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tSpheri
al 
ameras are variable-resolution imaging systems and promising de-vi
es for autonomous navigation purposes, mainly be
ause of their wide viewingangle whi
h in
reases the 
apabilities of vision-based obsta
le avoidan
e s
hemes.In addition, spheri
al lenses resemble the primate eye in their proje
tive mod-els and are biologi
ally relevant. However, the 
alibration of spheri
al lenses forComputer Vision is a re
ent resear
h topi
 and 
urrent pro
edures for pinhole
amera 
alibration are inadequate when applied to spheri
al lenses. We presenta novel method for spheri
al-lens 
amera 
alibration whi
h models the lens radi-al and tangential distortions and determines the opti
al 
enter and the angulardeviations of the CCD sensor array within a uni�ed numeri
al pro
edure. Con-trary to other methods, there is no need for spe
ial equipment su
h as low-powerlaser beams or non-standard numeri
al pro
edures for �nding the opti
al 
enter.Numeri
al experiments, 
onvergen
e and robustness analyses are presented.1 Introdu
tionSpheri
al 
ameras are variable-resolution imaging systems useful for autonomousnavigation purposes, mainly be
ause of their wide viewing angle whi
h in
reasesthe 
apabilities of vision-based obsta
le avoidan
e s
hemes [11℄. In addition,spheri
al lenses resemble the primate eye in their proje
tive models and arebiologi
ally relevant [4℄. In spite of this, the 
alibration of spheri
al lenses is notwell understood [10℄ and 
ontributions to this topi
 have only re
ently begun toappear in the literature.Current standard pro
edures for pinhole 
amera 
alibration are inadequatefor spheri
al lenses as su
h devi
es introdu
e signi�
ant amounts of image dis-tortion. Calibration methods su
h as Tsai's [13℄ only 
onsider the �rst term ofradial distortion whi
h is insuÆ
ient to a

ount for the distortion typi
ally in-du
ed by spheri
al lenses. Other 
alibration pro
edures for high distortion andspheri
al lenses su
h as Shah and Aggarwal's [9℄ and Basu and Li
radie's [3℄ havebeen de�ned. However, these methods use spe
ial equipment su
h as low-power



laser beams or ad-ho
 numeri
al pro
edures for determining the opti
al 
enterof spheri
al lenses. We propose a novel method whi
h only requires an adequate
alibration plane and a uni�ed numeri
al pro
edure for determining the opti
al
enter, among other intrinsi
 parameters.1.1 Types of DistortionThe 
alibration of opti
al sensors in 
omputer vision is an important issue inautonomous navigation, stereo vision and numerous other appli
ations wherea

urate positional observations are required. Various te
hniques have been de-veloped for the 
alibration of sensors based on the traditional pinhole 
ameramodel. Typi
ally, the following types of geometri
al distortion have been re
og-nized and dealt with [14℄:{ Radial Distortion:This type of distortion is point-symmetri
 at the opti
al
enter of the lens and 
auses an inward or outward shift of image points fromtheir initial perspe
tive proje
tion. About the opti
al 
enter, radial distortionis expressed as r̂ = r + �1r3 + �2r5 + �3r7 + � � � ; (1)where �i are radial distortion 
oeÆ
ients, r is the observed radial 
omponentof a proje
ted point and r̂, its predi
ted perspe
tive proje
tion [7℄.{ De
entering Distortion: The misalignment of the opti
al 
enters of var-ious lens elements in the sensor indu
es a de
entering distortion whi
h hasboth a radial and a tangential 
omponent. They are expressed asr̂ = r + 3(�1r2 + �2r4 + �3r6 + � � �) sin(� � �0)�̂ = � + (�1r2 + �2r4 + �3r6 + � � �) 
os(� � �0); (2)where �i are the de
entering distortion 
oeÆ
ients, � is the observed angular
omponent of a proje
ted point, �̂ is its predi
ted perspe
tive proje
tionand �0 is the angle between the positive y-axis and the axis of maximumtangential distortion due to de
entering [7℄.{ Thin Prism: Manufa
turing imperfe
tions of lens elements and misalign-ment of CCD sensor arrays from thier ideal, perpendi
ular orientation to theopti
al axis introdu
e additional radial and tangential distortions whi
h aregiven by r̂ = r + (�1r2 + �2r4 + �3r6 + � � �) sin(� � �1)�̂ = � + (�1r2 + �2r4 + �3r6 + � � �) 
os(� � �1); (3)where �i are the thin prism distortion 
oeÆ
ients and �1 is the angle betweenthe positive y-axis and the axis of maximum tangential distortion due to thinprism [7℄.



1.2 Related LiteratureThe need for foveated visual �elds in a
tive vision appli
ations has motivated thedesign of spe
ial-purpose spheri
al lenses [4℄ and 
atadioptri
 sensors [2℄. Theseimaging systems introdu
e signi�
ant amounts of radial and possibly tangentialdistortions (see Figure 2) and traditional methods that only 
alibrate for theperspe
tive proje
tion matrix and negle
t to 
ompensate for these distortionsare inadequate [12℄.The 
alibration methods designed for high-distortion lenses typi
ally modelthe radial and tangential distortion 
omponents with polynomial 
urve-�tting.Examples of su
h methods are Shah and Aggarwal's [10℄ and Basu and Li
ardie's[3℄. Both of these methods 
alibrate the opti
al 
enter by using pro
edures thatare not elegantly integrated into the 
urve-�tting pro
edure whi
h re
overs dis-tortion 
oeÆ
ients. For instan
e, Basu and Li
aride's method 
onsists of a mini-mization of verti
al and horizontal 
alibration-line 
urvatures whereas Shah andAggarwal's requires the use of a low-power laser beam based on a partial re
e
-tion beam-alignment te
hnique.Other, similar methods perform minimizations of fun
tionals representingmeasures of the a

ura
y of the image transformation with respe
t to 
alibra-tion parameters [6, 14℄. These methods rely on the point-symmetry of radialdistortion at the lo
ation of the opti
al 
enter onto the image plane to redu
ethe dimensionality of the parameter spa
e [6℄ or to iteratively re�ne 
alibrationparameters initially obtained with a distortion-free pinhole 
amera model [14℄.In addition to these 
alibration te
hniques, Miyamoto [5℄ de�ned mappingsrelating the world plane angle �1 to the image plane angle �2. One su
h mappingis given by �2 = tan �1 (see Figure 1). Alternatively, Anderson et al. [1℄ de�ned asimilar mapping this time based on Snell's law of di�ra
tion. Unfortunately, thea

ura
y of these models is limited to the neighborood of the opti
al 
enter [10℄.Basu and Li
ardie also proposed alternative models for �sh-eye lenses basedin log-polar transformations [3℄ but, in this 
ase, they demonstrate that thesmall number of 
alibration parameters does not permit to a

urately model aspheri
al lens.2 Standard Pro
edure for Fish-Eye Lens CalibrationThe number of free intrinsi
 parameters for a typi
al high distortion lens is large,espe
ially when one 
onsiders sour
es or radial distortions, de
entering and thinprism, manufa
turing misalignments su
h as tilt, yaw and roll angles of the CCDsensor array with respe
t to its ideal position, image 
enter versus opti
al 
enter,et
. We en
ompass radial and tangential distortions in two polynomials for whi
hthe 
oeÆ
ients are to be determined with respe
t to the sour
es of distortionemanating from the lo
ation of the opti
al 
enter and the pit
h and yaw anglesof the CCD sensor. We pro
eed by des
ribing the least-squares method 
hosento perform the polynomial �ts for both radial and tangential distortions.
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Fig. 1. The image plane and world plane angles �1 and �2 are the angles formed bythe proje
tive rays between the image plane and the world plane, both orthogonal to theopti
al axis.2.1 Radial and Tangential PolynomialsGiven a set of 
alibration points and their image lo
ations, the equations de-s
ribing the transformation from �sh-eye to pinhole are�̂ij = LXk=0 ak�kij and r̂ij = LXk=0 bkrkij (4)where L is the order of the polynomials and �̂ij and r̂ij are the 
orre
ted polar
oordinates of the 
alibration points. We use a 
alibration pattern for whi
hthe points align into horizontal, diagonal and verti
al lines. These n2 
alibrationpoints may be arranged in matrix form 
onsistent with their geometri
 lo
ationon the 
alibration plane:26664P11 P12 : : : P1nP21 P22 : : : P2n...Pn1 Pn2 : : : Pnn37775 26664 p̂11 p̂12 : : : p̂1np̂21 p̂22 : : : p̂2n...p̂n1 p̂n2 : : : p̂nn37775 26664 p11 p12 : : : p1np21 p22 : : : p2n...pn1 pn2 : : : pnn37775 (5)where Pij = (Xij ; Yij ; Zij) are the 3D 
alibration points expressed in the 
oor-dinate system of the 
amera, p̂ij = (r̂ij ; �̂ij) are the 2D proje
tion of Pij ontothe pinhole 
amera and pij = (rij ; �ij) are proje
tion of Pij as imaged by thespheri
al lens.Various minimization methods may be applied to the polynomials in orderto determine their 
oeÆ
ients. For instan
e, Lagrangian minimzation and least-squares have been used. For our purposes, we adopt a least-squares approa
h to
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Fig. 2. Radial and tangential distortions. The original point, expressed as (r; �) is theexpe
ted observation. The distorted point as observed, is expressed as (r + Ær; � + Æ�),where Ær and Æ� are the radial and tangential distortions, respe
tively.�nd the polynomial 
oeÆ
ients and perform the 
orre
tion. This least-squares�t for the radial and tangential distortion polynomial 
an be expressed asnXi=1 nXj=1 �̂ij � LXk=0 ak�kij!2 and nXi=1 nXj=1 r̂ij � LXk=0 bkrkij!2 : (6)Deriving the polynomials with respe
t to 
oeÆ
ients yields the following systemsof linear equations aT� = �ij�ij and bTRij = r̂ijrij (7)where a = (a0; : : : ; aL)Tb = (b0; : : : ; bL)Trij = (r0ij ; : : : ; rLij)T�ij = (�0ij ; : : : ; �Lij)TRij = rijrTij�ij = �ij�Tij :



We write the general least-squares system of equations in matrix form asnXi=1 nXj=1 LXk=0 bkrkijr0ij = nXi=1 nXj=1 r̂ijr0ijnXi=1 nXj=1 LXk=0 bkrkijr1ij = nXi=1 nXj=1 r̂ijr1ij... ...nXi=1 nXj=1 LXk=0 bkrkijrLij = nXi=1 nXj=1 r̂ijrLij (8)and nXi=1 nXj=1 LXk=0 ak�kij�0ij = nXi=1 nXj=1 �̂ij�0ijnXi=1 nXj=1 LXk=0 bk�kij�1ij = nXi=1 nXj=1 �̂ij�1ij... ...nXi=1 nXj=1 LXk=0 bkrkij�Lij = nXi=1 nXj=1 �̂ij�Lij (9)The least-squares matri
es may be written as
Ar = 0BBBBBBBBBB�

r011 � � � rL11r012 � � � rL12... ... ...r01n � � � rL1nr021 � � � rL2n... ... ...r0nn � � � rLnn
1CCCCCCCCCCA A� = 0BBBBBBBBBB�

�011 � � � �L11�012 � � � �L12... ... ...�01n � � � �L1n�021 � � � �L2n... ... ...�0nn � � � �Lnn
1CCCCCCCCCCA (10)

and we form the least-squares systems of equations as R�a = � and Rrb = r,where R� = AT�A�, Rr = ATrAr, r = ATr 
r, � = AT� 
� and
� = 0BBB� �̂11�̂12...�̂nn1CCCA 
r = 0BBB� r̂11r̂12...r̂nn1CCCAThe 
oeÆ
ients a and b are su
h that they should minimze �2� = jA�a � 
�j2and �2r = jArb� 
rj2. We use Singular Value De
omposition (SVD) to perform



the least-squares �ts a = V�diag(W�)(UT� 
�) (11)b = Vrdiag(Wr)(UTr 
r) (12)where A� = U�W�VT� and Ar = UrWrVTr , and to 
ompute �2� and �2r. Weuse the notation a(x
;xp), b(x
;xp; �u; �v), �2�(x
;xp) and �2r(x
;xp; �u; �v) toindi
ate that the least-squares solutions for tangential distortion 
oeÆ
ients aand the residual �2� depend on x
, the lo
ation of the opti
al 
enter with respe
tto the 
oordinate system in whi
h the �t is performed and xp, the translationparallel to the 
alibration surfa
e, and that the radial distortion 
oeÆ
ients band the residual �2r depend on the opti
al 
enter x
, the 
amera translation xpand �u and �v, the pit
h and yaw angles of the CCD sensor array with respe
t toa plane perpendi
ular to the opti
al axis. We further explain and experimentallydemonstrate these dependen
ies in se
tions 2.3 and 2.4.2.2 Polynomial OrderThe over�t of data, or polynomial orders that ex
eed the intrinsi
 order of thedata, 
onstitutes our primary motivation for using SVD in the least-squares so-lutions of the polynomial 
oeÆ
ients. For instan
e, if any of the singular valuesis less than a toleran
e level of 10�5, we set its re
ipro
al to zero, rather than let-ting it go to some arbitrarily high value. We thus avoid over�ts of the 
alibrationdata when solving for a(x
;xp) and b(x
;xp; �u; �v) in (11) and (12). Be
auseof this 
apability and 
onsidering that the 
omputational 
ost of 
alibration isusually not 
riti
al when 
ompared with real-time vision 
omputations, we usepolynomials of order L = 12.2.3 The Opti
al CenterThe opti
al 
enter of a lens is de�ned as the point where the opti
al axis passingthrough the lens interse
ts the image plane of the 
amera. Alternatively, theopti
al 
enter is the image point where no distortions appear, radial or tangen-tial. That is to say, where r̂ij = rij and �̂ij = �ij . In addition, radial distortionis point-symmetri
 at the opti
al 
enter and, 
onsequently, the one-dimensionalpolynomial in r is a

urate only when aligned with the opti
al 
enter. Figure3 shows plots of (r̂ij ; rij) and (�̂ij ; �ij) at and away from the opti
al 
enter,in whi
h the point-s
attering e�e
t be
omes apparent as the ploynomial �t isgradually de
entered from the opti
al 
enter. This e�e
t is re
e
ted in the val-ues of �2r(x
;xp; �u; �v) and �2�(x
;xp) fun
tions around the opti
al 
enter, asillustrated by Figure 4.2.4 CCD Sensor Array MisalignmentsCCD sensor misalignments are due to imperfe
tions at the time of assembly.These imperfe
tions, however minute, introdu
e additional noise as some types
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Fig. 3. Plots of (r̂ij ; rij) and (�̂ij ; �ij). a) (top, from left to right): r̂ij and rijat the opti
al 
enter, (2:5; 2:5) and (5:0; 5:0) image units away from it. b) (bottom,from left to right): �̂ij and �ij at the opti
al 
enter, (25:0; 25:0) and (50:0; 50:0)image units away from it. The in
reasing s
attering of the plots as the distan
e fromthe opti
al 
enter in
reases prevents a

urate modelling of the lens. The e�e
t is mostapparent for the rij's, yet it is also observed with the �ij's.
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x yFig. 4. E�e
t of translation from the opti
al 
enter on �2r(x
;xp; �u; �v) and �2�(x
;xp).a) (left): Plot of the �2r(x� x
;xp; �u; �v) fun
tion. b) (
enter): Plot of the �2�(x�x
;xp) fun
tion. 
) (right): Plot of the �2r(x�x
;xp; �u; �v)+�2�(x�x
;xp) fun
tion.of misalignments in
uen
e the value of the �2r(x
;xp; �u; �v) fun
tion. We havestudied the e�e
t of su
h misalignments by rotating the image plane of thesyntheti
 
amera model about its origin. Figure 5 shows the �2r(x
;xp; �u; �v)and �2�(x
;xp) fun
tions for rotations �u, �v and �n about the u, v and n axes ofthe syntheti
 
amera. The e�e
ts have been studied in isolation to one anotherand, in these experiments, the opti
al 
enter proje
ted onto the origin of thesyntheti
 
amera.As expe
ted, rotations about the line of sight axis n have no e�e
t on the�2r(x
;xp; �u; �v) fun
tion, as they do not break the point-symmetry of radialdistortion. However, rotations about the axes of the image plane u and v intro-



du
e errors re
e
ted in �2r(x
;xp; �u; �v) (see Figure 5a). As expe
ted, this typeof rotation breaks the point-symmetry of radial distortion.In all three types of rotations, the �2�(x
;xp) fun
tion remains undisturbed,as shown in Figure 5b. Sin
e the position of the opti
al 
enter is not shifted bythe rotations, no violation of the line-symmetry of the tangential distortion isintrodu
ed. If su
h rotations were to be 
entered away from the image positionof the opti
al 
enter, then errors would be introdu
ed be
ause of the breakingof the line-symmetry. This is also illustrated by Figure 6 where, for the threetypes of rotation, the plots of (�̂ij ; �ij) des
ribe a bije
tion and do not indrodu
eapproximation errors in the �t, 
ontrary to the plots of (r̂ij ; rij) in Figure 3a.
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Fig. 5. E�e
t of CCD array rotation on �2r(x
;xp; �u; �v) and �2�(x
;xp) fun
tions. a)(top, from left to right): The �2r(x
;xp; �u; �v) resudual fun
tion against rotationsaround the u, v and n axes. b) (bottom, from left to right): The �2�(x
;xp) residualfun
tion against rotations around the u, v and n axes.Another phenomenon a�e
ting the value of the residual is the alignment ofthe syntheti
 pinhole 
alibration dots with the spheri
al points as imaged by thelens. Given an ideal situation in whi
h the 
entral 
alibration point is imagedat the image 
enter and that this lo
ation 
oin
ides with the opti
al 
enter,then the residual is at a minimum. However, any deviation from this situationsubstantially in
reases the value of the residual, and for 
ertain is by no meansrelated to the 
alibration parameters of the 
amera. Additionally, we 
annotrequire that the 
entral 
alibration dot be imaged at the opti
al 
enter, sin
e itis one of the parameters to be estimated.In light of this, we also model translation of the 
amera parallel to the 
ali-bration plane as translation of the syntheti
 pinhole 
alibration points p̂ij . Con-



sequently, the 
alibrtation method must minimize the residual with respe
t tothe following parameters:{ x
: The amount of translation of imaged spheri
al points pij , whi
h modelstranslation of the CCD sensor array in the (u;v) plane. In other words, x
is the translation from the image 
enter to the opti
al 
enter.{ xp: The amount of translation of the syntheti
 pinhole 
alibration pointsp̂ij , whi
h models the translation of the 
amera in the (X,Y) plane, parallelto the 
alibration surfa
e.{ �u, �v: The pit
h and yaw angles of the CCD sensor array.
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Fig. 6. Plots of (�̂ij ; �ij) under rotations of 0.8 radians around a) (left): the u axis,b) (
enter) the v axis and 
) (right): the n axis.
3 Syntheti
 Camera ModelWe 
alibrate against a standard, syntheti
 pinhole 
amera des
ribed by lineartransformation matri
es 
ontaining the instrinsi
 parameters to be 
alibrated.The �rst transformation is from the world 
oordinate system to that of the syn-theti
 
amera, expressed by the 
amera position r in world 
oordinates and or-thogonal unit ve
tors u = (ux; uy; uz)T , v = (vx; vy; vz)T and n = (nx; ny; nz)T .In addition, sin
e the ve
tor joining the image plane at the opti
al 
enter andthe fo
al point may not be perpendi
ular to the image plane, we model the fo
allength in the 
oordinate system of the 
amera as a ve
tor f = (fu; fv; fn)T . Thetranslation from opti
al 
enter to image 
enter x
 = (x
; y
)T and the s
alingfa
tors sx and sy from syntheti
 
amera image to real image also are parametersforming the syntheti
 
amera model. Combining these into a homogeneous lineartransformation yields the matrix C:0BB� sxux � f�1n nx(fusx � x
) syvx � f�1n nx(fvsy � y
) nx �f�1n nxsxuy � f�1n ny(fusx � x
) syvy � f�1n ny(fvsy � y
) ny �f�1n nysxuz � f�1n nz(fusx � x
) syvz � f�1n nz(fvsy � y
) nz �f�1n nzsxr0x � f�1n r0z(fusx � x
) + x
 syr0y � f�1n r0z(fvsy � y
) + y
 r0z f�1n r0z + 11CCA



where r0x = �rTu, r0y = �rTv and r0z = �rTn. Planar points Pij are proje
tedonto the imaging plane of the pinhole 
amera as CTPij = p̂ij . To obtain thepoints pij as imaged by a hypotheti
al spheri
al lens, we use the �sh-eye trans-form due to Basu and Li
ardie to distort the p̂ij 's. The �sh-eye transformationis given by pij = s log(1 + �kp̂ijk2)�ij (13)where pij = (xij ; yij)T , p̂ij = (x̂ij ; ŷij)T , �ij = (
os �; sin �)T , and � = tan�1 ŷijx̂ij .The symbols s and � are s
aling and radial distortion fa
tors, respe
tively.4 Des
ription of AlgorithmAs a �rst step, we generate 
alibration points using the syntheti
 pinhole 
amera.The analyti
 
alibration plane is 
onveniently lo
ated in the (X;Y ) plane of theworld 
oordinate system and the line of sight of the pinhole 
amera 
oin
ideswith the Z axis.The syntheti
 image plane is at 340 mm from the 
alibration plane and thefo
al length is set to 100 mm. The pinhole 
alibration points are then proje
tedonto the image plane of the syntheti
 
amera as CTPij = p̂ij and kept in polar
oordinates as (r̂ij ; �̂ij).Using the spheri
al 
amera, oriented perpendi
ularly from the real 
alibrationplane, a frame of the 
alibration points is grabbed. The lens of the spheri
al
amera is at 280 mm from the 
alibration plane. Figure 7b and 
 show su
hframes. We perform point dete
tion on this image by 
omputing the 
entroids ofthe 
alibration points and obtain spheri
al image points (rij ; �ij). Both sets ofpoints (r̂ij ; �̂ij) and (rij ; �ij) are s
aled to the 
anoni
al spa
e [(�1;��2 ); (1; �2 )℄where the minimization pro
edure is to begin.We use a gonjugate gradient minimization pro
edure due to Polak-Ribiere[8℄ whi
h we apply on the fun
tion �2 = �2r(x
;xp; �u; �v) +�2�(x
;xp). In orderto perform the minimization, the partial derivatives ��2�x
 , ��2�y
 , ��2�xp , ��2�yp , ��2��u and��2��v need to be evaluated for various values of (x
;xp; �u; �v).To evaluate the partial derivatives with respe
t to x
, we perform transla-tions of the dete
ted spheri
al 
alibration points pij = (rij ; �ij) onto the imageplane and perform least-squares �ts to obtain the �2 values then used for 
om-puting 5-point 
entral di�eren
es. Evalutation of partial derivatives with respe
tto CCD array angles is more involved. The �rst step is to reproje
t the pinhole
alibration points p̂ij ba
k onto the 
alibration plane using C�1, the inverseof the pinhole 
amera transformation. Rotations of these reproje
ted points in3D and reproje
tion onto the image plane of the pinhole 
amera provide the �2values for 
omputing 5-point 
entral di�eren
es. The minimzation is performedwith the shifted and rotated 
alibration points and is guided by the 6D gradientve
tor (��2�x
 ; ��2�y
 ; ��2�xp ; ��2�yp ; ��2��u ; ��2��v ). The output of the algorithm is the opti
al
enter x
, represented as the shift from the image 
enter, the 
amera translationxp parallel to the 
alibration surfa
e with respe
t to the 
entral 
alibration point,



the CCD sensor array pit
h and yaw angles �u and �v and the polynomials in rand � for image transformation from spheri
al to pinhole. In essen
e, the pro
e-dure is to �nd the parameter values that best explain the dete
ted 
alibrationpoints as imaged by the spheri
al lens.5 Numeri
al ResultsWe study the 
onvergen
e rate of the 
alibration pro
edure, its resistan
e to in-put noise and the results obtained with the 
alibration images of Figure 7b and
, 
orresponding to spheri
al 
ameras A and B, respe
tively. Figure 7a shows atypi
al frame taken by a spheri
al 
amera, while 7b and 
 show frames of the
alibration plane grabbed with our spheri
al 
ameras A and B. The 
alibrationplane has a width and height of 8 feet and the 529 
alibration dots are spa
ed by4 in
hes both horizontally and verti
ally. In order to 
apture the 
alibration im-ages, the spheri
al 
ameras are mounted on a tripod and approximately alignedwith the 
entral 
alibration dot. The speri
al lenses are at a distan
e of 280 mmfrom the 
alibration plane.The 
onvergen
e and noise resistan
e study is performed with a simulatedspheri
al lens. We use equation (13) in order to 
ompute the spheri
al pointspij from the syntheti
 pinhole 
alibration dots p̂ij . To model CCD sensor arraymisalignments, we perform 3D rotations of the syntheti
 pinhole 
amera andreproje
t the syntheti
 
alibration points onto the so rotated image plane prior tousing (13). In addition, we translate the spheri
al 
alibration points pij to modelthe distan
e of the opti
al 
enter from the 
enter of the image and also translatethe syntheti
 pinhole 
alibration points p̂ij to model the 
amera translationparallel to the 
alibration surfa
e.Input noise is introdu
ed in ea
h syntheti
 pinhole 
alibration dot pij asGaussian noise with standard deviations �x and �y expressed in image units(pixels). This step is performed before using (13) and models only the positionalina

ura
y of 
alibration dots. We pro
eed to evaluate the performan
e of the
alibration pro
edure with respe
t to 
onvergen
e rates and input noise levelswith a simulated spheri
al lens and present experiments on real spheri
al 
ameraimages (our spheri
al 
ameras A and B) for whi
h we have 
omputed their
alibration parameters.5.1 Convergen
e AnalysisIn order to study the 
onvergen
e rate of the 
alibration method, we monitoredthe values of the error fun
tion �2 with respe
t to the number of iterationsperformed in the 6D minimization pro
edure using the Polak-Ribiere 
onju-gate gradient te
hnique. Figure 8 reports three experiments performed withvarious 
alibration parameters. The start of the 6D sear
h always begins at(x
;xp; �u; �v) = 0 and, as expe
ted, the number of required iterations to 
on-verge to the solution is proportional to the distan
e of the 
alibration parametersto the initial sear
h values. We used a toleran
e of 1� 10�8 on 
onvergen
e and



Fig. 7. a) (left): A typi
al image from a spheri
al lens 
amera. b) (
enter): Imageof the 
alibration plane grabbed with spheri
al 
amera A. 
) (right): Image of the
alibration plane grabbed with spheri
al 
amera B.we 
omputed the various derivatives of the error fun
tion �2 with 5-point dif-feren
es with intervals of 0.2 image units for translation and intervals of 0.0002radians for rotations.As �gure 8 demonstrates, 
onvergen
e rates are steep and, in general, 40 iter-ations are suÆ
ient to obtain adequate 
alibration parameters. Figure 8a showsthe 
onvegen
e for 
alibration parameters (x
;xp; �u; �v) = (5:0; 5:0;�0:1; 0:01);Figure 8b) shows the 
onvergen
e for 
alibration parameters (15:0;�5:0; 0:0; 0:2)and Figure 8
, for (15:0;�15:0;�0:1; 0:2).
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Fig. 8. Convergen
e analysis of �2 for various 
on�gurations of 
alibration parameters(x
;xp; �u; �v). a) (left): (5:0; 5:0;�0:1; 0:01). b) (
enter): (15:0;�5:0; 0:0; 0:2). 
)(right): (15:0;�15:0;�0:1; 0:2).
5.2 Noise Robustness AnalysisIn order to determine the robustness of the pro
edure with respe
t to inputnoise, we introdu
ed various levels of Gaussian noise into the syntheti
 pin-hole 
alibration dots. We used zero-mean Gaussian noise levels of k(�x; �y)k2 =0; 1:4142; 2:8284; 4:2426; 5:6569 and 7:0711, expressed in image units. The e�e
ts



of noise onto the 
alibration parameters x
, xp, �u and �v and the the values ofthe residual �2 are depi
ted by the graphs of Figure 9, whi
h show these valuesfor the noise levels we 
hose. As 
an be observed, the ground truth 
alibrationparameters (x
;xp; �u; �v) = 0 show a linear behavior to input noise whereasthe residual shows a quadrati
 growth with respe
t to input noise.
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Fig. 9. The e�e
t of input zero-mean Gaussian noise on the 
alibration parametersand the residual �2. a) (left): The behavior of kx
k2 with respe
t to input noise levelsk(�x; �y)k2. b) (
enter): The behavior of k(�u; �v)k2 and 
) (right): the behavior of�2.
5.3 Calibration of Spheri
al ImagesWe have applied our 
alibration pro
edure to both of our spheri
al 
ameras anddetermined their 
alibration parameters. Tables 1 and 2 show the parametersobtained from spheri
al 
ameras A and B, respe
tively. Figure 10 and 11 showthe syntheti
 pinhole 
alibration points, the spheri
al points dete
ted from 
al-ibration images 7b and 
, and the polynomial re
onstru
tion of those dete
tedpoints with the 
alibration 
oeÆ
ients ai and bi.As �gure 10
 demonstrates, our spheri
al 
amera A has a serious assemblymisalignment. The yaw angle is in ex
ess of 0.16 radians. However, spheri
al
amera B does not show su
h misalignments and Figure 11
 shows a quasi fronto-parallel polynomial re
onstru
tion of the dete
ted spheri
al 
alibration points.In the 
ase of 
amera A, the misalignment of the CCD array is visible by 
arefulvisual examination of the devi
e.5.4 Removing Distortion in Spheri
al ImagesThe transformation polynomials �̂ij and r̂ij represent a mapping from spheri-
al to perspe
tive image lo
ations. However, to 
ompensate for distortion, theinverse transformation is required and, in general, the inverse of a polynomialfun
tion 
annot be found analyti
ally. In light of this, we use the 
alibrationparameters obtained during the modelling phase to:



Calibration Parameters for Spheri
al Camera ATangential Distortion CoeÆ
ients aia1 a2 a3 a4 a5 a6-0.0039 3.3274 -0.0216 -0.1836 0.0166 -1.3416a7 a8 a9 a10 a11 a12-0.1516 0.6853 0.2253 -0.3347 -0.0879 -0.0092Radial Distortion CoeÆ
ients bib1 b2 b3 b4 b5 b6199.6790 -2634.8104 13799.4582 -26999.8134 8895.5168 23348.2599b7 b8 b9 b10 b11 b124858.0468 -17647.3126 -24277.7749 -12166.4282 12108.0938 40070.6891Singular Values !i for �2�!1 !2 !3 !4 !5 !623.0001 16.2318 9.6423 5.4287 2.6397 1.3043!7 !8 !9 !10 !11 !120.5012 0.2400 0.0736 0.0325 0.0068 0.0028Singular Values !i for �2r!1 !2 !3 !4 !5 !6525.1062 50.7337 22.1506 7.6035 2.3874 0.6154!7 !8 !9 !10 !11 !120.1383 0.0260 0.0 0.0 0.0 0.0x
 y
 �u �v �2-0.0753 -3.2792 -0.0314 -0.1722 0.0543Table 1. The 
alibration parameters for spheri
al 
amera A.
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Fig. 10. Calibration experiment with spheri
al 
amera A. a) (left): The pinhole 
ali-bration points, as imaged by the syntheti
 
amera. b) (
enter): The spheri
al points asdete
ted from image in Figure 7b. 
) (right): The polynomial re
onstru
tion obtainedfor this set of 
alibration points.



Calibration Parameters for Spheri
al Camera BTangential Distortion CoeÆ
ients aia1 a2 a3 a4 a5 a6-0.0097 3.1918 -0.0053 -0.2562 0.0658 0.1847a7 a8 a9 a10 a11 a12-0.1615 0.4940 0.1577 -0.8093 -0.0553 0.3371Radial Distortion CoeÆ
ients bib1 b2 b3 b4 b5 b6-30.4219 458.6032 -1240.1970 1394.3862 1003.5856 -610.6167b7 b8 b9 b10 b11 b12-1433.4416 -1063.6945 54.0374 1359.5348 2472.7284 3225.6347Singular Values !i for �2�!1 !2 !3 !4 !5 !623.6078 17.0001 9.9003 5.6505 2.7189 1.3567!7 !8 !9 !10 !11 !120.5264 0.2489 0.0770 0.0336 0.0071 0.0030Singular Values !i for �2r!1 !2 !3 !4 !5 !629.7794 10.8641 3.6978 1.0619 0.2580 0.0536!7 !8 !9 !10 !11 !120.0095 0.0014 0.0 0.0 0.0 0.0x
 y
 �u �v �20.0118 -0.8273 0.0091 0.0031 0.1188Table 2. The 
alibration parameters for spheri
al 
amera B.
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Fig. 11. Calibration experiment with spheri
al 
amera B. a) (left): The pinhole 
ali-bration points, as imaged by the syntheti
 
amera. b) (
enter): The spheri
al points asdete
ted from image in Figure 7
. 
) (right): The polynomial re
onstru
tion obtainedfor this set of 
alibration points.



1. shift and rotate the planar image points to 
onstru
t by xp, �u and �vrespe
tively;2. shift the dete
ted spheri
al points by �x
;and 
ompute the polynomial 
oeÆ
ients of the inverse transformation as�ij = LXk=0 ak �̂0ij and rij = LXk=0 bk r̂0ij (14)using a pro
edure identi
al to solving (4). The polynomials in (14) are thepseudo-inverses of (4) and are used to remove radial and tangential distortionsfrom spheri
al images. Figures 12 and 13 show the distortion removal on the 
al-ibration images and on a typi
al stereo pair a
quired with the spheri
al 
ameras.A lookup table without interpolation (linear or other) was used to implementthe transformation.5.5 Image Pro
essing IssuesRemoving distortions from spheri
al images is not as important as the trans-formation of image pro
essing results into a perspe
tive spa
e. The advantagesof su
h approa
hes are many. For instan
e, the 
ostly transformation of 
om-plete image sequen
es is avoided; image pro
essing algorithms dire
tly appliedto spheri
al images do not su�er from the noise introdu
ed with the distortionremoval pro
ess, and the results of image pro
essing algorithms are generallymore 
ompa
t with respe
t to the original signal and hen
e faster to transformto a perspe
tive spa
e.6 Con
lusionSpheri
al 
ameras are variable-resolution imaging systems that have been re
og-nized as promising devi
es for autonomous navigation purposes, mainly be
auseof their wide viewing angle whi
h in
reases the 
apabilities of vision-based ob-sta
le avoidan
e s
hemes. In addition, spheri
al lenses resemble the primate eyein their proje
tive models and are biologi
ally relevant. We presented a novelmethod for spheri
al-lens 
amera 
alibration whi
h models the lens radial andtangential distortions and determines the opti
al 
enter and the angular devia-tions of the CCD sensor array within a uni�ed numeri
al pro
edure. Contraryto other methods, there is no need for spe
ial equipment su
h as low-power laserbeams or non-standard numeri
al pro
edures for �nding the opti
al 
enter. Nu-meri
al experiments and robustness analyses are presented and the results haveshown adequate 
onvergen
e rates and resistan
e to input noise. The method wassu

essfully applied to our pair of spheri
al 
ameras and allowed us to diagnosea severe CCD array misalignment of 
amera A.



Fig. 12.Disrtortion removal from 
alibration images. (left): Camera A. (right): Cam-era B.



Fig. 13. Disrtortion removal from typi
al images. (left): Camera A. (right): CameraB.



A Point Dete
tion AlgorithmWe use a 
alibration plane with a grid of n� n points (where n is odd) for the
alibration pro
ess. Using a spheri
al 
amera perpendi
ular to the 
alibrationplane, frames of the 
alibration points are a
quired. In this se
tion we des
ribethe algorithm used to dete
t the 
alibration points on this spheri
al image.The grid points are numbered a

ording to their position in the image plane
oordinate system. The 
entral point is p00, the points on the x-axis are de�nedfrom left to right by fpi0g where �m � i � m, m = n�12 and the points of they-axis from bottom to top by fp0jg, �m � j � m. pij is the point that lies inthe jth row and the ith 
olumn of the grid, relative to the origin. The value of pijis a 2D ve
tor of its 
entroid position or fail for a point that was not dete
ted.An iterative algorithm is used to dete
t the grid points. In the �rst iteration(k = 0) the point at the 
enter of the grid, p00, is dete
ted. In the kth iteration,1 � k � 2m, all the points pij su
h that jij+ jjj = k are found. The �rst step indete
ting any grid point is de�ning an image pixel from whi
h the sear
h for thispoint is to begin. The initial pixel is used as an input to the dete
t pro
edurewhi
h outputs the 
entroid of the requested grid point, or fail if the point is notfound.The initial pixel for sear
hing the 
entral point is the pixel at the 
enter ofthe image. For any other point, the positions of neighboring grid points that weredete
ted in earlier iterations are used to de�ne the initial pixel. When dete
tinga grid point pi0 on the x-axis, the initial pixel depends on the lo
ation of pi00whi
h is the point next to pi0 and 
loser to the 
enter. The initial pixel in this
ase is 
al
ulated by adding to pi00 a ve
tor 
i0 with magnitude equal to thewidth of the grid point pi00 dire
ted from the 
enter towards pi00. The initialpixel used for dete
ting points on the y-axis is 
al
ulated in a similar way. Whendete
ting the point pij in iteration k, the points pi0j0 , pij0 and pi0j are alreadydete
ted in iterations k� 1 and k� 2. We start the sear
h for pij from the pixelde�ned by pij0 + pi0j � pi0j0 (see �gure 14).
pi0

pi’j

i’j’p
pij’

pi’0

ci’
pijFig. 14. a) (left): Finding point pi0 based on pi00. b) (right): Finding point pij basedon Pi0j0 , pij0 and pi0j . The gray re
tangle marks the initial pixel.



p00  dete
t(0; 0)for k = 1 to 2mfor ea
h pij su
h that jij+ jjj = k doi0 = sign(i) � (jij � 1)j0 = sign(j) � (jjj � 1)if i = 0 thenif pi00 6= fail thenpi0  dete
t(pi00 + 
i0)else pi0  failelse if j = 0 thenif p0j0 6= fail thenp0j  dete
t(p0j0 + 
j0)else p0j  failelse if pij0 ;pi0j ;pi0j0 6= fail thenpij  dete
t(pij0 + pi0j � pi0j0)else pij  failFig. 15. Algorithm for dete
ting grid points on a spheri
al image.The dete
t pro
edure uses a threshold me
hanism to separate the pixels thatare within the grid points from the ba
kground pixels. Sin
e the image 
ontainsareas with di�erent illumination levels, we use multi-level thresholding to dete
tthe points in all areas of the image.We de�ne an initial threshold level as the minimum gray level su
h that atleast 4% of the image pixels are below the threshold. The dete
t pro
edure�nds a pixel 
losest to the input pixel with a gray level that is lower than thede�ned threshold. It assumes that this pixel is 
ontained within the grid point.If no su
h pixel is found, the threshold is in
reased and the sear
h is repeateduntil su
h pixel is found or until the threshold gets the maximum gray value(white). In the later 
ase the pro
edure returns fail. If a pixel with a low graylevel is found, all the neighboring pixels with gray levels that are lower than thethreshold are grouped to form a grid point. The smallest re
tangle that boundsthe grid point is found. The 
enter of the grid point is the mean of the pixels
ontained in the bounding re
tangle 
al
ulated in the following way: let R bethe bounding re
tangle, where R = f(x; y)jx1 � x � x2 and y1 � y � y2g, thenthe mean over the pixels in R is:Mx(R) = Px2x=x1Py2y=y1 x(C�I(x;y))Px2x=x1Py2y=y1 C�I(x;y) My(R) = Px2x=x1Py2y=y1 y(C�I(x;y))Px2x=x1Py2y=y1 C�I(x;y) (15)where I(x; y) is the gray level of the pixel (x; y) and C is the maximum grayvalue.If the bounding re
tangle 
ontains more than just the grid point, whi
h mightbe the 
ase with a high threshold the pro
edure returns fail.
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