
Modelling and Removing Radial and TangentialDistortions in Spherial LensesS.S. Beauhemin and R. Bajsy1 Dept. of Computer SieneUniversity of Western OntarioLondon, Ontario, Canada, N6A 5B7beau�sd.uwo.a2 GRASP LaboratoryUniversity of PennsylvaniaPhiladelphia PA 19104-6228 USAbajsy�entral.is.upenn.eduAbstratSpherial ameras are variable-resolution imaging systems and promising de-vies for autonomous navigation purposes, mainly beause of their wide viewingangle whih inreases the apabilities of vision-based obstale avoidane shemes.In addition, spherial lenses resemble the primate eye in their projetive mod-els and are biologially relevant. However, the alibration of spherial lenses forComputer Vision is a reent researh topi and urrent proedures for pinholeamera alibration are inadequate when applied to spherial lenses. We presenta novel method for spherial-lens amera alibration whih models the lens radi-al and tangential distortions and determines the optial enter and the angulardeviations of the CCD sensor array within a uni�ed numerial proedure. Con-trary to other methods, there is no need for speial equipment suh as low-powerlaser beams or non-standard numerial proedures for �nding the optial enter.Numerial experiments, onvergene and robustness analyses are presented.1 IntrodutionSpherial ameras are variable-resolution imaging systems useful for autonomousnavigation purposes, mainly beause of their wide viewing angle whih inreasesthe apabilities of vision-based obstale avoidane shemes [11℄. In addition,spherial lenses resemble the primate eye in their projetive models and arebiologially relevant [4℄. In spite of this, the alibration of spherial lenses is notwell understood [10℄ and ontributions to this topi have only reently begun toappear in the literature.Current standard proedures for pinhole amera alibration are inadequatefor spherial lenses as suh devies introdue signi�ant amounts of image dis-tortion. Calibration methods suh as Tsai's [13℄ only onsider the �rst term ofradial distortion whih is insuÆient to aount for the distortion typially in-dued by spherial lenses. Other alibration proedures for high distortion andspherial lenses suh as Shah and Aggarwal's [9℄ and Basu and Liradie's [3℄ havebeen de�ned. However, these methods use speial equipment suh as low-power



laser beams or ad-ho numerial proedures for determining the optial enterof spherial lenses. We propose a novel method whih only requires an adequatealibration plane and a uni�ed numerial proedure for determining the optialenter, among other intrinsi parameters.1.1 Types of DistortionThe alibration of optial sensors in omputer vision is an important issue inautonomous navigation, stereo vision and numerous other appliations whereaurate positional observations are required. Various tehniques have been de-veloped for the alibration of sensors based on the traditional pinhole ameramodel. Typially, the following types of geometrial distortion have been reog-nized and dealt with [14℄:{ Radial Distortion:This type of distortion is point-symmetri at the optialenter of the lens and auses an inward or outward shift of image points fromtheir initial perspetive projetion. About the optial enter, radial distortionis expressed as r̂ = r + �1r3 + �2r5 + �3r7 + � � � ; (1)where �i are radial distortion oeÆients, r is the observed radial omponentof a projeted point and r̂, its predited perspetive projetion [7℄.{ Deentering Distortion: The misalignment of the optial enters of var-ious lens elements in the sensor indues a deentering distortion whih hasboth a radial and a tangential omponent. They are expressed asr̂ = r + 3(�1r2 + �2r4 + �3r6 + � � �) sin(� � �0)�̂ = � + (�1r2 + �2r4 + �3r6 + � � �) os(� � �0); (2)where �i are the deentering distortion oeÆients, � is the observed angularomponent of a projeted point, �̂ is its predited perspetive projetionand �0 is the angle between the positive y-axis and the axis of maximumtangential distortion due to deentering [7℄.{ Thin Prism: Manufaturing imperfetions of lens elements and misalign-ment of CCD sensor arrays from thier ideal, perpendiular orientation to theoptial axis introdue additional radial and tangential distortions whih aregiven by r̂ = r + (�1r2 + �2r4 + �3r6 + � � �) sin(� � �1)�̂ = � + (�1r2 + �2r4 + �3r6 + � � �) os(� � �1); (3)where �i are the thin prism distortion oeÆients and �1 is the angle betweenthe positive y-axis and the axis of maximum tangential distortion due to thinprism [7℄.



1.2 Related LiteratureThe need for foveated visual �elds in ative vision appliations has motivated thedesign of speial-purpose spherial lenses [4℄ and atadioptri sensors [2℄. Theseimaging systems introdue signi�ant amounts of radial and possibly tangentialdistortions (see Figure 2) and traditional methods that only alibrate for theperspetive projetion matrix and neglet to ompensate for these distortionsare inadequate [12℄.The alibration methods designed for high-distortion lenses typially modelthe radial and tangential distortion omponents with polynomial urve-�tting.Examples of suh methods are Shah and Aggarwal's [10℄ and Basu and Liardie's[3℄. Both of these methods alibrate the optial enter by using proedures thatare not elegantly integrated into the urve-�tting proedure whih reovers dis-tortion oeÆients. For instane, Basu and Liaride's method onsists of a mini-mization of vertial and horizontal alibration-line urvatures whereas Shah andAggarwal's requires the use of a low-power laser beam based on a partial ree-tion beam-alignment tehnique.Other, similar methods perform minimizations of funtionals representingmeasures of the auray of the image transformation with respet to alibra-tion parameters [6, 14℄. These methods rely on the point-symmetry of radialdistortion at the loation of the optial enter onto the image plane to reduethe dimensionality of the parameter spae [6℄ or to iteratively re�ne alibrationparameters initially obtained with a distortion-free pinhole amera model [14℄.In addition to these alibration tehniques, Miyamoto [5℄ de�ned mappingsrelating the world plane angle �1 to the image plane angle �2. One suh mappingis given by �2 = tan �1 (see Figure 1). Alternatively, Anderson et al. [1℄ de�ned asimilar mapping this time based on Snell's law of di�ration. Unfortunately, theauray of these models is limited to the neighborood of the optial enter [10℄.Basu and Liardie also proposed alternative models for �sh-eye lenses basedin log-polar transformations [3℄ but, in this ase, they demonstrate that thesmall number of alibration parameters does not permit to aurately model aspherial lens.2 Standard Proedure for Fish-Eye Lens CalibrationThe number of free intrinsi parameters for a typial high distortion lens is large,espeially when one onsiders soures or radial distortions, deentering and thinprism, manufaturing misalignments suh as tilt, yaw and roll angles of the CCDsensor array with respet to its ideal position, image enter versus optial enter,et. We enompass radial and tangential distortions in two polynomials for whihthe oeÆients are to be determined with respet to the soures of distortionemanating from the loation of the optial enter and the pith and yaw anglesof the CCD sensor. We proeed by desribing the least-squares method hosento perform the polynomial �ts for both radial and tangential distortions.
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Fig. 1. The image plane and world plane angles �1 and �2 are the angles formed bythe projetive rays between the image plane and the world plane, both orthogonal to theoptial axis.2.1 Radial and Tangential PolynomialsGiven a set of alibration points and their image loations, the equations de-sribing the transformation from �sh-eye to pinhole are�̂ij = LXk=0 ak�kij and r̂ij = LXk=0 bkrkij (4)where L is the order of the polynomials and �̂ij and r̂ij are the orreted polaroordinates of the alibration points. We use a alibration pattern for whihthe points align into horizontal, diagonal and vertial lines. These n2 alibrationpoints may be arranged in matrix form onsistent with their geometri loationon the alibration plane:26664P11 P12 : : : P1nP21 P22 : : : P2n...Pn1 Pn2 : : : Pnn37775 26664 p̂11 p̂12 : : : p̂1np̂21 p̂22 : : : p̂2n...p̂n1 p̂n2 : : : p̂nn37775 26664 p11 p12 : : : p1np21 p22 : : : p2n...pn1 pn2 : : : pnn37775 (5)where Pij = (Xij ; Yij ; Zij) are the 3D alibration points expressed in the oor-dinate system of the amera, p̂ij = (r̂ij ; �̂ij) are the 2D projetion of Pij ontothe pinhole amera and pij = (rij ; �ij) are projetion of Pij as imaged by thespherial lens.Various minimization methods may be applied to the polynomials in orderto determine their oeÆients. For instane, Lagrangian minimzation and least-squares have been used. For our purposes, we adopt a least-squares approah to
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Fig. 2. Radial and tangential distortions. The original point, expressed as (r; �) is theexpeted observation. The distorted point as observed, is expressed as (r + Ær; � + Æ�),where Ær and Æ� are the radial and tangential distortions, respetively.�nd the polynomial oeÆients and perform the orretion. This least-squares�t for the radial and tangential distortion polynomial an be expressed asnXi=1 nXj=1 �̂ij � LXk=0 ak�kij!2 and nXi=1 nXj=1 r̂ij � LXk=0 bkrkij!2 : (6)Deriving the polynomials with respet to oeÆients yields the following systemsof linear equations aT� = �ij�ij and bTRij = r̂ijrij (7)where a = (a0; : : : ; aL)Tb = (b0; : : : ; bL)Trij = (r0ij ; : : : ; rLij)T�ij = (�0ij ; : : : ; �Lij)TRij = rijrTij�ij = �ij�Tij :



We write the general least-squares system of equations in matrix form asnXi=1 nXj=1 LXk=0 bkrkijr0ij = nXi=1 nXj=1 r̂ijr0ijnXi=1 nXj=1 LXk=0 bkrkijr1ij = nXi=1 nXj=1 r̂ijr1ij... ...nXi=1 nXj=1 LXk=0 bkrkijrLij = nXi=1 nXj=1 r̂ijrLij (8)and nXi=1 nXj=1 LXk=0 ak�kij�0ij = nXi=1 nXj=1 �̂ij�0ijnXi=1 nXj=1 LXk=0 bk�kij�1ij = nXi=1 nXj=1 �̂ij�1ij... ...nXi=1 nXj=1 LXk=0 bkrkij�Lij = nXi=1 nXj=1 �̂ij�Lij (9)The least-squares matries may be written as
Ar = 0BBBBBBBBBB�

r011 � � � rL11r012 � � � rL12... ... ...r01n � � � rL1nr021 � � � rL2n... ... ...r0nn � � � rLnn
1CCCCCCCCCCA A� = 0BBBBBBBBBB�

�011 � � � �L11�012 � � � �L12... ... ...�01n � � � �L1n�021 � � � �L2n... ... ...�0nn � � � �Lnn
1CCCCCCCCCCA (10)

and we form the least-squares systems of equations as R�a = � and Rrb = r,where R� = AT�A�, Rr = ATrAr, r = ATr r, � = AT� � and� = 0BBB� �̂11�̂12...�̂nn1CCCA r = 0BBB� r̂11r̂12...r̂nn1CCCAThe oeÆients a and b are suh that they should minimze �2� = jA�a � �j2and �2r = jArb� rj2. We use Singular Value Deomposition (SVD) to perform



the least-squares �ts a = V�diag(W�)(UT� �) (11)b = Vrdiag(Wr)(UTr r) (12)where A� = U�W�VT� and Ar = UrWrVTr , and to ompute �2� and �2r. Weuse the notation a(x;xp), b(x;xp; �u; �v), �2�(x;xp) and �2r(x;xp; �u; �v) toindiate that the least-squares solutions for tangential distortion oeÆients aand the residual �2� depend on x, the loation of the optial enter with respetto the oordinate system in whih the �t is performed and xp, the translationparallel to the alibration surfae, and that the radial distortion oeÆients band the residual �2r depend on the optial enter x, the amera translation xpand �u and �v, the pith and yaw angles of the CCD sensor array with respet toa plane perpendiular to the optial axis. We further explain and experimentallydemonstrate these dependenies in setions 2.3 and 2.4.2.2 Polynomial OrderThe over�t of data, or polynomial orders that exeed the intrinsi order of thedata, onstitutes our primary motivation for using SVD in the least-squares so-lutions of the polynomial oeÆients. For instane, if any of the singular valuesis less than a tolerane level of 10�5, we set its reiproal to zero, rather than let-ting it go to some arbitrarily high value. We thus avoid over�ts of the alibrationdata when solving for a(x;xp) and b(x;xp; �u; �v) in (11) and (12). Beauseof this apability and onsidering that the omputational ost of alibration isusually not ritial when ompared with real-time vision omputations, we usepolynomials of order L = 12.2.3 The Optial CenterThe optial enter of a lens is de�ned as the point where the optial axis passingthrough the lens intersets the image plane of the amera. Alternatively, theoptial enter is the image point where no distortions appear, radial or tangen-tial. That is to say, where r̂ij = rij and �̂ij = �ij . In addition, radial distortionis point-symmetri at the optial enter and, onsequently, the one-dimensionalpolynomial in r is aurate only when aligned with the optial enter. Figure3 shows plots of (r̂ij ; rij) and (�̂ij ; �ij) at and away from the optial enter,in whih the point-sattering e�et beomes apparent as the ploynomial �t isgradually deentered from the optial enter. This e�et is reeted in the val-ues of �2r(x;xp; �u; �v) and �2�(x;xp) funtions around the optial enter, asillustrated by Figure 4.2.4 CCD Sensor Array MisalignmentsCCD sensor misalignments are due to imperfetions at the time of assembly.These imperfetions, however minute, introdue additional noise as some types
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Fig. 3. Plots of (r̂ij ; rij) and (�̂ij ; �ij). a) (top, from left to right): r̂ij and rijat the optial enter, (2:5; 2:5) and (5:0; 5:0) image units away from it. b) (bottom,from left to right): �̂ij and �ij at the optial enter, (25:0; 25:0) and (50:0; 50:0)image units away from it. The inreasing sattering of the plots as the distane fromthe optial enter inreases prevents aurate modelling of the lens. The e�et is mostapparent for the rij's, yet it is also observed with the �ij's.
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x yFig. 4. E�et of translation from the optial enter on �2r(x;xp; �u; �v) and �2�(x;xp).a) (left): Plot of the �2r(x� x;xp; �u; �v) funtion. b) (enter): Plot of the �2�(x�x;xp) funtion. ) (right): Plot of the �2r(x�x;xp; �u; �v)+�2�(x�x;xp) funtion.of misalignments inuene the value of the �2r(x;xp; �u; �v) funtion. We havestudied the e�et of suh misalignments by rotating the image plane of thesyntheti amera model about its origin. Figure 5 shows the �2r(x;xp; �u; �v)and �2�(x;xp) funtions for rotations �u, �v and �n about the u, v and n axes ofthe syntheti amera. The e�ets have been studied in isolation to one anotherand, in these experiments, the optial enter projeted onto the origin of thesyntheti amera.As expeted, rotations about the line of sight axis n have no e�et on the�2r(x;xp; �u; �v) funtion, as they do not break the point-symmetry of radialdistortion. However, rotations about the axes of the image plane u and v intro-



due errors reeted in �2r(x;xp; �u; �v) (see Figure 5a). As expeted, this typeof rotation breaks the point-symmetry of radial distortion.In all three types of rotations, the �2�(x;xp) funtion remains undisturbed,as shown in Figure 5b. Sine the position of the optial enter is not shifted bythe rotations, no violation of the line-symmetry of the tangential distortion isintrodued. If suh rotations were to be entered away from the image positionof the optial enter, then errors would be introdued beause of the breakingof the line-symmetry. This is also illustrated by Figure 6 where, for the threetypes of rotation, the plots of (�̂ij ; �ij) desribe a bijetion and do not indrodueapproximation errors in the �t, ontrary to the plots of (r̂ij ; rij) in Figure 3a.
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Fig. 5. E�et of CCD array rotation on �2r(x;xp; �u; �v) and �2�(x;xp) funtions. a)(top, from left to right): The �2r(x;xp; �u; �v) resudual funtion against rotationsaround the u, v and n axes. b) (bottom, from left to right): The �2�(x;xp) residualfuntion against rotations around the u, v and n axes.Another phenomenon a�eting the value of the residual is the alignment ofthe syntheti pinhole alibration dots with the spherial points as imaged by thelens. Given an ideal situation in whih the entral alibration point is imagedat the image enter and that this loation oinides with the optial enter,then the residual is at a minimum. However, any deviation from this situationsubstantially inreases the value of the residual, and for ertain is by no meansrelated to the alibration parameters of the amera. Additionally, we annotrequire that the entral alibration dot be imaged at the optial enter, sine itis one of the parameters to be estimated.In light of this, we also model translation of the amera parallel to the ali-bration plane as translation of the syntheti pinhole alibration points p̂ij . Con-



sequently, the alibrtation method must minimize the residual with respet tothe following parameters:{ x: The amount of translation of imaged spherial points pij , whih modelstranslation of the CCD sensor array in the (u;v) plane. In other words, xis the translation from the image enter to the optial enter.{ xp: The amount of translation of the syntheti pinhole alibration pointsp̂ij , whih models the translation of the amera in the (X,Y) plane, parallelto the alibration surfae.{ �u, �v: The pith and yaw angles of the CCD sensor array.
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Fig. 6. Plots of (�̂ij ; �ij) under rotations of 0.8 radians around a) (left): the u axis,b) (enter) the v axis and ) (right): the n axis.
3 Syntheti Camera ModelWe alibrate against a standard, syntheti pinhole amera desribed by lineartransformation matries ontaining the instrinsi parameters to be alibrated.The �rst transformation is from the world oordinate system to that of the syn-theti amera, expressed by the amera position r in world oordinates and or-thogonal unit vetors u = (ux; uy; uz)T , v = (vx; vy; vz)T and n = (nx; ny; nz)T .In addition, sine the vetor joining the image plane at the optial enter andthe foal point may not be perpendiular to the image plane, we model the foallength in the oordinate system of the amera as a vetor f = (fu; fv; fn)T . Thetranslation from optial enter to image enter x = (x; y)T and the salingfators sx and sy from syntheti amera image to real image also are parametersforming the syntheti amera model. Combining these into a homogeneous lineartransformation yields the matrix C:0BB� sxux � f�1n nx(fusx � x) syvx � f�1n nx(fvsy � y) nx �f�1n nxsxuy � f�1n ny(fusx � x) syvy � f�1n ny(fvsy � y) ny �f�1n nysxuz � f�1n nz(fusx � x) syvz � f�1n nz(fvsy � y) nz �f�1n nzsxr0x � f�1n r0z(fusx � x) + x syr0y � f�1n r0z(fvsy � y) + y r0z f�1n r0z + 11CCA



where r0x = �rTu, r0y = �rTv and r0z = �rTn. Planar points Pij are projetedonto the imaging plane of the pinhole amera as CTPij = p̂ij . To obtain thepoints pij as imaged by a hypothetial spherial lens, we use the �sh-eye trans-form due to Basu and Liardie to distort the p̂ij 's. The �sh-eye transformationis given by pij = s log(1 + �kp̂ijk2)�ij (13)where pij = (xij ; yij)T , p̂ij = (x̂ij ; ŷij)T , �ij = (os �; sin �)T , and � = tan�1 ŷijx̂ij .The symbols s and � are saling and radial distortion fators, respetively.4 Desription of AlgorithmAs a �rst step, we generate alibration points using the syntheti pinhole amera.The analyti alibration plane is onveniently loated in the (X;Y ) plane of theworld oordinate system and the line of sight of the pinhole amera oinideswith the Z axis.The syntheti image plane is at 340 mm from the alibration plane and thefoal length is set to 100 mm. The pinhole alibration points are then projetedonto the image plane of the syntheti amera as CTPij = p̂ij and kept in polaroordinates as (r̂ij ; �̂ij).Using the spherial amera, oriented perpendiularly from the real alibrationplane, a frame of the alibration points is grabbed. The lens of the spherialamera is at 280 mm from the alibration plane. Figure 7b and  show suhframes. We perform point detetion on this image by omputing the entroids ofthe alibration points and obtain spherial image points (rij ; �ij). Both sets ofpoints (r̂ij ; �̂ij) and (rij ; �ij) are saled to the anonial spae [(�1;��2 ); (1; �2 )℄where the minimization proedure is to begin.We use a gonjugate gradient minimization proedure due to Polak-Ribiere[8℄ whih we apply on the funtion �2 = �2r(x;xp; �u; �v) +�2�(x;xp). In orderto perform the minimization, the partial derivatives ��2�x , ��2�y , ��2�xp , ��2�yp , ��2��u and��2��v need to be evaluated for various values of (x;xp; �u; �v).To evaluate the partial derivatives with respet to x, we perform transla-tions of the deteted spherial alibration points pij = (rij ; �ij) onto the imageplane and perform least-squares �ts to obtain the �2 values then used for om-puting 5-point entral di�erenes. Evalutation of partial derivatives with respetto CCD array angles is more involved. The �rst step is to reprojet the pinholealibration points p̂ij bak onto the alibration plane using C�1, the inverseof the pinhole amera transformation. Rotations of these reprojeted points in3D and reprojetion onto the image plane of the pinhole amera provide the �2values for omputing 5-point entral di�erenes. The minimzation is performedwith the shifted and rotated alibration points and is guided by the 6D gradientvetor (��2�x ; ��2�y ; ��2�xp ; ��2�yp ; ��2��u ; ��2��v ). The output of the algorithm is the optialenter x, represented as the shift from the image enter, the amera translationxp parallel to the alibration surfae with respet to the entral alibration point,



the CCD sensor array pith and yaw angles �u and �v and the polynomials in rand � for image transformation from spherial to pinhole. In essene, the proe-dure is to �nd the parameter values that best explain the deteted alibrationpoints as imaged by the spherial lens.5 Numerial ResultsWe study the onvergene rate of the alibration proedure, its resistane to in-put noise and the results obtained with the alibration images of Figure 7b and, orresponding to spherial ameras A and B, respetively. Figure 7a shows atypial frame taken by a spherial amera, while 7b and  show frames of thealibration plane grabbed with our spherial ameras A and B. The alibrationplane has a width and height of 8 feet and the 529 alibration dots are spaed by4 inhes both horizontally and vertially. In order to apture the alibration im-ages, the spherial ameras are mounted on a tripod and approximately alignedwith the entral alibration dot. The sperial lenses are at a distane of 280 mmfrom the alibration plane.The onvergene and noise resistane study is performed with a simulatedspherial lens. We use equation (13) in order to ompute the spherial pointspij from the syntheti pinhole alibration dots p̂ij . To model CCD sensor arraymisalignments, we perform 3D rotations of the syntheti pinhole amera andreprojet the syntheti alibration points onto the so rotated image plane prior tousing (13). In addition, we translate the spherial alibration points pij to modelthe distane of the optial enter from the enter of the image and also translatethe syntheti pinhole alibration points p̂ij to model the amera translationparallel to the alibration surfae.Input noise is introdued in eah syntheti pinhole alibration dot pij asGaussian noise with standard deviations �x and �y expressed in image units(pixels). This step is performed before using (13) and models only the positionalinauray of alibration dots. We proeed to evaluate the performane of thealibration proedure with respet to onvergene rates and input noise levelswith a simulated spherial lens and present experiments on real spherial ameraimages (our spherial ameras A and B) for whih we have omputed theiralibration parameters.5.1 Convergene AnalysisIn order to study the onvergene rate of the alibration method, we monitoredthe values of the error funtion �2 with respet to the number of iterationsperformed in the 6D minimization proedure using the Polak-Ribiere onju-gate gradient tehnique. Figure 8 reports three experiments performed withvarious alibration parameters. The start of the 6D searh always begins at(x;xp; �u; �v) = 0 and, as expeted, the number of required iterations to on-verge to the solution is proportional to the distane of the alibration parametersto the initial searh values. We used a tolerane of 1� 10�8 on onvergene and



Fig. 7. a) (left): A typial image from a spherial lens amera. b) (enter): Imageof the alibration plane grabbed with spherial amera A. ) (right): Image of thealibration plane grabbed with spherial amera B.we omputed the various derivatives of the error funtion �2 with 5-point dif-ferenes with intervals of 0.2 image units for translation and intervals of 0.0002radians for rotations.As �gure 8 demonstrates, onvergene rates are steep and, in general, 40 iter-ations are suÆient to obtain adequate alibration parameters. Figure 8a showsthe onvegene for alibration parameters (x;xp; �u; �v) = (5:0; 5:0;�0:1; 0:01);Figure 8b) shows the onvergene for alibration parameters (15:0;�5:0; 0:0; 0:2)and Figure 8, for (15:0;�15:0;�0:1; 0:2).
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Fig. 8. Convergene analysis of �2 for various on�gurations of alibration parameters(x;xp; �u; �v). a) (left): (5:0; 5:0;�0:1; 0:01). b) (enter): (15:0;�5:0; 0:0; 0:2). )(right): (15:0;�15:0;�0:1; 0:2).
5.2 Noise Robustness AnalysisIn order to determine the robustness of the proedure with respet to inputnoise, we introdued various levels of Gaussian noise into the syntheti pin-hole alibration dots. We used zero-mean Gaussian noise levels of k(�x; �y)k2 =0; 1:4142; 2:8284; 4:2426; 5:6569 and 7:0711, expressed in image units. The e�ets



of noise onto the alibration parameters x, xp, �u and �v and the the values ofthe residual �2 are depited by the graphs of Figure 9, whih show these valuesfor the noise levels we hose. As an be observed, the ground truth alibrationparameters (x;xp; �u; �v) = 0 show a linear behavior to input noise whereasthe residual shows a quadrati growth with respet to input noise.
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Fig. 9. The e�et of input zero-mean Gaussian noise on the alibration parametersand the residual �2. a) (left): The behavior of kxk2 with respet to input noise levelsk(�x; �y)k2. b) (enter): The behavior of k(�u; �v)k2 and ) (right): the behavior of�2.
5.3 Calibration of Spherial ImagesWe have applied our alibration proedure to both of our spherial ameras anddetermined their alibration parameters. Tables 1 and 2 show the parametersobtained from spherial ameras A and B, respetively. Figure 10 and 11 showthe syntheti pinhole alibration points, the spherial points deteted from al-ibration images 7b and , and the polynomial reonstrution of those detetedpoints with the alibration oeÆients ai and bi.As �gure 10 demonstrates, our spherial amera A has a serious assemblymisalignment. The yaw angle is in exess of 0.16 radians. However, spherialamera B does not show suh misalignments and Figure 11 shows a quasi fronto-parallel polynomial reonstrution of the deteted spherial alibration points.In the ase of amera A, the misalignment of the CCD array is visible by arefulvisual examination of the devie.5.4 Removing Distortion in Spherial ImagesThe transformation polynomials �̂ij and r̂ij represent a mapping from spheri-al to perspetive image loations. However, to ompensate for distortion, theinverse transformation is required and, in general, the inverse of a polynomialfuntion annot be found analytially. In light of this, we use the alibrationparameters obtained during the modelling phase to:



Calibration Parameters for Spherial Camera ATangential Distortion CoeÆients aia1 a2 a3 a4 a5 a6-0.0039 3.3274 -0.0216 -0.1836 0.0166 -1.3416a7 a8 a9 a10 a11 a12-0.1516 0.6853 0.2253 -0.3347 -0.0879 -0.0092Radial Distortion CoeÆients bib1 b2 b3 b4 b5 b6199.6790 -2634.8104 13799.4582 -26999.8134 8895.5168 23348.2599b7 b8 b9 b10 b11 b124858.0468 -17647.3126 -24277.7749 -12166.4282 12108.0938 40070.6891Singular Values !i for �2�!1 !2 !3 !4 !5 !623.0001 16.2318 9.6423 5.4287 2.6397 1.3043!7 !8 !9 !10 !11 !120.5012 0.2400 0.0736 0.0325 0.0068 0.0028Singular Values !i for �2r!1 !2 !3 !4 !5 !6525.1062 50.7337 22.1506 7.6035 2.3874 0.6154!7 !8 !9 !10 !11 !120.1383 0.0260 0.0 0.0 0.0 0.0x y �u �v �2-0.0753 -3.2792 -0.0314 -0.1722 0.0543Table 1. The alibration parameters for spherial amera A.
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Fig. 10. Calibration experiment with spherial amera A. a) (left): The pinhole ali-bration points, as imaged by the syntheti amera. b) (enter): The spherial points asdeteted from image in Figure 7b. ) (right): The polynomial reonstrution obtainedfor this set of alibration points.



Calibration Parameters for Spherial Camera BTangential Distortion CoeÆients aia1 a2 a3 a4 a5 a6-0.0097 3.1918 -0.0053 -0.2562 0.0658 0.1847a7 a8 a9 a10 a11 a12-0.1615 0.4940 0.1577 -0.8093 -0.0553 0.3371Radial Distortion CoeÆients bib1 b2 b3 b4 b5 b6-30.4219 458.6032 -1240.1970 1394.3862 1003.5856 -610.6167b7 b8 b9 b10 b11 b12-1433.4416 -1063.6945 54.0374 1359.5348 2472.7284 3225.6347Singular Values !i for �2�!1 !2 !3 !4 !5 !623.6078 17.0001 9.9003 5.6505 2.7189 1.3567!7 !8 !9 !10 !11 !120.5264 0.2489 0.0770 0.0336 0.0071 0.0030Singular Values !i for �2r!1 !2 !3 !4 !5 !629.7794 10.8641 3.6978 1.0619 0.2580 0.0536!7 !8 !9 !10 !11 !120.0095 0.0014 0.0 0.0 0.0 0.0x y �u �v �20.0118 -0.8273 0.0091 0.0031 0.1188Table 2. The alibration parameters for spherial amera B.
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Fig. 11. Calibration experiment with spherial amera B. a) (left): The pinhole ali-bration points, as imaged by the syntheti amera. b) (enter): The spherial points asdeteted from image in Figure 7. ) (right): The polynomial reonstrution obtainedfor this set of alibration points.



1. shift and rotate the planar image points to onstrut by xp, �u and �vrespetively;2. shift the deteted spherial points by �x;and ompute the polynomial oeÆients of the inverse transformation as�ij = LXk=0 ak �̂0ij and rij = LXk=0 bk r̂0ij (14)using a proedure idential to solving (4). The polynomials in (14) are thepseudo-inverses of (4) and are used to remove radial and tangential distortionsfrom spherial images. Figures 12 and 13 show the distortion removal on the al-ibration images and on a typial stereo pair aquired with the spherial ameras.A lookup table without interpolation (linear or other) was used to implementthe transformation.5.5 Image Proessing IssuesRemoving distortions from spherial images is not as important as the trans-formation of image proessing results into a perspetive spae. The advantagesof suh approahes are many. For instane, the ostly transformation of om-plete image sequenes is avoided; image proessing algorithms diretly appliedto spherial images do not su�er from the noise introdued with the distortionremoval proess, and the results of image proessing algorithms are generallymore ompat with respet to the original signal and hene faster to transformto a perspetive spae.6 ConlusionSpherial ameras are variable-resolution imaging systems that have been reog-nized as promising devies for autonomous navigation purposes, mainly beauseof their wide viewing angle whih inreases the apabilities of vision-based ob-stale avoidane shemes. In addition, spherial lenses resemble the primate eyein their projetive models and are biologially relevant. We presented a novelmethod for spherial-lens amera alibration whih models the lens radial andtangential distortions and determines the optial enter and the angular devia-tions of the CCD sensor array within a uni�ed numerial proedure. Contraryto other methods, there is no need for speial equipment suh as low-power laserbeams or non-standard numerial proedures for �nding the optial enter. Nu-merial experiments and robustness analyses are presented and the results haveshown adequate onvergene rates and resistane to input noise. The method wassuessfully applied to our pair of spherial ameras and allowed us to diagnosea severe CCD array misalignment of amera A.



Fig. 12.Disrtortion removal from alibration images. (left): Camera A. (right): Cam-era B.



Fig. 13. Disrtortion removal from typial images. (left): Camera A. (right): CameraB.



A Point Detetion AlgorithmWe use a alibration plane with a grid of n� n points (where n is odd) for thealibration proess. Using a spherial amera perpendiular to the alibrationplane, frames of the alibration points are aquired. In this setion we desribethe algorithm used to detet the alibration points on this spherial image.The grid points are numbered aording to their position in the image planeoordinate system. The entral point is p00, the points on the x-axis are de�nedfrom left to right by fpi0g where �m � i � m, m = n�12 and the points of they-axis from bottom to top by fp0jg, �m � j � m. pij is the point that lies inthe jth row and the ith olumn of the grid, relative to the origin. The value of pijis a 2D vetor of its entroid position or fail for a point that was not deteted.An iterative algorithm is used to detet the grid points. In the �rst iteration(k = 0) the point at the enter of the grid, p00, is deteted. In the kth iteration,1 � k � 2m, all the points pij suh that jij+ jjj = k are found. The �rst step indeteting any grid point is de�ning an image pixel from whih the searh for thispoint is to begin. The initial pixel is used as an input to the detet proedurewhih outputs the entroid of the requested grid point, or fail if the point is notfound.The initial pixel for searhing the entral point is the pixel at the enter ofthe image. For any other point, the positions of neighboring grid points that weredeteted in earlier iterations are used to de�ne the initial pixel. When detetinga grid point pi0 on the x-axis, the initial pixel depends on the loation of pi00whih is the point next to pi0 and loser to the enter. The initial pixel in thisase is alulated by adding to pi00 a vetor i0 with magnitude equal to thewidth of the grid point pi00 direted from the enter towards pi00. The initialpixel used for deteting points on the y-axis is alulated in a similar way. Whendeteting the point pij in iteration k, the points pi0j0 , pij0 and pi0j are alreadydeteted in iterations k� 1 and k� 2. We start the searh for pij from the pixelde�ned by pij0 + pi0j � pi0j0 (see �gure 14).
pi0
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i’j’p
pij’
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ci’
pijFig. 14. a) (left): Finding point pi0 based on pi00. b) (right): Finding point pij basedon Pi0j0 , pij0 and pi0j . The gray retangle marks the initial pixel.



p00  detet(0; 0)for k = 1 to 2mfor eah pij suh that jij+ jjj = k doi0 = sign(i) � (jij � 1)j0 = sign(j) � (jjj � 1)if i = 0 thenif pi00 6= fail thenpi0  detet(pi00 + i0)else pi0  failelse if j = 0 thenif p0j0 6= fail thenp0j  detet(p0j0 + j0)else p0j  failelse if pij0 ;pi0j ;pi0j0 6= fail thenpij  detet(pij0 + pi0j � pi0j0)else pij  failFig. 15. Algorithm for deteting grid points on a spherial image.The detet proedure uses a threshold mehanism to separate the pixels thatare within the grid points from the bakground pixels. Sine the image ontainsareas with di�erent illumination levels, we use multi-level thresholding to detetthe points in all areas of the image.We de�ne an initial threshold level as the minimum gray level suh that atleast 4% of the image pixels are below the threshold. The detet proedure�nds a pixel losest to the input pixel with a gray level that is lower than thede�ned threshold. It assumes that this pixel is ontained within the grid point.If no suh pixel is found, the threshold is inreased and the searh is repeateduntil suh pixel is found or until the threshold gets the maximum gray value(white). In the later ase the proedure returns fail. If a pixel with a low graylevel is found, all the neighboring pixels with gray levels that are lower than thethreshold are grouped to form a grid point. The smallest retangle that boundsthe grid point is found. The enter of the grid point is the mean of the pixelsontained in the bounding retangle alulated in the following way: let R bethe bounding retangle, where R = f(x; y)jx1 � x � x2 and y1 � y � y2g, thenthe mean over the pixels in R is:Mx(R) = Px2x=x1Py2y=y1 x(C�I(x;y))Px2x=x1Py2y=y1 C�I(x;y) My(R) = Px2x=x1Py2y=y1 y(C�I(x;y))Px2x=x1Py2y=y1 C�I(x;y) (15)where I(x; y) is the gray level of the pixel (x; y) and C is the maximum grayvalue.If the bounding retangle ontains more than just the grid point, whih mightbe the ase with a high threshold the proedure returns fail.
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