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A New Numerical Fourier Transform ind-Dimensions
Normand Beaudoin and Steven S. Beauchemin

Abstract—The classical method of numerically computing
Fourier transforms of digitized functions in one or in -dimen-
sions is the so-calleddiscrete Fourier transform(DFT) efficiently
implemented asfast Fourier transform(FFT) algorithms. In many
cases, the DFT is not an adequate approximation to the continuous
Fourier transform, and because the DFT is periodical, spectrum
aliasing may occur. The method presented in this contribution
provides accurate approximations of the continuous Fourier
transform with similar time complexity. The assumption of signal
periodicity is no longer posed and allows the computation of
numerical Fourier transforms in a broader domain of frequency
than the usual half-period of the DFT. In addition, this method
yields accurate numerical derivatives of any order and polynomial
splines of any odd degree. The numerical error on results is easily
estimated. The method is developed in one and in dimensions,
and numerical examples are presented.

Index Terms—Algorithm, aliasing, analysis, analytical, ap-
proximation, boundary, convolution, deconvolution, derivation,
discrete, discrete Fourier transform (DFT), fast, fast Fourier
transform (FFT), Fourier, integration, interpolation, numerical,
Nyquist, spectrum, splines.

I. INTRODUCTION

T HE UBIQUITOUS Fourier transform and its numerical
counterpart—the discrete Fourier transform (DFT)—in

one or in more dimensions are used in many fields such as
mathematics (linear systems, random process, probability,
boundary-value problems), physics (quantum mechanics,
optics, acoustics, astronomy), chemistry (spectroscopy, crys-
tallography), and engineering (telecommunications, signal
processing, image processing, computer vision, multidimen-
sional, and signal processing) [1]–[5].

“The DFT is of interest primarily because it approximates
the continuous Fourier transform.” [1]. In this regard, the DFT,
which is usually computed via a fast Fourier transform (FFT)
algorithm, must be used with caution since it is not a correct
approximation in all cases [6]–[9]. First, the DFT is periodical
and constitutes a valid approximation of the Fourier transform in
only one half of a period. Second, the sampling rate of the func-
tion to be submitted to the DFT is a critical issue. Without sam-
pling the time1 function at a sufficiently high rate, a phenom-
enon known as aliasing may become intolerable and spoil the ac-
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1Without loss of generality, the reciprocal variablestime (t) and frequency
(f) are used throughout this paper.

curacy of the DFT as an approximation of the Fourier transform.
It could be thought that if the Nyquist criterion is fulfilled, ev-
erything should come out fine. The Nyquist criterion states that
the sampling rate must be at least twice the highest frequency
of the initial function [1], [2], [10]. However, a function may be
defined between 0 andonly, and the highest frequency of such
a time-limited function is infinite. Consequently, the DFT pro-
duces aliasing.2 One could argue that even though the highest
frequency is infinite, it is always possible to sufficiently increase
the number of sampled data points such that the error of the DFT
becomes as small as one wants. However, the required number
of data points could be exceedingly large. As an example, for
the function , the error on DFT ,
around , decreases roughly as . Hence, one must
increase by a factor of 1000 to decrease the error by a factor
of 10.

In some cases where the result of the DFT is used qualita-
tively, for example, in some Fourier transform infrared spec-
trometer (FTIR) experiments where the results are plotted and
visually examined by an experienced spectroscopist, a high ac-
curacy is not absolutely mandatory, but in some applications,
such as in deconvolution, where a division is performed in the
frequency domain, a slight error in the denominator function,
particularly when it is close to zero, can seriously distort the re-
sults [11].

However, one may increase the accuracy of the numerical
Fourier transform when the number of sampled data points is
limited. This can be implemented through the assumption that
the function, from which the sampled data points are extracted,
and its derivatives are continuous. The sampling process, which
is performed through the Dirac comb [1], in a sense, isolates
each data point and renders them independent from each other.
The function and its derivatives are no longer continuous. By
re-establishing the continuity between the sampled data points,
a method that yields an accurate numerical Fourier transform
can be devised.

II. THEORY IN -DIMENSION

Let and ,
. is the set of real numbers, the set of nonnegative

integers, and . Let us define Heaviside’s function
in -dimensions:

(1)

2The usual method of avoiding aliasing is to filter out the high-frequency
components, thus modifying the original signal.
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in which and are Heaviside’s functions in-dimensions and
in one dimension, respectively. Let us define a-dimensional
rectangular functions such as

(2)

with and ,
, , , and in which

(3)
Let or ( is the field of complex numbers) be
a continuous function that admits directional derivatives of any
order in any direction for all . is any convex set such that

. We now define the function

(4)

and adopt the following definition for the Fourier transform:

(5)

By expanding the inner product and reorganizing the terms, (5)
becomes

(6)

It is a well-known fact, which is evident from (6), that one-di-
mensional Fourier transform of a function can be performed by

successive one-dimensional (1-D) Fourier transforms. Conse-
quently, in the next section, we develop the theory in one dimen-
sion. In that case, generic nonindexed variables as
that stand for any indexed variable of a particular dimension of
the -dimensional space are used.

III. T HEORY IN ONE DIMENSION

By virtue of the properties of the differentiation of Heavi-
side’s and Dirac-delta functions [2], [12], the th derivative
of with respect to is

(7)

in which is defined as

if

if .
(8)

Equations (7) and (8) express the fact that theth derivative of
with respect to is the ordinary th derivative of the function
strictly inside the rectangular box where it is continuous and

differentiable, in addition to theth derivative of in the regions
where it is discontinuous.

According to our definition of the Fourier transform, we have

(9)

We can expand the integral in (9) into parts to form

(10)

The sum of the first and last integrals of the right-hand side of
(10) clearly is . Hence, (10) becomes

(11)

By separating the interval into equal to
subintervals, (11) can be rewritten as

(12)

Since is continuous and differentiable between and at 0 and
, it can be approximated for for each

, with a Taylor expansion

(13)

where is the th derivative of at point . Merging
(12) and (13) yields

(14)

With the substitution and an adequate permutation
of the integral and sums onand , (14) becomes

(15)

To numerically compute the Fourier transform of, we must
evaluate it for some discrete values of. Let ,

be these discrete variables. In addition, let us define
as the discrete version of . The integral in (15)

depends only on the variable(or ) and on parametersand
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and can be evaluated analytically, whetheris continuous
or discrete, once and for all, for each value ofas

(16)

Since the integral in the definition of is always finite and,
in the context of the Gamma function [13], when
is a negative integer, then for . When , by
direct integration of (16), we obtain

(17)

and by integration by parts, we have a recursive form forfor
any

(18)

The summation on in (15), when ,
is the discrete Fourier transform of the sequence ,

[1]. We denote it as . Since
and , we have

(19)

One should note that although we wroteand in-
stead of or and or , these functions always
depend on or .

Substituting (16) and (19) in (15), we obtain the following
result:

(20)

When , (20) becomes

(21)

Now, integrating by parts, the right-hand side of (9) yields

(22)

Defining , combining (20) and
(22), and reorganizing the terms yields

(23)

With the definition

(24)

(23) becomes

(25)

Given the definition of and , we have
and .

Using these facts in addition to the properties of Fourier

transform and those of Dirac delta functions [12], one easily
observes that expanding results in

(26)

In the discrete context, where , (26) takes the following
simple and significant form:

(27)

We refer to , as the boundary conditions of the system.
Up to this point, all equations are rigorously exact since

tends toward infinity. However, in practical situations, we intro-
duce approximations by limiting the range on. Let us define

as the truncating parameter, which, for reasons discussed
later, is always chosen as an odd integer. We refer to it as the
order of the system.

Let us expand (25) for each value of .
This generates a system ofdifferent equations, and for each of
these, we let range from 1 to . This gives the following
system written in a matrix form:

...
...

. . .
...

...
...

...

(28)
or, more compactly, as

(29)

The general expression for elements ofis

(30)

Let us now write (29) as

(31)

On the right side of (31), every term, except, is known.
contains the term , which is the DFT of the initial function.
All other terms in and depend on parameters and
of the function to be transformed and not on its data. (The eval-
uation of , which are the boundary conditions, is the subject of
the next section.) With the knowledge offrom (31), the terms
of (21), for , are completely determined. Thus, the
truncated version of (21) can be written as

(32)

Let us define a one row matrix as and write
(32) as follows:

(33)

With (33), we approximate the Fourier transform (or its in-
verse) of a digitized function in one dimension. The digitized
Fourier transform obtained with (33) is not bandlimited (as with
the DFT, which is periodical). Equation (33) is valid as an ac-
curate approximation of the analytical Fourier transform for all
values of [14].
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One should note that in (32), is undetermined when .
This can always be solved by Hospital’s rule or by direct inte-
gration of (16) with . Once these undeterminations due to

are solved, every term of (32) or (33) behaves well as
long as is an odd integer. For even values of, there are singu-
larities at , that cannot be removed.
These are due to the fact that whenis even, some terms in
(involved in the computation of ) have denominators that
go to 0, whereas the numerators remain nonzero. This is an im-
perative reason to choose odd values for.

It is important to observe that although (31) involves the in-
version of , it does not mean that one has to invert the matrix
each time a numerical Fourier transform is computed. Equation
(31) is a part of the mathematical development of the formula
used to compute the numerical Fourier transform. Each of its
terms can be handled symbolically. For a specific order, the
matrix is inverted only once to establish the formula for the
numerical Fourier transform.

Equation (33) can be thought of as the Fourier domain coun-
terpart for a complete function of the Taylor series in the time
domain for a single point. In the same way, a Taylor expansion
is more complex than its first term, and (33) is more complex
than the standard FFT. If, in a specific application, one does not
require to get rid of the periodicity of the DFT or is not bothered
by the aliasing, if one does not need more accuracy or does not
have to compute the Fourier transform for values ofbeyond
those inside the usual frequency band of the DFT, then there
is no point in using anything else than the usual DFT (FFT),
which remains a simple and valid tool in these circumstances.
However, if one or more of the aforementioned virtues of (33)
are desirable, the benefits of these few more terms in the series
are welcomed, and the burden of the added mathematical com-
plexity is compensated, as we will see, by the fact that the time
complexity of (33) remains that of the FFT.

Furthermore, although (33) contains the symbolic form of,
which can be used as is to form a single formula without numer-
ically evaluating each term of separately, (31) can be used to
compute each term of for values of from 0 to to pro-
duce accurate approximations of the DFT of the derivatives

for values of . Thus, applying the inverse DFT
operation to each of these approximations generates the corre-
sponding sequences that are accurate numerical derivatives

of all orders from 1 to of the initial function . This implies
that one can accurately compute the derivatives of any order of
a digitized function or signal [14].

Derivatives calculated in this manner are continuous in be-
tween and at each data point. Thus, with the , we
obtain spline polynomials of any odd degree, with their corre-
sponding properties [14]. Hence, such high-order spline inter-
polation polynomials allow integrals between any limit to be
accurately computed [14].

Let be any result (Fourier transform, derivative, or inte-
gral) obtained with an arbitrary order. Once the boundary con-
ditions are established, the error on (noted can be fairly
estimated since , relative to , can be considered almost
as the exact result. To perform error estimation, one can use the
following relation: , where is any oper-
ator one can define to meet specific needs [14].

IV. BOUNDARY CONDITIONS

The use of (33) implies the evaluation of matrix, which
are the boundary conditions of the function, as defined in (27).
One can use any method one wants to accomplish that task.
However, a method is proposed here that proves to give very
accurate boundary conditions, as long as the function to which
it is applied is smooth enough. Fortunately, what is meant by
smooth enoughcan be determined by the method itself. This is
fully discussed toward the end of this section.

Let us expand (25) for each value of .
This generates a system ofdifferent equations, and for each of
these, we let range from 1 to . This gives the following
system, which is written in matrix form:

...
...

.. .
...

...
...

(34)

or, more compactly, as

(35)

Note that the matrix is completely known since each and
every one of its terms depends only on. The general expression
for the elements of is

(36)

Matrix is unknown. If it were, we could evaluate from (35)
as

(37)

Unfortunately, for , , it happens that
and cannot be computed. However, for

values of around , the approximation (37) is quite ac-
curate when the function is smooth enough. We take advantage
of this fact to compute .

The first element of , which is , is the DFT
of the sequence . It is completely determined for each value
of . It is not the same situation for the other elements of,
which are still unknown. In addition, the elements of matrix
are given for each value of . We can then extract the
following from (37):

(38)

in which, for brevity, we set . Let us now define
as an interval of values of centered on , as follows:

(39)
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Let us expand (38) for each value of . (It is understood
that in practical cases, for each instance ofin each term, one
has to replace it by .) Doing so yields the following system:

...
...

...
. . .

...
...

(40)
Note that is compact notation for evaluated
at and . Let us express (40) more compactly
as , which yields

(41)

Equation (41) completely determinesfrom (the discrete
Fourier transform of the digitized initial function . According
to (27), knowing numerically specifies .
They are the boundary conditions of the system.

Equation (24) is the generic expression of terms inand .
Defining

(42)

and successively substituting (17), (18), and (42) in (24) yields

and (43)

These substitutions lead to dramatic simplifications in the ex-
pression of . Nevertheless, terms in matrix in (40), once
expanded, still appear rather cumbersome. Further simplifica-
tion is desirable. A detailed examination of reveals that

(44)

in which is Euler’s polynomial [15] of degree, which is
defined as

(45)

Note that Euler’s polynomials can be built with Euler’s triangle.
Equations (44) and (45) are used to fill matrixas specified by
(40).

To compute through (41), the matrix has to be inverted. It
should be noted thatdoes not depend on the values of the func-
tion but only on its parameters (and ). The size of is .

is the order of the system and the degree of each interpolating
Taylor polynomials between each data point. Although it is pos-
sible and not difficult to do, it is very unlikely that one uses very
large values for . For example, in the context of this method,

is a very high value, but is still a relatively small nu-
merical matrix that can be inverted efficiently. Moreover, for a
class of functions that share the same parameters (as is the case
in many dimensions), matrix is inverted only once. The com-
putation of boundary conditions is then a rapid operation.

In the context of the Nyquist sampling theorem, the func-
tion to be sampled is bounded in the frequency domain, and
the sampling rate must be, at least, twice the highest frequency

of the function [1], [2], [10]. Hence, such a function is always
smooth enough. However, in the context of this paper, func-
tions are bounded in the time domain and unbounded in the fre-
quency domain. This is why the boundary conditions become an
issue. The method presented in this section to compute boundary
conditions is quite efficient as long as the function is smooth
enough between the boundaries. Since the Nyquist criterion can
no longer be used, one must have another criterion of smooth-
ness. Fortunately, an operational criterion can be derived from
the method itself, and it appears that a function does not have to
be so smooth to be considered smooth enough by the method.

Let us define the following measure of error on boundary
conditions for a specific order as follows:

(46)

The operator can be defined as one wants to fulfill its purpose.
For example, one could use, as we do in the examples below,

.
For a specific sampled function, one may increaseas long as
decreases. The value offor which the error is minimum

is the optimum value of and is denoted . The smoother the
function is between the boundaries, the higher becomes.
If the sampling rate is reduced or if the frequency component
of the function is increased, decreases. If it happens that

, then the method presented in this section to obtain
boundary conditions is no longer adequate. It is the case, for ex-
ample, for a discrete random function or for a high-frequency
function that is so sparsely sampled that it appears almost to be
random. However, in such situations, no method can claim to
be very accurate, and one has to resort to information about the
function that is not obtained from mere sampled data points. If
such external information is unavailable, then one could use a
method as simple as possible to compute the boundary condi-
tions, such as linear interpolation between points.

It should be noted that even though for boundary con-
ditions may be low, once these boundary conditions are estab-
lished, a value of as high as one wants can be used with (31)
or (33).

V. TIME COMPLEXITY

In one dimension, a close examination of (28) and (33) re-
veals that the computation of only one FFT is required. The
other terms form a correcting operation to be applied only once
on each of the values of the FFT. The time complexity of
the entire correcting operation is thus , and the time com-
plexity of the FFT is . Hence, the time complexity
of the entire algorithm is when is kept constant.

The time complexity of the correcting operation, relative to,
is , but the error on computed results decreases exponen-
tially with the increase of . Hence, as long as one can afford to
increase , the tradeoff is strongly beneficial [14].

According to (6), this method can be applied sequentially to
compute an accurate-dimensional Fourier transform. In this
multidimensional case, for each , we have

. This interval is separated into equal
subintervals, and . As with the

ordinary DFT , the order in which the dimensions are
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Fig. 1. (a) Function (48) withfc = 20. (b) DFT of the function shown in (a). (c) Numerical Fourier transform computed with PM and with� = 9. E is the
average of the absolute value of the error. For the DFT, the error is computed for points from 0 toN=2. For PM, the error is computed on the full range of frequency.

treated is irrelevant. The number of times (33) has to be applied
to completely compute the-dimensional Fourier transform is

where and (47)

The time complexity is then . Let us set
, being constants. It is easy to show that the time

complexity is , which is the same as that of the
DFT in the -dimension.

VI. EXAMPLES IN ONE DIMENSION

In this section, several examples are presented to illustrate the
different aspects of the proposed method and to demonstrate the
concepts of the previous sections. (For brevity, in the text and in
the figures, PM stands for the proposed methods of this paper.
The context makes it clear if it is PM for the boundary conditions
or for Fourier transform.) The first set of examples are based on
the following function:

(48)

(This function mimics typical measurements of thermody-
namics experiments conducted to determine the ratio ,
these parameters being the specific heat of a gas.)

When , there are 12.8 data points for each cycle of the
cosine term of the function. It is not a very high sampling rate,
but it is sufficient to make the function appear relatively smooth
between the boundaries. Then, we obtain , which
means that a high accuracy can be reached with the method for
boundary conditions described previously. When , we
have 6.4 data points per cycle, and . The sampled
function begins to appear coarse (see Fig. 1) but is still man-
ageable and the method for boundary conditions performs very
well. When , , there are 5.1 data points for each
cycle of the cosine, and the method can still be used but it is at
the limit. When the sampling rate relatively to the frequency
of the function is reduced, drops rapidly, but conversely,
this means that the sampling rate does not have to be greatly in-
creased to obtain high values for . In the examples below,
when , the following simple formulas are used for the
boundary conditions: ,
and for .

Fig. 1 shows function (48) when and its transforms
by the DFT algorithm and by the PM algorithm. The parame-

ters and error measures are indicated in the Fig. 1. The curve
given by PM is graphically indistinguishable from the analyt-
ical transform.

Fig. 2 shows function (48) when and its transform
by the DFT algorithm and by the PM algorithm for different
values of . The initial function is quite rough. With ,
there are only 2.56 data points per cycle of the cosine term. The
initial function is unbounded in frequency, and hence, it is
not possible to discuss the sampling rate in terms of the Nyquist
criterion since the highest frequency is infinite. If the cosine term
in the function was alone and unbounded in the time domain,
the minimum number of samples per cycle needed to satisfy the
Nyquist criterionwould be2. With2.56 samples percycle,weare
almost at the limit. This function is demanding for both methods,
DFT and PM. The DFT is indeed periodical and the two central
peaks are very close, which worsen the already present aliasing.
Our PM attempts to remove the periodicity and the aliasing to
make the computed result as close as possible to the exact result.
To achieve this, the orderhas to be increased. With ,
Fig. 2 clearly shows a residual peak around . With

, the result is almost exact. The residual peak disappears
and the average error reduces to , which is about
408 times more accurate than the DFT. Furthermore, a proper
removal of periodicity gives us access to the frequency content of
the function, not only between 0 and but also between

and , and even beyond, as we will see in the next
example. In the present case, under integration, the frequency
content between and is approximately 16% of
the transform between 0 and . It may not be negligible.
With usual DFT, this information is unavailable.

The next example uses another usual and frequent function:
a fast exponential decay

(49)

Fig. 3 shows this function and its transforms. The number of
sampled points between 10 and 100% of the amplitude is only
four. The frequency spectrum of such a function is particularly
wide. It is evident that the aliasing prevents the DFT from re-
vealing the frequency content of . To obtain it accurately,
this time, PM has been used to compute the Fourier transform
over three periods of the usual DFT. Fortunately, PM does not
have to be modified for such a task. The lower curve of Fig. 3(b)
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Fig. 2. (a) Function (48) withfc = 50. (b) DFT of the function shown in (a). (c) Numerical Fourier transform computed with PM and with� = 3. (d) � = 5.
(e) � = 7. (f) � = 13. E is the average of the absolute value of the error. For the DFT, the error is computed for points from 0 toN=2. For PM, the error is
computed on the full range of frequency.

Fig. 3. (a) Function (49). (b) Upper curve is the DFT of the function shown in (a). The lower curve is the numerical Fourier transform computed with PM and
with � = 5. As usual,E indicates the average of the absolute value of the error.

shows this result, which is graphically indistinguishable from
the exact transform. This time, under integration, the frequency
content between and is about 50% of the
total. It cannot be neglected. This example clearly shows that
PM performs accurately for a function that is far from being
smooth, whereas the classical DFT fails completely.

VII. EXAMPLES IN TWO DIMENSIONS

In this section, an example in two dimensions is used to il-
lustrate the algorithm. The choice of such an example is not ob-
vious. That is to say, the function must not be trivial; it must be
difficult enough for the computation of the Fourier transform to
be numerically demanding. On the other hand, for purposes of
comparison, the Fourier transform of the function must be ana-

lytically known. The chosen initial function for our example is
then the following complex function:

(50)

The real part is a combination of damped, slanted oscillations.
The imaginary part is a nonsymmetrical Gaussian peak purpose-
fully slanted by an exponential to avoid error cancellation by
symmetry. For both variables, the function is discontinuous at 0
and at . Fig. 4(a) and (b) shows the modulus of (50) and
of its analytical Fourier transform for , respec-
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Fig. 4. Modulus ofh and ofF fhg.

Fig. 5. Modulus of DFTfhg and of error on DFTfhg (�10 ). The error is computed on the first 64� 64 data points only. Maximum error= 0:3� 10 .

Fig. 6. Modulus of the numerical Fourier transform given by (33), with� = 13 and modulus of error onH (�10 ). The error is computed on the full range
of the 128� 128 data points. Maximum error= 0:7 � 10 .

tively. The formula of the analytical Fourier transform of this
2–D function is not shown here since it is several pages long.

Fig. 5(a) shows the DFT of . The expected periodical be-
havior is evident. Fig. 5(b) shows the modulus of the error for
the DFT relatively to the analytical Fourier transform. To be fair,
this error must indeed be computed on the first
data points only since the DFT is periodical.

Fig. 6(a) shows the numerical Fourier transform ofcom-
puted with (33) for . It is clearly seen that this approx-
imation behaves as the analytical Fourier transform and is not
periodical. Fig. 6(b) shows the modulus of the error for this ap-
proximation relative to the analytical Fourier transform, com-
puted this time on the full range of the data points.
For comparison, one should note the vertical scale factors in
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TABLE I
AVERAGE OF THEMODULI OF THE ERROR ON THENUMERICAL FOURIER

TRANSFORM OFFUNCTION (50) AND COMPUTED WITH (33) FOR DIFFERENT

VALUES OFN AND �. THE LAST LINE IS THE AVERAGE OF THEMODULUS

OF THE ERROR FOR THEDFT OF THE SAME FUNCTION

Figs. 5(b) and 6(b), which show that the error is reduced by at
least 14 orders of magnitude.

Equation (33), which is used for Fig. 6, is used again, on the
same function [see (50)] with different values of
and . The average of the moduli of the error on the numerical
Fourier transform given by (33) relative to the exact analytical
Fourier transform are shown in Table I in addition to the results
obtained with the DFT.

We see that for small values of (actually for ),
increasing does not improve accuracy because the optimum
value for is already reached. If is slightly increased,

grows rapidly, and the error decreases dramatically. Note
that for , ; for ; for

; and for . We also note that,
to the exception of small values of , the error from (33) is
always much smaller than the error from the DFT, and for any
, it decreases more rapidly with the increase ofthan does

the error from the DFT with the same increase in.

VIII. C ONCLUSION

In principle, when the Fourier integral of a function is analyt-
ically obtainable, it is possible to compute its Fourier transform
exactly. In all other cases, one must resort to purely numerical
techniques. In addition, the sampling process involves the Dirac
comb, which destroys the continuity of a sampled analytical
function. To make it manageable on a finite computer, the dig-
itized function is defined as a finite number of points only. The
usual tools to numerically compute the Fourier transform of a
digitized function in one or more dimensions is the DFT, which
is efficiently implemented as FFT algorithms. However, in many
cases, the DFT is not an adequate numerical approximation of
the Fourier transform. On the one hand, there is the analytical
Fourier transform that is, most of the time, not known, and on
the other hand, one has the efficient DFT, which computes an
approximation of the Fourier transform without attempting to
reduce the unavoidable ravages of the Dirac comb. The method
presented in this contribution is between these two extremes; its
positionbeing determined by the value of, which is the order
of the system. The method provides accurate approximations of
the continuous Fourier transform, is no longer periodical, and
computes thenumericalFourier transform inabroader frequency
domain than the usual half-period of the DFT. The method
gives accurate numerical partial derivatives of any order and the

polynonial splines of any odd degree. The error can be easily
computed by comparing the results of two successive odd orders.
The time complexity is . The time complexity, relative
to (independent of the time complexity related to) is ,
whereas the accuracy increases exponentially with. Hence,
the numerical accuracy increases much more rapidly than the
computational cost of the proposed method. For smooth or rough
functions, theproposedmethodperforms better than the classical
DFT and yields information that is not obtainable in principle
with the DFT. The relative complexity of the proposed method is
justified by the nature and the quality of the results it provides.
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