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Abstract In this paper, we introduce a computer vision
system specially designed for the analysis and interpreta-
tion of the cephalo-ocular behavior of drivers. The system is
composed of both hardware and software components and
is described in three steps. The first step is devoted to the
description of the driving simulator and the developed soft-
ware. The second step deals with the identification of the
driver’s visual search actions using computer vision. The lat-
ter are related to specific driving events such as blind spot
checking and rear-view/lateral mirror verification. Based on
the simulator’s open module, the third step is concerned with
the identification of car/road events (overtaking, crossing an
intersection) and the mapping of these events with the driver’s
behavior. The proposed system will be used by a kinesiology
research group for the evaluation and improvement of driver
performances in a safe environment (driving simulator).
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In addition to the controlled environment, a modified ver-
sion of the system also deals with real driving contexts (i.e.
driving in a real car). Experimental results confirm both the
robustness and the effectiveness of the proposed cephalo-
ocular analysis framework.
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1 Introduction

During the last decades, computer vision has been used
to solve a wide variety of problems in several application
domains, such as visual surveillance, industrial inspection,
process control and medical applications. In our context, we
call upon computer vision techniques to study the cephalo-
ocular behavior of drivers. Driving is a very important activ-
ity for a large portion of the population, especially among
the elderly. Epidemiological studies show that this category
of drivers may sometimes adopt an unsafe driving behavior.
This is due to the difficulties experienced by those drivers
in demanding driving situations such as overtaking, chang-
ing lanes, crossing an intersection, etc. Such driving contexts
involve complex cephalo-ocular behaviors and visual search
actions, such as those related to blind spot checking and rear-
view/lateral mirror verification. Evaluation and improvement
of the driver performance in a safe environment (driving sim-
ulator) are of great importance for road safety. The main
objective of our work is the elaboration of a new computer
vision system for evaluating and improving driving skills of
older drivers (age between 65 and 80 years). Although the
system is currently used with older drivers, it generalizes to
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other categories of drivers as well. This system implies the
analysis and treatment of cephalo-ocular behavior and visual
search actions of older drivers in a simulated driving con-
text. More specifically, we focus on the visual search actions
related to the verification of the blind spot when overtak-
ing and changing lanes. Experiments run in our laboratory
have shown that 80% of older drivers do not check the blind
spots in these contexts. Thus, by providing a new system
allowing the objective detection of driving errors in a safe
environment (simulator), it is expected that retraining driv-
ers will lead to safer driving in the long term and that training
received in the simulator will transfer to on-road safer driv-
ing. In the literature, relatively few research work deal with
this topic. Murphy-Chutorian and Trivedi [17] introduced a
new method for static head-pose estimation and a new algo-
rithm for visual 3-D tracking. These methods are integrated
into a real-time system for measuring the position and orien-
tation of a driver’s head. Trivedi and Gandhi [29] introduced a
computer-vision based system devoted for the elaboration of
safer automobiles. The proposed system includes three main
components, namely the environment, vehicle, and driver.
For the analysis of driver’s behavior, the authors proposed
a new algorithm devoted to the driver’s view generation.
This algorithm is based on the estimation of head-pose that
uses the principal component analysis (PCA) for template
matching. In [34], Wu and Trivedi presented an integrated
approach for robustly locating facial landmark for drivers.
An AdaBoost-based cascade of probability learners is used to
detect the face edge primitives. The facial landmark detection
approach is applied on the segmented faces. Murphy-Chuto-
rian et al. [27] introduced a new identity and lighting invariant
system designed for the estimation of a driver’s head pose.
The proposed system is valid for both daytime and nighttime
driving conditions. FaceLAB [http://www.seeingmachines.
com/product/facelab/] developped by Seeing Machines Inc.
is an industrial software designed for face and eye tracking.
FaceLAB allows the study of human behavior in a wide range
of operational conditions and research settings. Our system
is presented in three steps. The first one is devoted to the
description of the driving simulator and the software com-
ponents that were developed for supporting driver behavior
analysis. The second one is concerned with the identification
of the most important visual search actions of drivers. Based
on the simulator’s open module which provides access to all
scenario events and car parameters, the last step deals with
the identification of the car/road events and with the estab-
lished mapping between the identified visual search actions
and driving events. This mapping enables the analysis and
interpretation of the cephalo-ocular behavior and the visual
search actions of drivers and the assessment of whether or
not this behavior is adapted to the driving context.

In Sect. 2 we describe the driving simulator (cf. Fig. 1) and
its software components (cf. Fig. 3 ). Section 3 is devoted

to the identification of the driver’s visual search actions.
The mapping between these actions and the identified driv-
ing events in the simulator is detailed in Sect. 4. Note that
images and videos used in this paper can be both in color and
in gray-level format.

2 The driving simulator

2.1 The hardware components

The driving simulator uses a real car from which the cock-
pit was kept including a steering wheel, a driver seat, rear
view mirrors, brake and accelerator-pedals, speedometer and
flashers (cf. Fig. 1). The car roof is removed, allowing a good
aeration of the zone surrounding the driver order to avoid
simulator sickness that may sometimes affect some drivers
[26]. A screen on which the driving scenario is projected
is installed in front of the driver and gives a good level of
immersion. The driving cockpit is modified in such a way
that realistic driving conditions are provided to the driver.
The car velocity is indicated by the speedometer which is
situated on the car dashboard as in a real driving context.
The simulator software is provided by STISIM [http://www.
systemstech.com/]. We have access to the simulator open
module that allows us to have access to all events during the
driving process. Driving scenarios are built in such a manner
that the majority of driving situations faced by elderly driv-
ers are considered. The acquisition of images of the driver
is achieved using three cameras (cf. Fig. 2). These cameras
are positioned in such a way as to observe the driver’s head
motion. A fourth camera records the scenario as it evolves on
the screen and allows a visual mapping between the driving
environment and the driver behavior. The four cameras are
synchronized at a frame rate of 30 images per second. Since
the cameras must observe the driver in low-light conditions
(due to the constraint that driver immersion in the simula-
tor must be kept at a maximum) they have good sensitivity
in the “visible” infrared part of the spectrum. As we will

Fig. 1 The driving simulator
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Fig. 2 Positions of the three cameras in red and infrared spots

see in the next sections, the central camera is very important
since it covers the whole face of the driver in normal driv-
ing conditions (i.e. driving forward in a lane). The driver’s
face is illuminated using infrared lighting that provides good

ambient illumination, avoids blinding effects, and does not
affect immersion in the simulator.

2.2 The software components

The software developed for implementing the system allows
the acquisition, processing and display of data in real-time
as well as in playback mode. Without going through all the
options, the interface is as simple as a standard video recorder
(cf. Fig. 3). The main screen can display the cameras’ video
sequences or videos resulting from the application of pro-
cessing modules in up to four areas of the interface window.
Each processing module can also provide its own settings or
display windows that can be opened separately to provide
specific information on the ongoing experiment.

The software accepts the signal from the camera record-
ing the scene, the three cameras recording the driver’s head
motion and is also interfaced to the driving simulator via
a TCP/IP connection. The simulator open module has been
developed specifically to act as a TCP/ IP server for the sim-
ulator’s client communication modules, the “Data Compiler”
module in our case (cf. Fig. 4). The client module connects
to the open module and extracts from it relevant information
on the car status (speed, position on the road, 3D position on
the scene, etc.) and the scenario events (speed limits, signals

Fig. 3 Software interface
(main screen)
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Fig. 4 Overall view of the
computer vision system (CVS)
connected to the STISIM drive
(driving simulator)

or traffic lights, pedestrians, other vehicles, etc.) in synchro-
nization with the video input captured by the four cameras.
For each video frame, these data are stored (for future play-
back) and distributed sequentially to the processing software
modules.

At the beginning of the processing chain, the “Head
Motion” module uses the video sequences to identify the
driver’s visual search actions. At the end of the chain, the
“Driver Behavior” module correlates the data generated by
the previous modules to determine if the driver acts correctly
during manoeuvers (for instance, did the driver check the
blind spot before a lane change?). Finally, the module adds a
bookmark to the interface for each important action detected
to help driving monitors during driver training/re-training
sessions following the experiment in the simulator.

3 Identification of visual search actions

The identification of the driver’s visual search actions is
achieved according to the following steps. We first start by
detecting the most important facial features, namely the nose
tip and the eyes. To achieve this detection, we introduce a new
algorithm for eye detection and we call upon the cascade of
boosted classifiers technique based on Haar-like features for
detecting the nose tip. The next step consists in the tracking
of these facial features using the pyramidal Lucas–Kanade
method [13]. Finally, the identification of the visual search
actions is based on the coordinates of facial features resulting

from the detection and tracking steps. Note that these visual
search actions are related to specific events such as the veri-
fication of blind spot and rear/lateral view mirror checking.

3.1 Detection of facial features

In pattern recognition, an important research field is con-
cerned with the detection and localization of objects and
patterns. In the literature, different techniques have been
proposed including sliding window classifiers, pictorial
structures [5], constellation models [6] and implicit shape
models [12]. The sliding window classifiers [18,21,27,28,
32,33] are based on the following approach: a sliding window
is matched with image parts at different positions and scales.
Each mapping reveals whether the sliding window contains
the requested object or the background. This approach has
been mainly used to detect rigid objects such as faces and
cars [9,18,21,33]. Another use of this approach is to detect
only parts of the object instead of the object as a whole
[14,15]. Those detected parts need to be assembled to recog-
nize the full object. Another set of approaches [2,7] is based
on region mapping around extracted local interest points from
the image, rather than performing operations on the whole
image.

3.1.1 Eye detection

In what follows, we introduce a new method for eye detec-
tion. The main goal is to identify the two pupils of a person.
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The proposed method is based on a priori knowledge of eye
geometry, on the position of the eyes in the face and on their
relative position (angle, distance, shape, etc). Note that the
relative position is calculated empirically knowing that the
distance separating drivers from cameras is relatively con-
stant for all drivers. Additionally, using the method of Viola
and Jones [33], we identify a priori the region of interest
(ROI) of the eyes in the face. First, the method described in
[33] is applied for face detetction. Second, based on the a
priori knowledge of the face geometry, we identify the ROI
of the eyes using the identified face’s contour. The recogni-
tion of the two pupils reduces to the identification of a pair of
blobs (connected set of pixels) with relatively round shapes
and reasonable sizes. The proposed method is composed of
the following steps:

Extraction of the blobs Blob extraction as shown in Fig. 7c
is achieved according to the two following steps: first,
a binarization process is applied to the eyes ROI followed by
the application of a closing operator (dilatation and erosion).
Second, an algorithm for connected components extraction
is applied to obtain blobs. This algorithm finds 8-connected
pixels belonging to a region in the input image. The OpenCV
algorithm “cvBlobsLib” is used for this purpose. The result-
ing blobs are characterized by different sizes and shapes and
only two of them correspond to the eyes. In what follows, a
series of tests is applied to identify the pair of blobs corre-
sponding to the eyes.

Subdivision of highly non-convex blobs The saturation pro-
cess can generate highly non-convex blobs that may contain
the requested blobs (i.e. the pupils). Note that in Euclidean
space, an object is convex if for every pair of points within
the object, every point on the straight line segment that joins
them is also within the object. In vector space, a set S is said
to be convex if, for all x and y in S and all t in the interval
[0, 1], the point (1 − t)x + t y is in S. In other words, every
point on the line segment connecting x and y is in S. Thus for
a non-convex object, the above-mentioned property is vio-
lated. For example, if we apply the saturation process to an
image of a driver wearing eyeglasses, the eye can merge with
a part of the glasses (cf. Fig. 5). The shape of the blob con-
taining the eye is thus highly non-convex and differs from the
requested shape (eye geometry). One possible solution to this
problematic situation is to subdivide the highly non-convex
blob (cf. Fig. 6a) into several convex blobs (cf. Fig. 6b). To
this end, we introduce the following algorithm:

− Calculation of the convex hull encompassing the con-
sidered blob using the algorithm proposed by Sklansky
[25].

− Calculation of the difference between the convex hull
of the blob and the blob itself. The OpenCV algorithm
“CvConvexityDefect” used here returns the start and

Fig. 5 Example of non-convex blob

Fig. 6 The principle of blob separation

end points of the non-convexity, the coordinates of the
deepest point on the contour and the depth of each non-
convexity.

− Filtering: we only consider the strong non-convexities,
i.e. a depth of the order of several pixels. Thus, for non-
convex regions whose depth is greater than n pixels, the
blob is separated into two parts.

− Calculation of the line separating the blob: the latter con-
nects the deepest point with the midpoint between the
extremity points (cf. Fig. 6a).

− Subdivision of the blob: the elements of the blobs on
both sides of the line are grouped into two new blobs (cf.
Fig. 6b).

Selection of blobs Once the blobs are detected and divided
whenever necessary, a first filter is applied to eliminate those
blobs whose features are not compatible with the typical
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Fig. 7 Steps of the eye
detection algorithm. a the region
of interest, b after saturation of
the image, c after closure,
d after selection by size of blobs,
e after selection by shape of
blobs, f fitting circles on blobs,
g fitting on the image of ROI and
selection according to the radius
of the fitted circle, h comparison
between the area of the circles
and the intersection of circle and
blob, i final selection

shape of an eye. The selection criteria are very simple, but
are discriminating enough to enable the identification of the
requested blobs:

− The number of pixels must be within an acceptable range.
Thus, a blob made up of less than 5 pixels is considered
too small, but a blob with more than 200 pixels is too big
(cf. Fig. 7d).

− Dimensions The width and height of the rectangle
enclosing the blob are calculated (cf. Fig. 7e). The ratio
width/height can reveal the shape of the blob. Each
blob elongated in the vertical direction is eliminated
(width/height « 1).

− The shape a circle Cfit is adjusted by a least squares
method [8] to each of the blobs satisfying the previous
tests (cf. Fig. 7f). The least squares method computes
the circle for which the sum of the squares of the dis-
tances to the given points is minimum. Circles are rep-
resented algebraically i.e. by an implicit equation of the
form F(x) = 0. If a point is on the curve then its coor-
dinates x are zero of the function F .
A first discrimination of the blobs is made according to
the value of the radius of the circle.
A second discrimination is based on the ratio RA between
the area covering the intersection between the blob and
the circle and the area of the circle itself. This ratio

reveals whether or not the blob is circular and is well
registered in the best circle Cfit (cf. Fig. 7g).

RA = Ablob
⋂

Acircle

Acircle
, (1)

where Ablob and Acircle are respectively the area of the
blob and the area of the circle in pixels.

The blobs that survived the above-mentioned criteria, are
rated on a scale ranging from 0 to 1. To this end, a weighting
approach based on the Standard Gaussian (SG) distribution
is used to associate a weight with each blob, according to its
characteristics that are compared to an ideal case. A weight
of 1 corresponds to a blob corresponding to the ideal case.

SG(x) = exp

(

− (x − µ)2

2σ 2

)

, (2)

with µ the mean, σ the standard deviation and x the possible
values taken by the ratio RA.

Parameter µ represents the reference value, i.e. the value
corresponding to an ideal ratio. It would be 1 if we consider
that the pupil is perfectly circular regardless of the view-
points. In this case, the Gaussian is centered around 1. Param-
eter σ is set empirically and corresponds to the tolerance
threshold on the ratio in (1). The distance between RA and µ

allows the selection of the weight for a blob according to (2).
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Finally, each blob is assigned a weight associated with
ratio RA, to the radius of the circle Cfit and to the ratio
width/height. The final weight of the blob is given by the
average value of these three weights.
Selection per pairs of blobs At this step of the process, we
selected the blobs that have a high probability of correspond-
ing to the eyes. In what follows, blobs are not processed indi-
vidually but in pairs. We identify the pairs of blobs that are
arranged such as to correspond to both eyes. In our context
(Driving simulator), the distance between the driver and the
camera is roughly constant over time. Additionally, since the
human morphology is relatively constant, we assume that the
gap between the eyes varies slightly from one individual to
another. Note that the default value of the gap is set to 80
pixels. These two assumptions are exploited thereafter and
make it possible to effectively discriminate the blobs that can
correspond to pairs of eyes.

We start by constructing, all possible combinations C of
two blobs out of the group of n blobs that have passed the
previous processing steps. Recall that

C = k=2
C
n

= n!
k!(n − k)! . (3)

Once all possible pairs are built, the next step consists in
calculating the Euclidean distance dpair (4) between the blob
centers of each pair, as well as the angle αpair (4) between the
line connecting the centers of the two blobs of the considered
pair and the horizontal of the image. These criteria allow a
discrimination between more pairs of blobs.

dpair =
√

(x2 − x1)2 + (y2 − y1)2,

αpair = arctan

(
y2 − y1

x2 − x1

)

, (4)

with (x1, y1) and (x2, y2) the image coordinates of the blob
centers. Note that we just keep the pairs of blobs for which
dpair ∈ [60..100] and αpair <25◦.

For the remaining pairs, a weighting mechanism similar
to the one used for the individual processing of the blobs is
applied to compare the probability that a pair corresponds
to the eyes. This weighting mechanism combines the infor-
mation on both the pairs of blobs and the blobs themselves.
Thus, if two pairs have similar values for dpair and αpair, the
values characterizing the blobs will make the difference in
the detection of the pair of blobs corresponding to the eyes.
If by this process the weights assigned to each pair do not
allow the selection of the requested pair of blobs, the final
selection is reported to the matching step.

Experimental results of the above-mentioned approach are
given in Fig. 8. Experiments conducted on many subjects
have demonstrated that the above approach is reliable for
finding the eyes and is also robust to variations of the position

Fig. 8 Experimental results of the eye detection step

of the head in the image and also applies to subjects wearing
glasses.

3.1.2 Nose detection

For nose detection we call upon the cascade of boosted clas-
sifiers based on Haar-like features. This machine learning
approach for rapid object detection was first introduced by
Viola and Jones [31] and then extended by Lienhart and
Maydt [11] using a new set of rotated Haar-like features.
Detection is achieved according to the following steps. First
an AdaBoost-based classifier is trained from a set of positive
and negative examples. Positive examples are target images
and negative examples are arbitrary images not including the
target (in this case the nose). Once the classifier is trained,
the next step consists in target detection. For achieving this,
a sliding window is applied at different positions in the
requested image. For each position, the classifier decides
whether or not the target is present in the window. Finally,
the method returns the regions likely to contain the target.
Further details about classifier-based detection can be found
in [11,18,31,33]. In our case, the classifier was trained from
a set of 500 images from which a set of 2,500 positive and
2,500 negative examples were constructed (cf. Figs. 9, 10).
Positive examples are images of different noses extracted
manually from our image database. Negative examples are
images of different parts of the face not including the nose.
Experimental results of nose detection are given in Fig. 11.
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Fig. 9 A sample of positive examples for training the classifier for
nose detection

Fig. 10 A sample of negative examples for training the classifier for
nose detection

In Fig. 11, results reveal that the detection of the nose tip is
achieved successfully regardless of face orientation and skin
color.

Note that the approach used for nose tip detection can
be adapted to eye detection as well. This is achieved by the
use of a new learning set based on eye models. Note that
we use the learning set provided by the OpenCV library.
In Fig. 12, we show the experimental results obtained with
the joint detection of both eyes and nose tip using boosted
classifiers. However, the eye detection method described in
Sect. 3.1.1 is more accurate since it allows the detection of the
pupils instead of the “average” region of each eye detected by
the boosted classifiers. Notice that both nose and eye detec-
tion rate is almost equal to 100%.

Fig. 11 Nose tip detection results

3.2 Tracking of facial features

Once the facial features (nose tip and eyes) are detected
correctly in one image, the next step consists in tracking
these features in video sequences. Object tracking is an
important research field in the domain of computer vision.
In the literature, three main families of approaches for
object tracking can be found. The first one is point-based
tracking [19,23,30]: at each frame, the requested objects
are detected and represented by points. The correspon-
dence of points is achieved according to the previous state
(position and motion) of the object. The second one is ker-
nel-based tracking [4,13,22,24]: the requested object is mod-
eled as a geometric template (triangle, rectangle, ellipse,
etc). Object tracking is achieved by calculating the ker-
nel motion across the frames. This motion is often mod-
eled as a parametric transformation such as an affine or a
similarity transformation (translation, scale, rotation). The
third approach is silhouette-based tracking [1,10,20] for
which tracking is achieved by estimating the object region
across the frames. The information encoded inside the object
region is used to model the object. Tracking is performed by
matching the silhouettes and object models from frame to
frame.
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Fig. 12 Joint detection of the eyes and the nose tip

Following an overview of the literature, we opted for the
Lucas–Kanade (LK) method [13] which is one of the most
reliable tracking methods. More specifically, we used the
pyramidal implementation of this method [3]. A summary of
the problem statement of the LK method is described in the
following.
Brief summary of the LK method The LK algorithm is a two-
frame differential method for optical-flow based motion esti-
mation. This method is based on the assumption that the
optical flow is constant at the local neighborhood of the con-
sidered pixel. Let us consider two gray-level images I and J
of size nx × ny , and consider a specific pixel u(ux , uy) from
the first image I . The main goal of feature tracking is to find
the location v = u + d, on the second image J , such that
I (u) � J (v). Vector d corresponds to the image displace-
ment. It is estimated by minimizing the residual function
ε(d), which is defined as follows [3]:

ε(d) = ε(dx , dy) =
ux +ωx∑

x=ux −ωx

uy+ωy∑

y=uy−ωy

[I (x, y)

−J (x + dx , y + dy)]2. (5)

Note that the local neighborhood is of size (2ωx + 1) ×
(2ωy + 1). Typical values for ωx and ωy range from 2 to 7

Fig. 13 Nose tip tracking. The above images are extracted from the
same video at different times from a to f

pixels. We can attribute an arbitrary value belonging to the
interval [2..7] to both ωx and ωy .

Among well-known classical techniques, the least squares
method is used the most for minimizing ε(d). However,
the pyramidal implementation [3] of the classical Lucas–
Kanade algorithm remains the most powerful solution to this
problem.

In Fig. 13, we show experimental results of nose tip track-
ing by selecting six different frames from a video sequence.
Note that the facial feature (tip of nose) is tracked success-
fully throughout the sequence.

3.3 Identification of specific search actions

The main goal of our work is to study the cephalo-ocular
behavior of drivers using computer vision. More specifically,
we are interested in the study of the visual search actions
related to the verification of the blind spot when changing
lanes and overtaking. Recall that the blind spot is the space
on each side of a car that is not covered by the driver’s field
of vision (including the field of vision due to rear-view and
wing mirrors). To test whether the driver is checking the blind
spots or not, the following algorithm was implemented:

1. Detection of the facial features (nose tip and eyes) using
the techniques described in Sects. 3.1.1 and 3.1.2.

2. Tracking of the facial features using the method described
in Sect. 3.2. The tracking process is accompanied by the
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Fig. 14 The visual search actions related to the verification of the blind
spots. a Initial position, b position due to the verification of the left blind
spot, c position due to the verification of the right blind spot

calculation of different distances (cf. Fig. 14b, c) between
the facial features. These distances allow the orientation
of the driver’s head to be estimated. Based on the head
orientation, we can interpret the visual search actions
of the driver in connection with events occurring in the
scenario (nearby traffic, etc). A detailed technique for
identifying the verification of blind spots by the driver is
described next.

3. Return to step 1 of the algorithm when facial features are
lost.

The verification of the blind spot is accompanied by a
rotation of the driver’s head in the direction of the consid-
ered path (cf. Fig. 14b, c). The angle of rotation adopted by
the driver’s head is inversely proportional to the distance sep-
arating the two eyes. When the driver verifies the blind spot,
the angle of rotation of his head reaches its maximum value
that corresponds to a minimum distance separating the two
eyes. Additionally, the coordinates of the two eyes allow us
to know in which direction the driver is currently looking.
Based on these observations, we can accurately identify the
visual search action related to the verification of the blind
spot. Note that two additional events allow the verification
actions of the blind spot to be identified. The first event is the
loss of the left eye and/or the nose tip when verifying the left
blind spot. The second event is the loss of the right eye and/or
the nose tip when verifying the right blind spot. The loss of
the nose tip is due to its confusion with the background when

Fig. 15 The verification of the blind spot is accompanied by the loss
of facial features (nose tip and/or eyes). a, e First detection of facial
features. b,c,f,g Different steps of the tracking process. d Loss of nose
tip and left eye. h Loss of the right eye

verifying the blind spot, while the loss of the eye is due to its
partial or total occlusion in the video frame.

In Fig. 15, we show test results obtained using a cascade of
boosted classifier and the pyramidal Lucas–Kanade method
for facial features detection and tracking. The loss of nose
tip and left eye due to the verification of the left blind spot
is shown in Fig. 15d. The loss of the right eye due to the
verification of the right blind spot is shown in Fig. 15h.

In Fig. 16, we show test results obtained using the pro-
posed system. Following the loss of facial features, the sys-
tem triggers the detection process and generates a new event
for reporting that the driver is probably verifying the blind
spot. Additionally to the identification of the driver’s visual
search action while verifying the blind spot, the system is
able to support other events, such as the visual verification of
rear-view and wing mirrors. Events resulting from the identi-
fication and analysis (using our system) of the cephalo-ocular
behavior of drivers will be used by a Kinesiology research
group to retrain older drivers in a safe-driving context.
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Fig. 16 Test results of the introduced framework. a,e First detection
of facial features. b,c,d,f Different steps of the tracking process. g The
loss of facial features triggers the detection process. h Tracking of facial
features following the second detection

4 Analysis and interpretation of the cephalo-ocular
behavior of drivers

This section is devoted to the analysis and interpretation of
the cephalo-ocular behavior of drivers in a simulated driving
context. The execution of this task calls upon two differ-
ent modules. The output of the first module is the driver’s
visual search actions related to blind spot checking, normal
driving, etc. The output of the second module is the identi-
fied car/road events extracted from the driving simulator. The
analysis of the driver behavior reduces to the study of the
correspondences between outputs of these two modules, i.e.
each frame of the simulator scenario is correlated with each
frame of the video sequences of the driver’s head to check
whether or not proper cephalo-ocular behavior is adopted
with respect to the driving context. The correlation between
these frame is stored in a log report that can be used by mon-
itors for retraining older drivers in a safe driving context.
We start by describing how the specific car/road events (over-

taking, changing lanes, the presence of an intersection, etc.)
are modeled. Note that the simulator scenario and the driver’s
head video are synchronized.

4.1 Identification of car/road events

The identification of car/road events from the driving simu-
lator is achieved by modeling each event as a procedure that
is a function of the environmental variables that are extracted
from the simulator open module. More specifically we are
interested in the identification of specific events, such as over-
taking, stopping the car, changing lanes, etc. The particularity
of these events lies in the accompanied visual search actions.
For instance, we can mention the visual search actions related
to blind spot checking when overtaking and changing lane
which consist in rotating the head. Using the simulator open
module we can have access to a set of environmental vari-
ables related to both the car and the road. For example, we
can extract the lateral/longitudinal velocity and acceleration
of the car, the car’s current lane position with respect to the
roadway’s centerline, the width of the right/left side of the
road, the car heading angle relative to roadway centerline,
etc. We use these environmental variables to model car events
such as overtaking, changing lanes, stopping at an intersec-
tion, etc. Since we are interested in the verification of blind
spot by older drivers, we deal with car events requiring blind
spot checking.

A lane change is identified as follows: based on the width
of the left/right side of the road, we model a region of lane
change. Note that each side of the road can have one or more
lanes. The modeling of lane change regions is only consid-
ered for roads with two or more lanes. Once the registered
car position crosses this region, a potential lane change is sig-
naled. For the overtaking action, two cases can occur: First,
overtaking of a car through the same driving lane. Second
overtaking of a car by means of the inverse lane (lane of
oncoming traffic). In the first case, we identify an overtaking
action if two successive and opposite lane changes are identi-
fied during a given time-lapse. In the second case (overtaking
through the inverse lane), we use the car position to identify
the crossing between normal and opposite traffic lanes. Once
again if two successive and opposite passages are established
during a given time-lapse a potential overtaking action is sig-
naled. Thus, the modeling of car events is based on the values
of environmental variables that are extracted via the simula-
tor open module.

The identification of car/road events is carried out at each
frame of the simulator scenario according to the following
process: each event is modeled as a c++ function using the
values of the extracted environmental variables. Each func-
tion returns a score, 0 if the event is not identified and 1 if it
is identified.
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Table 1 Identification of car/road events

Frame State

0 Driving

1 Driving

2 Driving

3 Driving

325 Lane change

326 Lane change

327 Lane change

328 Lane change

329 Lane change

340 Driving

341 Driving

342 Driving

1763 Overtaking

1764 Overtaking

1765 Overtaking

1766 Overtaking

1767 Overtaking

2407 Intersection

2408 Intersection

2409 Intersection

3017 Car stop

3018 Car stop

3019 Car stop

3020 Car stop

3021 Car stop

3022 Driving

3023 Driving

4132 Car crash

4133 Car crash

4134 Car crash

Additionally, a priority between events is set according
to the following order: driving < car stop < lane change
< overtaking < intersection < car crash. This order allows
us to select the most important event between two or more
identified events. Thus, if “driving” and “overtaking” events
are identified, the overtaking event is selected because it
has a higher priority. An example of experimental results
of car/road events identification is given in Table 1: frame
2 corresponds to “driving” state, frame 328 corresponds to
“lane change”, etc.

4.2 Mapping between the driver’s visual actions and the
car/road events

In Sect. 3.3, the identification of driver’s visual search actions
was modeled using computer vision. At each frame of the
driver’s head video a given visual action is suggested. Since

Table 2 Identification of car/road events and corresponding driver’s
visual search actions

Frame Car/road event Visual action state Mapping state

0 Driving Driving Ok

1 Driving Driving Ok

2 Driving Driving Ok

3 Driving Driving Ok

325 Lane change Blind spot checking Ok

326 Lane change Blind spot checking Ok

327 Lane change Blind spot checking Ok

328 Lane change Blind spot checking Ok

329 Lane change Blind spot checking Ok

340 Driving Driving Ok

341 Driving Driving Ok

342 Driving Driving Ok

1763 Overtaking Blind spot checking Ok

1764 Overtaking Blind spot checking Ok

1765 Overtaking Blind spot checking Ok

1766 Overtaking Blind spot checking Ok

1767 Overtaking Blind spot checking Ok

3319 Lane change Driving Error

3320 Lane change Driving Error

3321 Lane change Driving Error

3322 Lane change Driving Error

3323 Lane change Driving Error

3324 Lane change Driving Error

3325 Lane change Driving Error

5222 Driving Driving Ok

5233 Driving Driving Ok

5244 Driving Driving Ok

the driver’s head video and the simulator scenario are syn-
chronized, it is easy to establish, at each frame, a mapping
between the identified car/road events and the driver’s visual
search actions. An example of this mapping process is given
in Table 2. The mapping state informs the monitor if the visual
search action is adequate (cf. frame 1765) for the identified
car/road events or not (cf. frame 3323). The established map-
ping log serves as a reference to the monitor for retraining of
older drivers.

4.3 Retraining of older drivers

The above described system is devoted to the analysis of
driver performances in a safe driving context. If we consider
the category of older drivers, driving retraining class may
offer an opportunity to attenuate some of the aging manifes-
tation that alter driving skills. Unfortunately, few effective
opportunities are offered to older drivers who want to main-
tain or increase their driving performance. Figure 17 shows
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Fig. 17 On-road score (left), successful turning manoeuvres (middle)
and glance at blind spot prior to lane change (right)

experimental results related to older drivers’ performances
following a driving retraining classes. We deal with two
groups of older drivers, each driver of the first group receives
a driving-specific feedback on his own performance. Driv-
ers of the second group do not receive any driving feedback.
Experimental results show that the driving performances of
the first group (Fig. 17 blue plots) are enhanced compared to
the driving performances of the second group (Fig. 17 gray
plots). More specifically, the performances of on-road driv-
ing for successful left-turn manoeuvres and for blind spot
checking prior to lane change are enhanced for drivers of
the first group who have received in-simulator training. This
suggests that training received in the simulator can be trans-
fered to safer driving in real on-road conditions. Note that
data analysis for these experiments was conducted manu-
ally by a kinesiology research group. The main goal of our
research work is to automate this process of analyzing the
correspondence between scenario events and visual search
behavior of the driver. Notice that the accuracy of the pro-
posed system depends on the accuracies of the used methods
and approaches (eye/nose detection, tracking of facial fea-
tures, visual action and car/road event identification). Since
accuracies of these methods and approaches are almost equal
to 100%, we can conclude that the entire accuracy of this sys-
tem is almost equal to 100%.

5 Conclusion

In this paper, we introduced a computer vision system spe-
cially designed to the analysis and interpretation of the ceph-
alo-ocular behavior of a driver. The system is described
in three main steps. The first step is devoted to the descrip-
tion of both hardware and software components of the sys-
tem. The second step deals with the identification of the
driver’s visual search actions. The last step is concerned with
the established mapping between the identified visual search
actions and the identified car/road events. All of the exper-
iments confirm both the accuracy of the proposed system

and its usefulness for automatic analysis of driver’s ceph-
alo-ocular behavior in a simulator. Future work will consist
in testing the system on a large group of subjects as well
as implementing the head tracking module in a real on-road
driving context.
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