frotna(fusy —ye) m. —frln.

Sm""; - f;lr,lz(fusm — Tr) + Zc Sy""; - f;lr,lz(fvsy - yc) + Ye T,lz f;lr,lz +1



where r! = —rTu, = —rTv and 7/, = —rTn. Planar points P;; are projected
onto the imaging plane of the pinhole camera as C’TP,;j = p;;. To obtain the
points p;; as imaged by a hypothetical spherical lens, we use the fish-eye trans-
form due to Basu and Licardie to distort the p;;’s. The fish-eye transformation
is given by

pij = slog(1 + A||pijll2)p;; (13)

where p;; = (mij:yij)T: Pij = (-?A?i,j,l?ij)T, Pij = (cos &, sin f)T; and £ = tan~" ‘;’—j
The symbols s and A are scaling and radial distortion factors, respectively.

4 Description of Algorithm

As a first step, we generate calibration points using the synthetic pinhole camera.
The analytic calibration plane is conveniently located in the (X,Y") plane of the
world coordinate system and the line of sight of the pinhole camera coincides
with the Z axis.

The synthetic image plane is at 340 mm from the calibration plane and the
focal length is set to 100 mm. The pinhole calibration points are then projected
onto the image plane of the synthetic camera as C’TP,;j = p;; and kept in polar

coordinates as (7}, é,j)

Using the spherical camera, oriented perpendicularly from the real calibration
plane, a frame of the calibration points is grabbed. The lens of the spherical
camera is at 280 mm from the calibration plane. Figure 7b and c¢ show such
frames. We perform point detection on this image by computing the centroids of
the calibration points and obtain spherical image points (r;;,6;;). Both sets of
points (#;,0;;) and (r;;,6;;) are scaled to the canonical space [(—1, —%),(1,%)]
where the minimization procedure is to begin.

We use a gonjugate gradient minimization procedure due to Polak-Ribiere
[8] which we apply on the function x* = x2(x¢, Xp, fu, Ov) + X2(Xc, Xp). In order

8)(2 8)(2 8)(2 8)(2 (’9_)(2 and

to perform the minimization, the partial derivatives Basr Byo Day By’ B0

g—)gj need to be evaluated for various values of (x.,%p, 0u,0v).

To evaluate the partial derivatives with respect to x., we perform transla-
tions of the detected spherical calibration points p;; = (75, 6;;) onto the image
plane and perform least-squares fits to obtain the x? values then used for com-
puting 5-point central differences. Evalutation of partial derivatives with respect
to CCD array angles is more involved. The first step is to reproject the pinhole
calibration points p;; back onto the calibration plane using C~!, the inverse
of the pinhole camera transformation. Rotations of these reprojected points in
3D and reprojection onto the image plane of the pinhole camera provide the x?
values for computing 5-point central differences. The minimzation is performed
with the shifted and rotated calibration points and is guided by the 6D gradient
vector (‘3—’;2 g—’;j, g'—’Tf:, ‘3—’;:, ‘373(3, ‘Z—’g(j) The output of the algorithm is the optical
center x., represented as the shift from the image center, the camera translation

xp parallel to the calibration surface with respect to the central calibration point,



the CCD sensor array pitch and yaw angles 6, and 6, and the polynomials in r
and # for image transformation from spherical to pinhole. In essence, the proce-

points as imaged by the spherical lens.

5 Numerical Results

We study the convergence rate of the calibration procedure, its resistance to in-
put noise and the results obtained with the calibration images of Figure 7b and
¢, corresponding to spherical cameras A and B, respectively. Figure 7a shows a
typical frame taken by a spherical camera, while 7b and ¢ show frames of the
calibration plane grabbed with our spherical cameras A and B. The calibration
plane has a width and height of 8 feet and the 529 calibration dots are spaced by
4 inches both horizontally and vertically. In order to capture the calibration im-
ages, the spherical cameras are mounted on a tripod and approximately aligned
with the central calibration dot. The sperical lenses are at a distance of 280 mm
from the calibration plane.

The convergence and noise resistance study is performed with a simulated
spherical lens. We use equation (13) in order to compute the spherical points
pi; from the synthetic pinhole calibration dots p;;. To model CCD sensor array
misalignments, we perform 3D rotations of the synthetic pinhole camera and
reproject the synthetic calibration points onto the so rotated image plane prior to
using (13). In addition, we translate the spherical calibration points p;; to model
the distance of the optical center from the center of the image and also translate
the synthetic pinhole calibration points p;; to model the camera translation
parallel to the calibration surface.

Input noise is introduced in each synthetic pinhole calibration dot p;; as
Gaussian noise with standard deviations ¢, and o, expressed in image units
(pixels). This step is performed before using (13) and models only the positional
inaccuracy of calibration dots. We proceed to evaluate the performance of the
calibration procedure with respect to convergence rates and input noise levels
with a simulated spherical lens and present experiments on real spherical camera
images (our spherical cameras A and B) for which we have computed their
calibration parameters.

5.1 Convergence Analysis

In order to study the convergence rate of the calibration method, we monitored
the values of the error function y? with respect to the number of iterations
performed in the 6D minimization procedure using the Polak-Ribiere conju-
gate gradient technique. Figure 8 reports three experiments performed with
various calibration parameters. The start of the 6D search always begins at
(X¢)Xp, 0u,0v) = 0 and, as expected, the number of required iterations to con-
verge to the solution is proportional to the distance of the calibration parameters
to the initial search values. We used a tolerance of 1 x 10~® on convergence and



Fig. 7. a) (left): A typical image from a spherical lens camera. b) (center): Image
of the calibration plane grabbed with spherical camera A. c) (right): Image of the
calibration plane grabbed with spherical camera B.

we computed the various derivatives of the error function x? with 5-point dif-
ferences with intervals of 0.2 image units for translation and intervals of 0.0002
radians for rotations.

As figure 8 demonstrates, convergence rates are steep and, in general, 40 iter-
ations are sufficient to obtain adequate calibration parameters. Figure 8a shows
the convegence for calibration parameters (x¢, Xp,0u, 0v) = (5.0,5.0,—0.1,0.01);
Figure 8b) shows the convergence for calibration parameters (15.0, —5.0,0.0,0.2)
and Figure 8c, for (15.0, —15.0,—0.1,0.2).
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Fig. 8. Convergence analysis of x° for various configurations of calibration parameters
(Xc, Xp, Ou,bv). a) (left): (5.0,5.0,—0.1,0.01). b) (center): (15.0,—5.0,0.0,0.2). c)
(right): (15.0, —15.0, —0.1,0.2).

5.2 Noise Robustness Analysis

In order to determine the robustness of the procedure with respect to input
noise, we introduced various levels of Gaussian noise into the synthetic pin-
hole calibration dots. We used zero-mean Gaussian noise levels of ||(oy, 0y)||2 =
0,1.4142,2.8284,4.2426,5.6569 and 7.0711, expressed in image units. The effects



of noise onto the calibration parameters x., x,, 6y and 6y and the the values of
the residual x? are depicted by the graphs of Figure 9, which show these values
for the noise levels we chose. As can be observed, the ground truth calibration
parameters (X¢,Xp,fu,0v) = 0 show a linear behavior to input noise whereas
the residual shows a quadratic growth with respect to input noise.
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Fig. 9. The effect of input zero-mean Gaussian noise on the calibration parameters

and the residual x*. a) (left): The behavior of ||x.||2 with respect to input noise levels

[[(oz,0y)||2- b) (center): The behavior of ||(6u,bv)||2 and c) (right): the behavior of
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5.3 Calibration of Spherical Images

We have applied our calibration procedure to both of our spherical cameras and
determined their calibration parameters. Tables 1 and 2 show the parameters
obtained from spherical cameras A and B, respectively. Figure 10 and 11 show
the synthetic pinhole calibration points, the spherical points detected from cal-

points with the calibration coefficients a; and b;.

As figure 10c demonstrates, our spherical camera A has a serious assembly
misalignment. The yaw angle is in excess of 0.16 radians. However, spherical
camera B does not show such misalignments and Figure 11c shows a quasi fronto-
parallel polynomial reconstruction of the detected spherical calibration points.
In the case of camera A, the misalignment of the CCD array is visible by careful
visual examination of the device.

5.4 Removing Distortion in Spherical Images

The transformation polynomials éij and 7;; represent a mapping from spheri-
cal to perspective image locations. However, to compensate for distortion, the
inverse transformation is required and, in general, the inverse of a polynomial
function cannot be found analytically. In light of this, we use the calibration
parameters obtained during the modelling phase to:



Calibration Parameters for Spherical Camera A

Tangential Distortion Coefficients a;

al as as aq as ag
-0.0039 3.3274 -0.0216 -0.1836 0.0166 -1.3416
ar as ag aio an ai2
-0.1516 0.6853 0.2253 -0.3347 -0.0879 -0.0092
Radial Distortion Coefficients b;
b1 bz b3 b4 b5 bﬁ
199.6790 | -2634.8104 | 13799.4582 —26999.8134| 8895.5168 (23348.2599
b7 bs bo bio b1 b2 |
4858.0468|-17647.3126|-24277.7749 —12166.4282|12108.0938 40070.6891
Singular Values w; for xj
w1 w2 w3 w4 Wws we
23.0001 16.2318 9.6423 5.4287 2.6397 1.3043
wr ws w9 w10 w11 w12
0.5012 0.2400 0.0736 0.0325 0.0068 0.0028
Singular Values w; for x2
w1 w2 w3 W4 ws we
525.1062 | 50.7337 22.1506 7.6035 2.3874 0.6154
w7 ws wo w10 w11 w12
0.1383 0.0260 0.0 0.0 0.0 0.0
Te Ye 7. 6y X2
-0.0753 -3.2792 -0.0314 -0.1722 0.0543

Table 1. The calibration parameters for spherical camera A.
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Fig. 10. Calibration experiment with spherical camera A. a) (left): The pinhole cali-
bration points, as imaged by the synthetic camera. b) (center): The spherical points as
detected from image in Figure 7b. c) (right): The polynomial reconstruction obtained
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Calibration Parameters for Spherical Camera B

Tangential Distortion Coefficients a;

an a2 as aq as as
-0.0097 3.1918 -0.0053 -0.2562 0.0658 0.1847

ar as ag aio a1 a12
-0.1615 0.4940 0.1577 -0.8093 | -0.0553 0.3371

Radial Distortion Coefficients b;
by bo b3 I | bs be
-30.4219 | 458.6032 |-1240.1970 1394.3862|1003.5856|—610.6167
by bs b bo | bu b1z

-1433.4416(-1063.6945

54.0374 |1359.5348]2472.72843225.6347

Singular Values w; for xg

w1 w2 w3 w4 Wws we
23.6078 17.0001 9.9003 5.6505 2.7189 1.3567
wr ws w9 w10 w11 w12

0.5264 0.2489

0.0770 0.0336

0.0071 0.0030

Singular Values w; for x?2

w1 w2 w3 wa ws Wwe
29.7794 10.8641 3.6978 1.0619 0.2580 0.0536
wr ws wo wio w11 w12
0.0095 0.0014 0.0 0.0 0.0 0.0
Te Ye 7. . X2
0.0118 -0.8273 0.0091 0.0031 0.1188

Table 2. The calibration parameters for spherical camera B.
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Fig. 11. Calibration experiment with spherical camera B. a) (left): The pinhole cali-
bration points, as imaged by the synthetic camera. b) (center): The spherical points as
detected from image in Figure 7Tc. ¢) (right): The polynomial reconstruction obtained

for this set of calibration points.




1. shift and rotate the planar image points to construct by x,, 6y and 6
respectively;
2. shift the detected spherical points by —x;

and compute the polynomial coefficients of the inverse transformation as

L

L
9,;j = Zflkélij and Tij = Zbkf;j (14)
k=0 k=0

using a procedure identical to solving (4). The polynomials in (14) are the
pseudo-inverses of (4) and are used to remove radial and tangential distortions
from spherical images. Figures 12 and 13 show the distortion removal on the cal-
ibration images and on a typical stereo pair acquired with the spherical cameras.
A lookup table without interpolation (linear or other) was used to implement
the transformation.

5.5 Image Processing Issues

Removing distortions from spherical images is not as important as the trans-
formation of image processing results into a perspective space. The advantages
of such approaches are many. For instance, the costly transformation of com-
plete image sequences is avoided; image processing algorithms directly applied
to spherical images do not suffer from the noise introduced with the distortion
removal process, and the results of image processing algorithms are generally
more compact with respect to the original signal and hence faster to transform
to a perspective space.

6 Conclusion

Spherical cameras are variable-resolution imaging systems that have been recog-
nized as promising devices for autonomous navigation purposes, mainly because
of their wide viewing angle which increases the capabilities of vision-based ob-
stacle avoidance schemes. In addition, spherical lenses resemble the primate eye
in their projective models and are biologically relevant. We presented a novel
method for spherical-lens camera calibration which models the lens radial and
tangential distortions and determines the optical center and the angular devia-
tions of the CCD sensor array within a unified numerical procedure. Contrary
to other methods, there is no need for special equipment such as low-power laser
beams or non-standard numerical procedures for finding the optical center. Nu-
merical experiments and robustness analyses are presented and the results have
shown adequate convergence rates and resistance to input noise. The method was
successfully applied to our pair of spherical cameras and allowed us to diagnose
a severe CCD array misalignment of camera A.



Fig. 12. Disrtortion removal from calibration images. (left): Camera A. (right): Cam-
era B.




Fig. 13. Disrtortion removal from typical images. (left): Camera A. (right): Camera
B.




A Point Detection Algorithm

We use a calibration plane with a grid of n x n points (where n is odd) for the
calibration process. Using a spherical camera perpendicular to the calibration
plane, frames of the calibration points are acquired. In this section we describe
the algorithm used to detect the calibration points on this spherical image.

The grid points are numbered according to their position in the image plane
coordinate system. The central point is pgg, the points on the z-axis are defined
from left to right by {pio} where —m < i <m, m = ”Tfl and the points of the
y-axis from bottom to top by {pg;}, —m < j < m. p;; is the point that lies in
the 5" row and the i*" column of the grid, relative to the origin. The value of p;;
is a 2D vector of its centroid position or fail for a point that was not detected.

An iterative algorithm is used to detect the grid points. In the first iteration
(k = 0) the point at the center of the grid, pgo, is detected. In the k" iteration,
1 <k < 2m, all the points p;; such that |i| + [j| = k are found. The first step in
detecting any grid point is defining an image pixel from which the search for this
point is to begin. The initial pixel is used as an input to the detect procedure
which outputs the centroid of the requested grid point, or fail if the point is not
found.

The initial pixel for searching the central point is the pixel at the center of
the image. For any other point, the positions of neighboring grid points that were
detected in earlier iterations are used to define the initial pixel. When detecting
a grid point p;g on the z-axis, the initial pixel depends on the location of p;q
which is the point next to p;o and closer to the center. The initial pixel in this
case is calculated by adding to p;o a vector c; with magnitude equal to the
width of the grid point p;o directed from the center towards p; . The initial
pixel used for detecting points on the y-axis is calculated in a similar way. When
detecting the point p;; in iteration k, the points pyj, p;j and p;; are already
detected in iterations k£ —1 and k& — 2. We start the search for p;; from the pixel
defined bY Pij + Pi'j — Pirjr (see ﬁgure ].4)

Fig. 14. a) (left): Finding point pio based on p;1q. b) (right): Finding point p;; based
on Py, pijo and p;j. The gray rectangle marks the initial pizel.




Poo < detect (0, 0)
for k=1 to 2m
for each p;; such that |i| + |j| =k do
i = sign(i) - (|il — 1)
j' = sign(s) - (13 - 1)
if 4 =0 then
if pyo # fail then
pio < detect(p;g + ¢;)
else p;o « fail
else if j =0 then
if pg;» # fail then
poj < detect(pg;r +cjr)
else pg; ¢ fail
else if p;;;,Pi/j, Pirj» # fail then
pij + detect(p;;: + pir; — Pirj)
else p;; + fail

Fig. 15. Algorithm for detecting grid points on a spherical image.

The detect procedure uses a threshold mechanism to separate the pixels that
are within the grid points from the background pixels. Since the image contains
areas with different illumination levels, we use multi-level thresholding to detect
the points in all areas of the image.

We define an initial threshold level as the minimum gray level such that at
least 4% of the image pixels are below the threshold. The detect procedure
finds a pixel closest to the input pixel with a gray level that is lower than the
defined threshold. It assumes that this pixel is contained within the grid point.
If no such pixel is found, the threshold is increased and the search is repeated
until such pixel is found or until the threshold gets the maximum gray value
(white). In the later case the procedure returns fail. If a pixel with a low gray
level is found, all the neighboring pixels with gray levels that are lower than the
threshold are grouped to form a grid point. The smallest rectangle that bounds
the grid point is found. The center of the grid point is the mean of the pixels
contained in the bounding rectangle calculated in the following way: let R be
the bounding rectangle, where R = {(z,y)|z1 < x < z2 and y; <y < ya}, then
the mean over the pixels in R is:

X X, elc-1wy) X e, we-iey)

M(R) = SNty M B) = S

(15)

where I(z,y) is the gray level of the pixel (z,y) and C is the maximum grayvalue.
If the bounding rectangle contains more than just the grid point, which might
be the case with a high threshold the procedure returns fail.
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