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A New Numerical Fourier Transform thDimensions

Normand Beaudoin and Steven S. Beauchemin

Abstract—The classical method of numerically computing curacy ofthe DFT as an approximation of the Fourier transform.
Fourier transforms of digitized functions in one or in d-dimen- |t could be thought that if the Nyquist criterion is fulfilled, ev-

sions is the so-calleddiscrete Fourier transform(DFT) efficiently . . . o
implemented asfast Fourier transform (FFT) algorithms. In many erything should come out fine. The Nyquist criterion states that

cases, the DFT is not an adequate approximation to the continuous the sampling rate must be at least twice the highest frequency
Fourier transform, and because the DFT is periodical, spectrum of the initial function [1], [2], [10]. However, a function may be
aliasing may occur. The method presented in this contribution defined between 0 ariflonly, and the highest frequency of such

provides accurate approximations of the continuous Fourier o wma_limited function is infinite Consequently, the DFT pro-
transform with similar time complexity. The assumption of signal L ) ’ .
periodicity is no longer posed and allows the computation of duces aliasing.One could argue that even though the highest
numerical Fourier transforms in a broader domain of frequency frequency is infinite, itis always possible to sufficiently increase
than the usual half-period of the DFT. In addition, this method  the number of sampled data points such that the error of the DFT
yields accurate numerical derivatives of any order and polynomial  hacomes as small as one wants. However, the required number

splines of any odd degree. The numerical error on results is easily . .
estimated. The method is developed in one and id dimensions, of data points could be exceedingly large. As an example, for

and numerical examples are presented. the functionh(t) = e~ ¢ € [0, 1], the error on DFR A},

_ ~1/3
Index Terms—Algorithm, aliasing, analysis, analytical, ap- groundf = 64, decreases roughly ¢ - Hence, one must
proximation, boundary, convolution, deconvolution, derivation, IncreaseV by a factor of 1000 to decrease the error by a factor

discrete, discrete Fourier transform (DFT), fast, fast Fourier of 10.
transf_orm (FFT), Fouri_er, integration, interpolation, numerical, In some cases where the result of the DFT is used qualita-
Nyquist, spectrum, splines. tively, for example, in some Fourier transform infrared spec-
trometer (FTIR) experiments where the results are plotted and
I. INTRODUCTION visually examined by an experienced spectroscopist, a high ac-
guracy is not absolutely mandatory, but in some applications,

HE UBIQUITOUS Fourier transform and its numerica . . ) .
. . .such as in deconvolution, where a division is performed in the
counterpart—the discrete Fourier transform (DFT)—if . . . ) .
. . . . ) frequency domain, a slight error in the denominator function,
one or in more dimensions are used in many fields such as

: . . particularly when it is close to zero, can seriously distort the re-
mathematics (linear systems, random process, prObab”sYJ'Its [11]
boundary-value problems), physics (quantum mechanics, ' . .

. . . However, one may increase the accuracy of the numerical
optics, acoustics, astronomy), chemistry (spectroscopy, Cr)és?_urier transform when the number of sampled data points is
tallography), and engineering (telecommunications, signar . i . :

graphy) 9 g gr\lmned. This can be implemented through the assumption that

rocessing, image processing, computer vision, multidimen- . . .
P 9 g9e p g P the function, from which the sampled data points are extracted,

sional, and signal processing) [1]-[5]. . - ) . .
B g p g.) [ ]. [5] : . and its derivatives are continuous. The sampling process, which
The DFT is of interest primarily because it approximates . ) .
) . " . performed through the Dirac comb [1], in a sense, isolates
the continuous Fourier transform.” [1]. In this regard, the DFT, . )
L . . ach data point and renders them independent from each other.
which is usually computed via a fast Fourier transform (FF . . . .
Cpe function and its derivatives are no longer continuous. By

algorithm, must be used with caution since it is not a corre — i .
LT . . .. _re-establishing the continuity between the sampled data points,
approximation in all cases [6]—[9]. First, the DFT is periodical . ; .
) : L : a method that yields an accurate numerical Fourier transform
and constitutes a valid approximation of the Fourier transformin .
) . can be devised.
only one half of a period. Second, the sampling rate of the fun¢-

tion to be submitted to the DFT is a critical issue. Without sam-
pling the timé function at a sufficiently high rate, a phenom-
enon known as aliasing may become intolerable and spoilthe acket t = (t1, t2---t4) € RTandf = (f1, fa--- f1) € R?,
d € N*. R is the set of real numberd| the set of nonnegative
integers, andN* = N\ {0}. Let us define Heaviside’s function
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Il. THEORY IN d-DIMENSION

Iwithout loss of generality, the reciprocal variabtése (t) andfrequency 2The usual method of avoiding aliasing is to filter out the high-frequency
(f) are used throughout this paper. components, thus modifying the original signal.
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in whichy andy are Heaviside’s functions ifrdimensions and  According to our definition of the Fourier transform, we have
in one dimension, respectively. Let us defind-dimensional

rectangular functions such as f‘{h(")(t)} = /_oo R (1) e =27 Pt gy, 9)
R (f) =X ({_ 67) X (_ﬁ_ er) 2) We can expand the integral in (9) into parts to form
e e T o) < [ e [0
0" =lm(0-¢), Tf=lm(Tate), ccRe> (()3) +/°o B (Be= 2T ar, (10)
T

. d H :
Letg: R — (Ror {Z) (Cis the 1_‘|eld_0f cpmplex r?”m.bers) beThe sum of the first and last integrals of the right-hand side of
a continuous function that admits directional derivatives of arHO) clearly isF { D, (t)}. Hence, (10) becomes

order in any direction for alleA. A is any convex set such that
{#]R (f) # 0} C A C R?. We now define the function

h(0)= (D)o () @

and adopt the following definition for the Fourier transform:

T
F{nm) = /0 W) (B)e= 270t + F (D, (8)}.  (11)

By separating the intervd, 7] into N equal toAt = T/N
subintervals, (11) can be rewritten as

_ o i2n g N-1 (+1)At
Fin o} /R (7 i ) f{m")(t)} => {/ e h<”>(t)e—’i2ﬂffdt}

- At
By expanding the inner product and reorganizing the terms, (5) =0

becomes

oo oo [ oo iomfity Sinceh(™ is continuous and differentiable between and at 0 and
Fin (F)}Z/_w : '/_Oo [/_mh(t17 o ta)e dtl} T, it can be approximated far € [jAt, (j + 1) A¢] for each

j €10, N — 1], with a Taylor expansion

+F{D,(t)}, jeN. (12)

eIy T gty (6)
. o , - < R (- jAt)?
Itis a well-known fact, which is evident from (6), that odeli- R (t) = Z ' , pPEN (13)
mensional Fourier transform of a function can be performed by p=0 P

d successive one-dimensional (1-D) Fourier transforms. Conse- () o . _
quently, in the next section, we develop the theory in one dimewhereh; " is themth derivative of: at pointt = jAt. Merging

sion. In that case, generic nonindexed variables, g5 7"--- (12) and (13) yields
that stand for any indexed variable of a particular dimension of
the d-dimensional space are used. F h(”)(t)}
[1. THEORY IN ONE DIMENSION _ Jil { /“H)At (i h§p+n) (t— jAt)p> e—inftdt}
By virtue of the properties of the differentiation of Heavi- j=0 (/iAt p=0 P!

side’s and Dirac-delta functiorig) [2], [12], thenth derivative

of h with respect ta is +F{Da(t)},  JjEN. (14)

With the substitutiom = ¢ — jAt¢ and an adequate permutation

(™) () = _ 0" _ +) (™)
h (t)_x(t 0 )X( t+T )g &)+ Du(t)  (7) of the integral and sums ghandp, (14) becomes

in which D,,(t) is defined as }_ {h<")(t)}

0, ifn=0

n—1 oo At po—i2nfr N-1 (p4n) —iomti

— n) —i2wfjAt

Dn(t) — Z {q(m) (0_) 6(n—m—1) (f — O_) - Z {(/0 p' dT) (Z hjp e J

m=0 p=0 j=0

—gm(T*) (== (t —TH)}, ifneN". + F{D,(t)}. (15)
8

Equations (7) and (8) express the fact thatsitle derivative of To numerically compute the Fourier transform/gfwe must

h with respect ta is the ordinarynth derivative of the function evaluate it for some discrete valuesfofLet f = kAf = k/T,

h strictly inside the rectangular box where it is continuous arid € N be these discrete variables. In addition, let us define
differentiable, in addition to theth derivative ofh in the regions H), as the discrete version &f {h(")(t)}. The integral in (15)
where it is discontinuous. depends only on the variabje(or k) and on parametegsand
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At and can be evaluated analytically, whetlfes continuous
or discrete, once and for all, for each valuepads

1 At )
P2 FT g

P (16)

pJo

Since the integral in the definition dj, is always finite and,
in the context of the Gamma function [13], = +oo whenp
is a negative integer, thely = 0 for p < 0. Whenp = 0, by
direct integration of (16), we obtain

1— e—'i?‘n'fAt
12w f

and by integration by parts, we have a recursive formyjfdior
anyp € N*

Iy = (17)

p .
A_te—z?‘n'fAt> ) (18)

1
IL,=——\|I,-1—-
P i27rf<p1 p!

The summation ory in (15), whenf = kAf = k/T,
is the discrete Fourier transform of the sequehg»?éL"), j €

[0, N—1] ¢ N [1]. We denote it ad’), ¢, k. SinceAt =
T/N andf = k/T, we have
N-1 ) )
Fpimp = 3K, g
=0

One should note that although we wrdigand F,,, . in-
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transform and those of Dirac delta functions [12], one easily
observes that expandirbg results in

bp = h(™ (T) e~ 2T _ p() (0). (26)

In the discrete context, wheffe= k/T', (26) takes the following
simple and significant form:

b = b (T) = K™ (0) = AP =Y. (27)

We refer tob,,, n € N as the boundary conditions of the system.
Up to this point, all equations are rigorously exact sipce
tends toward infinity. However, in practical situations, we intro-
duce approximations by limiting the range pnLet us define
6 € N as the truncating parameter, which, for reasons discussed
later, is always chosen as an odd integer. We refer to it as the
order of the system.
Let us expand (25) for each value ofe [0, § — 1] C N.
This generates a systemiflifferent equations, and for each of
these, we lep range from 1 t& — n. This gives the following
system written in a matrix form:

stead ofl,, (f or k) andF),1., « (f or k), these functions always or, more compactly, as

depend onf or k.

Substituting (16) and (19) in (15), we obtain the following

result:
F {h("’)(t>} = leFp+n,k +F{Da(t)}. (20)
p=0

Whenn = 0, (20) becomes

Hy =Y I,F,
p=0
Now, integrating by parts, the right-hand side of (9) yields

f{h("'H)} = i27rf]:{h(")}.

Definingb,, = i2r fF {D,} — F { D41}, combining (20) and
(22), and reorganizing the terms yields

(21)

(22)

—i2n fIoF, 1, + Z (Ip—1) — 120 fI,) Fpyn, i = bn. (23)

p=1
With the definition

Ja = Ioz—l - Z27rfIa (24)

(23) becomes

JOFn,k + Z Jpr+n,k = bn (25)

p=1

Given the definition ofg and h, we haveg(™ (07)
g™ (0) = K™ (0) andg™ (T*) = ¢ (T) = b (T).

Ju o Jy oo T Fi bo —JoFo,
Jo J1 o0 Joo1 | | Fok by 0
o~ +
0 0 J1 Fo bo—1 0
(28)
MF ~ B +C. (29)
The general expression for element31a$
(M);LV = J”_,U'l'l' (30)
Let us now write (29) as
F~M1(B+0). (32)

On the right side of (31), every term, exceptis known.C
contains the ternky_ 5, which is the DFT of the initial function.
All other terms inC andM~—" depend on parametefs/ andT)
of the function to be transformed and not on its data. (The eval-
uation ofB, which are the boundary conditions, is the subject of
the next section.) With the knowledgebfrom (31), the terms
of (21), forp € [0, 6], are completely determined. Thus, the
truncated version of (21) can be written as

4
Hy =Y 1,Fp (32)
p=0

Let us define a one row matrix ag = [I; I --- Ip] and write
(32) as follows:

Hj, ~ IyFy, , + IgF. (33)

With (33), we approximate the Fourier transform (or its in-
verse) of a digitized function in one dimension. The digitized
Fourier transform obtained with (33) is not bandlimited (as with
the DFT, which is periodical). Equation (33) is valid as an ac-
curate approximation of the analytical Fourier transform for all

Using these facts in addition to the properties of Fouriemalues ofk € 7 [14].
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One should note that in (32}, is undetermined whefi = 0. IV. BOUNDARY CONDITIONS
This can always be solved by Hospital’s rule or by direct inte-

gration of (16) withf = 0. Once these undeterminations due tca) rg?ﬁeubsoeur?;;?s)cg:g#:;sth; t?]éaildigggnda?:zi};\ggIi(;1h(27)
I, (f = 0) are solved, every term of (32) or (33) behaves well y ’ )

long asf is an odd integer. For even valuegothere are singu- Bne can use any m_ethod one wants to accomplish that task.
larities atf = (x + 1/2) NAF, x € N that cannot be removed.However’ a method is proposed here that proves to give very
These are due to the fact th'a'; wheis even some terms il accurate boundary conditions, as long as the function to which

(involved in the computation of, ;) have denominators that!t IS @Pplied is smooth enough. Fortunately, what is meant by
go to 0, whereas the numerators remain nonzero. This is an fA200th enoughan be determined by the method itself. This is
perative reason to choose odd valuesffor fully discussed toward the end of this section.

It is important to observe that although (31) involves the in- L&t us expand (25) for each value ofc [0, § — 1] C N.
version oft, it does not mean that one has to invert the matrikhis generates a systeméiflifferent equations, and for each of
each time a numerical Fourier transform is computed. Equatifiese, we lep range from 1t@—n—1. This gives the following
(31) is a part of the mathematical development of the formugyStem, which is written in matrix form:
used to compute the numerical Fourier transform. Each of its
terms can be handled symbolically. For a specific otjehe
matrix M is inverted only once to establish the formula for the 0 Jo -+ Jg_2 Fi i by
numerical Fourier transform.

Equation (33) can be thought of as the Fourier domain coun-
terpart for a complete function of the Taylor series in the time 0 0 - Jo Fy_1 1 bo_1
domain for a single point. In the same way, a Taylor expansion ’
is more complex than its first term, and (33) is more complex, more compactly, as
than the standard FFT. If, in a specific application, one does not
require to get rid of the periodicity of the DFT or is not bothered M.F, ~ B. (35)
by the aliasing, if one does not need more accuracy or does not
have to compute the Fourier transform for valueg dieyond Note that the matri, is completely known since each and
those inside the usual frequency band of the DFT, then theneery one of its terms depends only briThe general expression
is no point in using anything else than the usual DFT (FFTjor the elements off, is
which remains a simple and valid tool in these circumstances.

However, if one or more of the aforementioned virtues of (33) Mo,y = Jomp- (36)
are desirable, the benefits of these few more terms in the series

are welcomed, and the burden of the added mathematical caviatrix B is unknown. If it were, we could evaluakg from (35)
plexity is compensated, as we will see, by the fact that the tirag

complexity of (33) remains that of the FFT.

Jo Ji - Jo—y Fo, 1 bo

5

1R

(34)

Furthermore, although (33) contains the symbolic forrg,of F, ~ M, !B. (37)
which can be used as is to form a single formula without numer-
ically evaluating each term & separately, (31) can be used tdJnfortunately, forf = sNAf, x € N, it happens that
compute each term @ffor values ofk from 0 to N — 1to pro- det (M,) = 0 andM,' cannot be computed. However, for

ducef accurate approximations of the DFT of the derivativegalues off aroundN A f /2, the approximation (37) is quite ac-

hj(»p) for values ofp € [1, §]. Thus, applying the inverse DFT curate when the function is smooth enough. We take advantage

operation to each of these approximations generates the cogfethis fact to computé.

sponding sequencéér) that are accurate numerical derivatives The first element of,, which is(Fo), = Fo , is the DFT

of all orders from 1 t@ of the initial functionhﬁo). This implies of the sequenceg;. It is completely determined for each value

that one can accurately compute the derivatives of any orderaffk. It is not the same situation for the other elements gf

a digitized function or signal [14]. which are still unknown. In addition, the elements of maj}
Derivatives calculated in this manner are continuous in bare given for each value ¢f = kA f. We can then extract the

tween and at each data point. Thus, withih&T (FFT), we following from (37):

obtain spline polynomials of any odd degree, with their corre-

sponding properties [14]. Hence, such high-order spline inter- = 4
polation polynomials allow integrals between any limit to be Fo = (rowid,")B="_L,(8), (38)
accurately computed [14]. v=I1

Let Ry be any result (Fourier transform, derivative, or inte- . . 1 )
gral) obtained with an arbitrary ordérOnce the boundary con- n WhICh’_ for brevity, we sef,, = (M“ )17 - Letus now deﬁ.ne
ditions are established, the error & (notedE,) can be fairly (2 as an interval of values ofk centered orV/2, as follows:
estimated sincéty ., relative toRg, can be considered almost [N (9 _ 1) N (9 _ 1)}

as the exact result. To perform error estimation, one can use the Q=
following relation: Ey = O (Rg, Rey2), whereO is any oper-
ator one can define to meet specific needs [14]. = [k1, ko, ..., ko] CN. (39)

2 2 2 2
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Let us expand (38) for each valuelok Q. (Itis understood of the function [1], [2], [10]. Hence, such a function is always
that in practical cases, for each instancef af each term, one smooth enough. However, in the context of this paper, func-
has to replace it by A f.) Doing so yields the following system: tions are bounded in the time domain and unbounded in the fre-

i i i guency domain. This is why the boundary conditions become an
Fo,r, Li(ke) Lo (ka) -+ Lo (k) bo issue. The method presented in this section to compute boundary
Fo, &, Ly (k2) La(k2) --- Lg(k2) by conditions is quite efficient as long as the function is smooth
= . . ) . : : enough between the boundaries. Since the Nyquist criterion can
' ' - ' : no longer be used, one must have another criterion of smooth-
Fo &, Ly (ke) Lo(ke) -+ Lg(ke)d Lba—1 ness. Fortunately, an operational criterion can be derived from
(40) the method itself, and it appears that a function does not have to
Note thatL, (kg) is compact notation fOfMgl)L,, evaluated be so smooth to be considered smooth enough by the method.
atk = kg andf = kgAf. Let us express (40) more compactly | et us define the following measure of error on boundary
asF. ~ WB, which yields conditions for a specific order as follows:

B ~ W lF.. (41) Fo = O (By, Boss) . (46)
Equation (41) completely determinBsrom £} ;. (the discrete
Fourier transform of the digitized initial functidr). According
to (27), knowingB numerically specifie$,, (n € [0, 6 — 1]).
They are the boundary conditions of the system.
Equation (24) is the generic expression of terms jrandM.
Defining

The operato© can be defined as one wants to fulfill its purpose.
For example, one could use, as we do in the examples below,
Eq (Z) = |(B9)i - (B9+2)i| yi=1,...,0.
For a specific sampled function, one may incredas long as
E, decreases. The valuefor which the erroZy is minimum
is the optimum value of and is denoteé,,,. The smoother the
p = g i2nfAt _ —i2n(k/N) (42) function is between the boundaries, the highgy; becomes.
If the sampling rate is reduced or if the frequency component
and successively substituting (17), (18), and (42) in (24) yields the function is increased,,; decreases. If it happens that
At 8.p¢ < 1, then the method presented in this section to obtain
Jo=z—1 and J, = o (43) boundary conditions is no longer adequate. It is the case, for ex-

- o ) ample, for a discrete random function or for a high-frequency
These substitutions lead to dramatic simplifications in the ®Xinction that is so sparsely sampled that it appears almost to be

pression OM‘I: Nevertheless, terms in matri in (40), ONCe random. However, in such situations, no method can claim to
expanded, still appear rather cumbersome. Further simplifigas o1y accurate, and one has to resort to information about the
tion is desirable. A detailed examinationbf reveals that function that is not obtained from mere sampled data points. If
—AtvL E,_1 such external information is unavailable, then one could use a
Ly = ((,, _ 1)g> ((95 _ 1)*’) (44) method as simple as possible to compute the boundary condi-
tions, such as linear interpolation between points.

in which L, is Euler's polynomial [15] of degrea, which is 1t shouid be noted that even thoughy, for boundary con-
defined as ditions may be low, once these boundary conditions are estab-
o m lished, a value of as high as one wants can be used with (31)
Eo= > ) (m—j)* ——~— | &™.  (45) or(33).

71 —q !
m=0 \ j=0 J(Oé J+1)

Note that Euler’s polynomials can be built with Euler’s triangle. V. TIME COMPLEXITY

Equations (44) and (45) are used to fill mafiias specified by  In one dimension, a close examination of (28) and (33) re-
(40). veals that the computation of only one FFT is required. The
To computeB through (41), the matriX has to be inverted. It other terms form a correcting operation to be applied only once
should be noted thatdoes not depend on the values of the funmn each of theV values of the FFT. The time complexity of
tion but only on its parameterd/(and?’). The size ofiis x §.  the entire correcting operation is thig V), and the time com-
6 is the order of the system and the degree of each interpolatjmgxity of the FFT isO (N log N). Hence, the time complexity
Taylor polynomials between each data point. Although it is posf the entire algorithm i©) (V log N') when# is kept constant.
sible and not difficult to do, it is very unlikely that one uses very The time complexity of the correcting operation, relativé to
large values fof). For example, in the context of this methodis O (92), but the error on computed results decreases exponen-
6 = 21 is a very high value, bui is still a relatively small nu- tially with the increase of. Hence, as long as one can afford to
merical matrix that can be inverted efficiently. Moreover, for increasel, the tradeoff is strongly beneficial [14].
class of functions that share the same parameters (as is the cagecording to (6), this method can be applied sequentially to
in many dimensions), matrix is inverted only once. The com- compute an accuraté&dimensional Fourier transform. In this
putation of boundary conditions is then a rapid operation.  multidimensional case, for each € {1, 2, ..., d}, we have
In the context of the Nyquist sampling theorem, the fund;, € [0, T,,]. This interval is separated int¥,, equalAt, =
tion to be sampled is bounded in the frequency domain, afid/N, subintervals, and, = koA fy = ko/Tw. As with the
the sampling rate must be, at least, twice the highest frequemeginary DFT FF'T), the order in which the dimensions are
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Fig. 1. (a) Function (48) withfc = 20. (b) DFT of the function shown in (a). (c) Numerical Fourier transform computed with PM andwith9. E is the
average of the absolute value of the error. For the DFT, the error is computed for points fré¥if .t6or PM, the error is computed on the full range of frequency.

treated is irrelevant. The number of times (33) has to be applitsts and error measures are indicated in the Fig. 1. The curve
to completely compute thé-dimensional Fourier transform is given by PM is graphically indistinguishable from the analyt-
d d ical transform.
PQ where P=J[ N, and Q=) - @ Fig. 2 shows function (48) whefi. = 50 and its transform

a=1 g=1"'" by the DFT algorithm and by the PM algorithm for different
The time complexity is ther® (Plog P). Let us setN, = values off. The initial function is quite rough. Witlf. = 50,
aaN, V o, a, being constants. It is easy to show that the timigere are only 2.56 data points per cycle of the cosine term. The
complexity isO (N%log N), which is the same as that of thelhitial function A(t) is unbounded in frequency, and hence, it is

DET in the d-dimension. not possible to discuss the sampling rate in terms of the Nyquist
criterion since the highest frequency is infinite. If the cosine term
VI. EXAMPLES IN ONE DIMENSION in the function was alone and unbounded in the time domain,

) . . the minimum number of samples per cycle needed to satisfy the
In this section, several examples are presented to illustrate N%uist criterionwould be 2. With 2.56 samples per cycle, we are

different aspects of the proposed method an_d to demonstrateénﬁost atthe limit. This function is demanding for both methods,
congepts of the previous sections. (For brevity, in the te>'<t and¥ET and PM. The DET is indeed periodical and the two central
the figures, PM stands for the proposed methods of this pan&L, s are very close, which worsen the already present aliasing.
The context makesitclear if it is PM for the boundary conditiong) ;. p attempts to remove the periodicity and the aliasing to
or for Fourier transform.) The first set of examples are based e the computed result as close as possible to the exact result,
the following function: To achieve this, the ordér has to be increased. With = 3,

h(t) = 2¢73 cos(2n f.t) —2t 4+ 1, T =1, N = 128. (48) Fig. 2 clearly shows a residual peak aroyhid= S80A f. With

(This function mimics typical measurements of thermod)ﬁ— = 13, theresultis almost exact. The res[dual _pea!< disappears

namics experiments conducted to determine the KGEfitC,, and the average error reduces4té x 10~°, which is about

these parameters being the specific heat of a gas.) 408 times more accurate than the DFT. Furthermore, a proper
When/. = 10, there are 12.8 data points for each cycle of thr@moval gf periodicity gives us access to the frequency content of

cosine term of the function. It is not a very high sampling raté1€ function, notonly between O at¥/2) A f butalso between

but it is sufficient to make the function appear relatively smoofY/2) Af andN A f, and even beyond, as we will see in the next

between the boundaries. Then, we obt@ip, = 39, which example. In the present case, under integration, the frequency

means that a high accuracy can be reached with the methodJ@ptent betweea/2) A f andVA f is approximately 16% of

boundary conditions described previously. When= 20, we the transform between 0 andA f. It may not be negligible.

have 6.4 data points per cycle, afig, = 15. The sampled With usual DFT, this information is unavailable.

function begins to appear coarse (see Fig. 1) but is still man}The next examlp:je uses another usual and frequent function:

ageable and the method for boundary conditions performs v&yaSt exponental decay

well. Whenf. = 25, §,,, = 1, there are 5.1 data points for each

cycle of the cosine, and the method can still be used but it is at h(t) = e 1. (49)

the limit. When the sampling rate relatively to the frequency

of the function is reduced],,; drops rapidly, but conversely, Fig. 3 shows this function and its transforms. The number of
this means that the sampling rate does not have to be greatlygampled points between 10 and 100% of the amplitude is only
creased to obtain high values f@y,.. In the examples below, four. The frequency spectrum of such a function is particularly
whend,,; < 1, the following simple formulas are used for thewide. It is evident that the aliasing prevents the DFT from re-
boundary conditiongly = hx_1 — ho, b1 = — (h1 — ho) /At vealing the frequency content 6{¢). To obtain it accurately,
andb; = 0fori > 1. this time, PM has been used to compute the Fourier transform
Fig. 1 shows function (48) whefi. = 20 and its transforms over three periods of the usual DFT. Fortunately, PM does not
by the DFT algorithm and by the PM algorithm. The paramdrave to be modified for such a task. The lower curve of Fig. 3(b)
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Fig. 2. (a) Function (48) wittfc = 50. (b) DFT of the function shown in (a). (c) Numerical Fourier transform computed with PM andiwtts. (d) 6 = 5.
(e)¢ = 7. (f) ¢ = 13. E is the average of the absolute value of the error. For the DFT, the error is computed for points fray D. tor PM, the error is
computed on the full range of frequency.
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Fig. 3. (a) Function (49). (b) Upper curve is the DFT of the function shown in (a). The lower curve is the numerical Fourier transform computed with PM and
with 6 = 5. As usual,E indicates the average of the absolute value of the error.

shows this result, which is graphically indistinguishable frorytically known. The chosen initial function for our example is
the exact transform. This time, under integration, the frequenttyen the following complex function:

content betweerfN/2) Af and3NAf is about 50% of the

total. It cannot be neglected. This example clearly shows that(t,, t,) = (cos (9t1) cos (11t + 17ty) e 2511 = 2(t1+t2)

PM performs accurately for a function that is far from being

smooth, whereas the classical DFT fails completely. + 6[7100(&70-5)27500270-5)2])

VII. EXAMPLES IN TWO DIMENSIONS hi=T=1L (50)

In this section, an example in two dimensions is used to iFhe real part is a combination of damped, slanted oscillations.
lustrate the algorithm. The choice of such an example is not dbhe imaginary part is a nonsymmetrical Gaussian peak purpose-
vious. That is to say, the function must not be trivial; it must blly slanted by an exponential to avoid error cancellation by
difficult enough for the computation of the Fourier transform teymmetry. For both variables, the function is discontinuous at 0
be numerically demanding. On the other hand, for purposesanfd at7,, V «. Fig. 4(a) and (b) shows the modulus of (50) and
comparison, the Fourier transform of the function must be anaf-its analytical Fourier transform fa¥; = N, = 128, respec-
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(@) |h (t1,12) | (b) |F {h (i1, 12) } |
Fig. 4. Modulus ofh and of 7 {h}.

(a) |DFT {h}] (b) |Error on DFT {h}]| x 1072

Fig. 5. Modulus of DF A} and of error on DFTR} (x1072). The error is computed on the first 6464 data points only. Maximum erret 0.3 x 1072,

: (a) |Hi| (b) [Error on Hy| x 107'7

Fig. 6. Modulus of the numerical Fourier transform given by (33), Wits 13 and modulus of error off;, (x10~17). The error is computed on the full range
of the 128x 128 data points. Maximum erret 0.7 x 10717,

tively. The formula of the analytical Fourier transform of this Fig. 6(a) shows the numerical Fourier transformhofom-
2-D function is not shown here since it is several pages longputed with (33) ford = 13. It is clearly seen that this approx-
Fig. 5(a) shows the DFT df. The expected periodical be-imation behaves as the analytical Fourier transform and is not
havior is evident. Fig. 5(b) shows the modulus of the error fgreriodical. Fig. 6(b) shows the modulus of the error for this ap-
the DFT relatively to the analytical Fourier transform. To be faigroximation relative to the analytical Fourier transform, com-
this error must indeed be computed on the fifét /2) x (N2 /2) puted this time on the full range of th¥; x N, data points.
data points only since the DFT is periodical. For comparison, one should note the vertical scale factors in
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TABLE |
AVERAGE OF THEMODULI OF THE ERROR ON THENUMERICAL FOURIER
TRANSFORM OFFUNCTION (50) AND COMPUTED WITH (33) FOR DIFFERENT
VALUES OF N AND 6. THE LAST LINE IS THE AVERAGE OF THEMODULUS
OF THE ERROR FOR THEDFT OF THE SAME FUNCTION
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polynonial splines of any odd degree. The error can be easily
computed by comparing the results of two successive odd orders.
The time complexity igV log N. The time complexity, relative

tod (independent of the time complexity related\is O (62),
whereas the accuracy increases exponentially ditRlence,

> | = T 3:;\/ = g the nume.rical accuracy increases much more rapidly than the
— — T — computational cost of the proposed method. For smooth or rough

L J1x1072 1 x 1072 [ 2 x 1072 ] 2X 1077 | 3 x 1072 fynctions, the proposed method performs better than the classical

2 3 x 10 } z }g-z Z i 13_7 2 z 18_9 51:11(?_11 DFT and yields information that is not obtainable in principle

7 Ix10° 1 x10-0 [3x10- Withthe DFT. Therelative complexity of the proposed method is

9 3Ix10-Z [2x 10~ Jjustified by the nature and the quality of the results it provides.

11 8x 10714 [ 9x 10718

13 2%x107™ [ 8x 107 REFERENCES
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