
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. NO. MONTH YEAR 1The Frequency Structure of 1D Occluding ImageSignalsSteven S. Beauchemin and John L. BarronAbstract| We present a theoretical investigation of thefrequency structure of 1D occluding image signals. Weshow that image signal occlusion contains relevant informa-tion which is most easily extractable from its representa-tion in the frequency domain. For instance, the occludingand occluded signal velocities may be identi�ed as such andtranslucency phenomena may be understood in the termsof this theoretical investigation. In addition, it is foundthat the structure of occluding 1D signals is invariant underconstant and linear models of signal velocity. This theoret-ical framework can be used to describe the exact frequencystructure of non-Fourier motion and bridges the gap be-tween such visual phenomena and their understanding inthe frequency domain.Keywords| Occlusion, Fourier transforms, Optical Flow,Non-Fourier motionI. IntroductionTHE problem posed by occlusion and translucency phe-nomena is investigated for 1D image signals. Tradi-tionally, signal velocity has been computed directly fromspatial extents with tracking and matching processes orspatiotemporal derivatives. These techniques impose strin-gent signal characteristics to ensure their correctness. Forinstance, spatiotemporal numerical derivation of a trans-lating signal implies the sampling of a continuous signalover the extent of derivation. Such processes approximatereality only if computed over extents that do not containocclusion discontinuities or that are not a mixture of twoor more signals due to translucent e�ects.The inability of classical spatiotemporal processes to re-solve signal velocity over extents exhibiting signal occlu-sion or translucency indicates that such phenomena mightbe better understood in another domain of representation.We postulate that spatiotemporal information constitutesan obstacle to determining the translational rates of oc-cluding or translucent 1D image signals and we derive, forvarious models of translation and in the frequency domain,several theorems describing the frequency structure of sig-nal discontinuities arising from occlusion in the spatiotem-poral domain. We consider constant and linear models ofsignal translation and show that translucency phenomenamay be understood as special cases of the theoretical re-sults exposed herein.Steven S. Beauchemin is with the GRASP Laboratory, Universityof Pennsylvania, 3401 Walnut Street, Suite 300C, Philadelphia, PA.19104-6228. E-mail: beau@grip.cis.upenn.eduJohn L. Barron is an Associate Professor of Computer Science atThe University of Western Ontario, London, Canada, N6A 5B7. E-mail: barron@csd.uwo.ca

A. MethodologyTo analyze the frequency structure of 1D occluding im-age signals while preserving representations that are asgeneral as possible, an e�ort is made to pose only thosehypotheses that preserve the generality of the analysis tofollow. We describe the assumptions and the proof tech-niques with which the theoretical results are obtained.Image Signals The geometry of image formation, al-though a simple process, generally yields complexsignals. Conceptually, assumptions concerning scenestructure should not be made, as they constrain thegeometry of observable scenes. In addition, any mea-sured physical signal, such as image intensities, satis-�es Dirichlet conditions. Such signals admit a �nitenumber of �nite discontinuities, are absolutely inte-grable and may be expanded into complex exponen-tial series. Dirichlet conditions constitute the sum ofassumptions made on 1D image signals.Velocity On a local basis, constant models of sig-nal translation may be adequate to describe velocity.However, linear models admit an increased number ofdeformations, such as signal dilation. Hence, the ex-tent used for signal analysis may be larger with linearmodels. We considered both constant and linear mod-els, leaving deformations of higher order for furtheranalysis.Occluding Points Occluding points in 1D image sig-nals are represented with Heaviside's functions. In 1D,this model is adequate in the sense that it entierly com-prises the occluding phenomenon. However, when 2Dsignals are concerned, occluding boundaries betweenobjects and backgrounds may have various shapes andthe use of a 2D Heaviside's function as an occludingboundary model limits the validity of the analysis tolocal extents.Proof Techniques The Theorems and their Corollar-ies established in this analysis emanate from a generalapproach to modeling 1D signals exhibiting occlusiondiscontinuities. An equation which describes the spa-tiotemporal pattern of the superposition of a 1D back-ground and an occluding 1D signal is given [3].A characteristic function describing the position anoccluding signal occupies within the imaging space ofthe visual sensor is de�ned as�(x) = � 1 if x within extent of occluding signal0 otherwise, (1)and two 1D image signals I1(x) and I2(x), correspond-ing to the occluding and occluded signals respectively,



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. NO. MONTH YEAR 2are de�ned to form the complete signal patternI(x; t) = I1(v(n)1 (x; t))�(v(n)1 (x; t))+ h1� �(v(n)1 (x; t))i I2(v(n)2 (x; t)); (2)where n in v(n)i (x; t) represents the model of velocitybeing used. For instance, n = 0 is constant and n = 1is linear velocity. Note that the characteristic functiondescribing the object in (2) has the same velocity asits corresponding intensity pattern I1(x).In this equation are inserted the hypotheses made onits various components and the structure of 1D oc-clusion in the frequency domain is developed. Thatis to say, signal structures are expanded into complexexponential seriesIi(x) = 1Xn=�1 cineixnki ; (3)where Ii(x) is the ith intensity pattern, cin are complexcoe�cients, n are integers, and ki is the fundamentalfrequency of the expansion. This frequency representsthe discretization step of the signal. Occlusion bound-aries are represented with 1D Heaviside's functionsu(x) = � 1 if x � 00 otherwise: (4)Relevance of Fourier AnalysisMany algorithms op-erating in the Fourier domain for which a claim of mul-tiple motions capability is made have been developed[7]. However, this is performed without a completeknowledge of the frequency structure of occlusion phe-nomena. In addition, non-Fourier spectra, includingocclusion and translucency e�ects have been conjec-tured to have mathematically simple characterizationsin Fourier space [5]. Consequently, the use of Fourieranalysis as a local tool is justi�ed as long as one re-alizes that it constitutes a global idealization of localphenomena. In that sense, Fourier analysis is used asa local tool whenever Gabor �lters, wavelets or localDiscrete Fourier Transforms are employed for signalanalysis.Experimental Technique Given the theoretical na-ture of this contribution, the purpose of the numericalexperiments is to verify the validity of the theoreticalresults. In order to accomplish this, the frequency con-tent of the image signals used in the experiments mustbe entirely known to the experimenter, thus forbiddingthe use of natural image sequences. In addition, im-age signals with single frequency components are usedin order to facilitate the interpretation of experimentsinvolving Fast Fourier transforms. The use of morecomplex signals impedes a careful examination of thenumerical results and do not extend the understand-ing of the phenomena under study in any particularway.

B. Problem De�nitionIt is clear that velocity discontinuities are di�erent fromsignal discontinuities. However, there is a recurrent confu-sion within the existing literature related to optical 
ow.For instance, many image velocity techniques which employregularization processes often include a relaxation of thesmoothness requirement within extents exhibiting strongintensity variations [8], [9], [10], [1], although signal dis-continuities may not correspond to velocity discontinuities.Indeed, the discontinuities caused by occlusion are extrin-sic whereas signal discontinuities are intrinsic in terms ofsignal properties.II. Occlusion in the Frequency DomainThe Fourier transform of a translating 1D image signalI(x; t) is obtained with the shift property asÎ(k; !) = Z Z I(x � vt)e�i(kx+!t)dxdt= Î(k)�(kv + !); (5)where kv+! = 0 represents an oriented line containing theorigin of the frequency domain, onto which the spectrumÎ(k) lies. The slope of the linear spectrum is proportionalto v, the velocity of the signal.Following Fleet and Jepson [4], velocity discontinuitiesarising from occlusion may be written by considering twotranslating signals, one partially occluding the other. LetI1(x) and I2(x) be two translating signals coupled with thecharacteristic function (1) indicating the occluding signalposition. The resulting 1D occlusion scene may be writtenin terms of the translating signals and the characteristicfunction asI(x; t) = I1(x� v1t)�(x� v1t)+ [1� �(x� v1t)]I2(x� v2t): (6)By using the shift property of Fourier transforms, (6) isrewritten in spatiotemporal frequency space asÎ(k; !) = [Î1(k)�(kv1 + !)] � [�̂(k)�(kv1 + !)]� [Î2(k)�(kv2 + !)] � [�̂(k)�(kv1 + !)]+ Î2(k)�(kv2 + !): (7)The �rst two terms of (7) correspond to the occluding andoccluded signals convolved with the Fourier spectrum of theocclusion boundary and constitute the spectral distortionintroduced by the discontinuity.A. Models of VelocityThe velocity function may be expressed as a polynomialin the coordinate system of the signal. Generally, a Taylorseries expansion for an ith image plane velocity may bewritten asvi(x; t) = pXj=0 qXk=0 @j+kvij!k!@xj@tk xjtk����x;t=~0 (8)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. NO. MONTH YEAR 3where p + q <= n. We adopt the notation v(1)i (x; t) =ai1x � ai2t to describe 1D, linear velocity and v(0)i (x; t) =x�ai2t for constant velocity. Negative rates of translationare used without loss of generality and for mere mathemat-ical convenience.B. Occlusion with Constant VelocityIn this section, two cases of occlusion with constant mod-els of velocity are considered. The analysis begins with theconsideration of a simple case consisting of 1D sinusoidalintensity pro�les translating at constant velocities. Thisresult is then generalized to arbitrary signals and linearmodels of velocity.B.1 Sinusoidal SignalsLet I1(x) be occluding a 1D intensity pattern I2(x), withrespective velocities v(0)1 (x; t) and v(0)2 (x; t). The resultingintensity pro�le can then be expressed asI(x; t) = u(v(0)1 (x; t))I1(v(0)1 (x; t))+ (1� u(v(0)1 (x; t)))I2(v(0)2 (x; t)) (9)where u(x) is (4). The Fourier transform of (9) isÎ(k; !) = [û(k)�(ka12 + !)] � [Î1(k)�(ka12 + !)]� [û(k)�(ka12 + !)] � [Î2(k)�(ka22 + !)]+ Î2(k)�(ka22 + !); (10)where û(k) = ��(k) + (ik)�1 is the Fourier transform ofHeaviside's function.Theorem 1: Let I1(x) and I2(x) be cosine functions withrespective angular frequencies k1 = 2�f1 > 0 and k2 =2�f2 > 0 and let I1(v(0)1 (x; t)) = c1 cos(k1(x � a12t)) andI2(v(0)2 (x; t)) = c2 cos(k2(x � a22t)). The frequency spec-trum of the occlusion isÎ(k; !) =�2 c1�(k � k1; ! � k1a12) +(1� �)2 c2�(k � k2; ! � k2a22) +i2 �c2�(ka12 + ! � k2�a2)(k � k2) � c1�(ka12 + !)(k � k1) �(11)where �a2 = a12 � a22.Theorem 1 is derived to characterize occlusion with thesimplest parameters, such as a constant model of velocity,the structure of occlusion boundaries and the number ofdistinct frequencies to represent both the occluding andoccluded signals. A number of fundamental observationscan still be made even under these restrictive assumptions:� The occlusion scene in frequency space consists of theFourier transform of Heaviside's function convolvedwith every non-zero frequencies of both the occludingand occluded signals. The result of these convolutions

are the distortion terms cast by the phenomenon ofocclusion.� The power content of the distortion term forms linearspectra of decreasing power about the frequencies ofboth signals and their orientation is consonant withthe velocity of the occluding signal. Hence, The de-tection of this orientation allows to identify the oc-cluding velocity, leaving the occluded velocity to beinterpreted as such.B.2 Generalized SignalsIn general, the occluding and occluded signals cannot berepresented as simple sinusoidal functions. To gain gen-erality, I1(x) and I2(x) are be expanded as complex ex-ponential expansions, assuming that functions I1(x) andI2(x) satisfy Dirichlet conditions [6].Theorem 2: Let I1(x) and I2(x) be functions satisfyingDirichlet conditions such that they may be expressed ascomplex exponential series expansionsI1(x) = 1Xn=�1 c1neink1xI2(x) = 1Xn=�1 c2neink2x; (12)where n is integer, c1n and c2n are complex coe�cientsand k1 and k2 are the fundamental frequencies of theexpansions. Let I1(x; t) = I1(v(0)1 (x; t)) and I2(x; t) =I2(v(0)2 (x; t)). The frequency spectrum of the occlusion isÎ(k; !) = � 1Xn=1 c1n�(k � nk1; ! + nk1a12)+ (1� �) 1Xn=�1 c2n�(k � nk2; ! + nk2a22)+ i 1Xn=�1� c2n�(ka12 + ! � nk2�a2)(k � nk2)�c1n�(ka12 + !)(k � nk1) � : (13)Theorem 2 generalizes Theorem 1 to signals composed ofan arbitrary number of discrete frequencies. Dirichlet con-ditions are hypothesized for each signal, since any physicalsignal satis�es such conditions. The properties of Theorem1 hold for the generalized signals of Theorem 2. Indeed,both velocities and their respective signals can be discrim-inated, as is the case for Theorem 1.The de�nition of signal velocity as a constant trans-lational rate is limited. To gain generality, signal dila-tion is included and the velocity function is written asv(1)i (x; t) = ai1x� ai2t.Theorem 3: Let I1(a11x) and I2(a21x) be functions satis-fying Dirichlet conditions such that they may be expressedas complex exponential series expansions:I1(a11x) = 1Xn=�1 c1neink1a11x



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. NO. MONTH YEAR 4I2(a21x) = 1Xn=�1 c2neink2a21x; (14)where n is integer, c1n and c2n are complex coe�cientsand k1 and k2 are the fundamental frequencies of the ex-pansions. Also let I1(x; t) = I1(v(1)1 (x; t)) and I2(x; t) =I2(v(1)2 (x; t)). The frequency spectrum of occlusion isÎ(k; !) = � 1Xn=�1 c1n�(k � nk1a11; ! + nk1a12)+ (1� �) 1Xn=�1 c2n�(k � nk2a21; ! + nk2a22)+ i sgn(a11) 1Xn=�1�c2n�( 1k + ! � nk2�12)(k � nk2a21)�c1n�( 1k + !)(k � nk1a11) � (15)where  i = ai2ai1 and �ij = aj1ai2 � ai1aj2ai1 :Theorem 3 shows the frequency structure of occluding 1Dimage signals and, when put in relation with Theorem 2, itis observed that the structure of occlusion is invariant withrespect to both constant and linear models of velocity.Theorems 1 through 3 show the structure of occlusion inthe Fourier domain for constant and linear models of veloc-ity for 1D image signals. These structures have interestingproperties which we proceed to formally state in the formof Corollaries.Corollary 1: The structure of occlusion is invariant underconstant and linear models of velocity.Under constant and linear models of velocity, it is foundthat the structural aspect of the Fourier spectrum is iden-tical. The power generated by the distortion �ts lines thatare parallel to the constraint line of the occluding signal.Although the orientation of these structures depict ratios ofthe linear parameters, a collection of those in a spatiotem-poral extent yields these parameters in the least-squaressense. This result also indicates that this structural invari-ance may be used to detect occlusions under constant orlinear velocity equally accurately with a unique mechanism.Corollary 2: Under an occlusion phenomenon, the veloc-ities of the occluding and occluded signals can always beidenti�ed as such.Under occlusion, the orientations of the distortion termsare essentially parallel to the constraint line of the occlud-ing signal. Hence, the orientation of the constraint linecontaining the origin and parallel to the distortion termsyields the velocity of the occluding signal, thus leaving theoccluded signal velocity to be interpreted as such.B.3 Geometric InterpretationWe performed a series of experiments to graphicallydemonstrate the composition of a simple occlusion scenecomposed of 1D sinusoidal signals. In addition, the signals

are Gaussian-windowed to avoid the Gibbs phenomenonwhen computing their Fast Fourier Transforms (FFTs).Figure 1a, b and c show the components of a simple oc-clusion scene, pictured in Figure 1d. Figure 1a is the oc-cluding signal with spatial frequency 2�16 and velocity �1:0,such that I1(x; t) = cos�2�16 (x+ t)� (16)and in 1b) is the occluded signal with spatial frequency 2�8and velocity 1:0, yieldingI2(x; t) = cos�2�8 (x� t)� : (17)The occluding boundary in Figure 1c) is the 1D step func-tion (4) and translates with a velocity identical to that ofthe occluding signal.The resulting occlusion scene in Figure 1d) is constructedwith (6), where I1 is (16), I2 is (17) and � is (4). Figures 1ethrough h show the amplitude spectra of �gures 1a throughd respectively, where it is easily observed the the spectrumof the step function (4) is convolved with each frequencyof both sinusoidals.III. Numerical ExperimentsSeveral experiments were performed in support of theTheorems. The Fourier spectra obtained with both a stan-dard FFT algorithm and those predicted by the theory arecompared. In addition, phase shifts and non-Fourier mo-tions are examined.In order to perform the numerical experiments, two 1Dsinusoidals which respectively act as occluding and oc-cluded signals are used.Expression (9) is used with I1(v(0)1 (x; t)) = c1 cos(k1(x�a12t)) and I2(v(0)2 (x; t)) = c2 cos(k2(x � a22t)), where I1and I2 are the occluding and occluded signals with respec-tive frequencies k1 = 2�16 and k2 = 2�8 . Constants c1 and c2correspond to signal amplitudes. To limit boundary condi-tions when numerically computing Fourier transforms, thesignal is windowed with a Gaussian envelope. The resultingsignal is analytically expressed asI(x; t)G(x; t;�); (18)where G(x; t;�) = 12��2 e��x2+y22�2 �:A standard deviation of 35.0, measured in image units, isused for the windowing of the signal. The discrete Fouriertransforms occlusion scenes such as (18) obtained with astandard FFT algorithm are shown in Figure 2e throughh. Analytically, the continuous Fourier transform of (18)is Î(k; !) � Ĝ(k; !;�); (19)where Î(k; !) is a discretized version of Theorem 1 whichmodels aliasing e�ects due to periodicity. Figures 2ithrough l show the corresponding theoretical predictions.
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Amplitude Spectrum of Sinusoid 1 Amplitude Spectrum of Sinusoid 2 Amplitude Spectrum of Step Function Amplitude Spectrum of Occlusion

Fig. 1. (top): The composition of a simple 1D occlusion scene. a) The occluding sinusoidal signal with frequency k1 = 2�16 and velocitya12 = �1:0. b) The occluded sinusoidal signal with frequency k2 = 2�8 and velocity a22 = 1:0. c) The translating step function usedto create the occlusion scene. d) The occlusion as a combination of a), b) and c). (center): Image plots of amplitude spectra and(bottom): amplitude spectra as 3D graphs.The spectra obtained with both a standard FFT algorithmand the theoretical results are essentially identical. Theseexperiments are performed with various velocities for theoccluding signal. Figures 2a through d show the occlusionscenes with respective occluding velocities of a11 = �1:0,�0:5, 0:5 and 1:0. When both the occluding and occludedsignals have identical velocities as in Figure 2d, the spa-tiotemporal frequencies and the distortion terms align toform a linear spectrum. This is a typical case of signaldiscontinuities that do not constitute velocity discontinu-ities. Figure 2 shows that the orientation of the distortionentirely depends on the velocity of the occluding signal. Inall cases, the distortion is parallel to the constraint line ofthe occluding signal.A. TranslucencyIn the context of image signals, transmission of lightthrough translucent material may cause multiple signal ve-locities to arise in a given spatial extent. Generally, thise�ect is mathematically expressed asI(x; t) = f(�1)(v1(x; t))I2(v2(x; t)); (20)

where f(�1) is a function of the density of the translucentsignal [3]. Under the local assumption of spatially constantf(�1) with translucency factor ', (20) is reformulated as aweighted superposition of signals, written asI(x; t) = 'I1(v1(x; t)) + (1� ')I2(v2(x; t)); (21)where I1(v1(x; t)) is the intensity pro�le of the translucentsignal and I2(v2(x; t)) is the intensity pro�le of the occludedsignal. With I1(v1(x; t)) and I2(v2(x; t)) satisfying Dirich-let conditions, the frequency spectrum of (21) is writtenas Î(k; !) = ' 1Xn=�1 c1n�(k � nk1; ! + nk1a12)+ (1� ') 1Xn=�1 c2n�(k � nk2; ! + nk2a22)(22)With the exception of the distortion term, and to withinscaling factors, (22) is identical to (15)and, with respectto its frequency structure, translucency may be reduced toa special case of occlusion for which the distortion termsvanish.
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6-t x a) b) c) d)
6-! kx e) f) g) h)
6-! kx i) j) k) l)Fig. 2. Comparison of numerical results against theoretical predictions. Frequencies k1 and k2 of the occluding and occluded signals are 2�16and 2�8 respectively. The velocity of the occluded signal is a22 = 1:0. (top): a) a12 = �1:0; b) a12 = �0:5; c) a12 = 0:5; d) a12 = 1:0.(center): e) through h) Fast Fourier transforms of corresponding occlusion scene (bottom): i) through l) Theoretical results.B. Generalized Occluding PointFor reasons of simplicity and clarity, in each Theoremand numerical result, the occluding point contained theorigin of the coordinate system. We generalize this by de-scribing the occlusion asu(x) = � 1 if x+ t0 � 00 otherwise ; (23)where t0 is a shift from the origin and its Fourier spectrumbecomes eit0k ���(k) � ik�1� �(kai2 + !) (24)Equation (23) can be further simpli�ed as��(k)� ik�1eit0k�(kai2 + !) (25)The Fourier spectrum of the occluding point is to be con-volved with the complex exponential series expansions ofthe occluding and occluded signals and subsequently withthe Fourier transform of the Gaussian window. In the caseof the occluding signal, the convolution with the the oc-cluding point can be written as� 1Xn=�1 c1n�(k � nk1; ! + nk1a12)�

ieit0(k�nk1) c1n�(k � nk1; ka12 + !)(k � nk1) (26)and, similarly for the occluded signal� 1Xn=�1 c2n�(k � nk2; ! + nk2a22)�ieit0(k�nk2) c2n�(k � nk2; ka22 + !)(k � nk2) (27)These convolutions are combined together to obtain theFourier spectrum of occlusion with a generalized occludingpoint. We conducted experiments with 1D image signalsand shifted the occlusion point with di�erent values of t0in (23). As observed in Figure 3, these phase shifts have noe�ect on the amplitude spectrum of occlusion in frequencyspace. The variations in the amplitude spectra are dueto the Gaussian windowing of the occlusion scene. Forinstance, the frequency peaks of the occluding signal inFigure 3e show more power than those of the occludedsignal, owing to the fact that the signal is dominant withinthe Gaussian window. The contrary is observed when theoccluded signal occupies most of the window, as shown inFigure 3h.
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6-t x a) b) c) d)
6-! kx e) f) g) h)Fig. 3. Phase shifts from occluding edge. (top): a) t0 = �20:0. b) t0 = �10:0. c) t0 = 10:0. d) t0 = 20:0. (bottom) e) through h):Corresponding frequency spectra. The relative magnitude between the occluding and occluded signals depend on their respective visibleareas under the Gaussian envelope. For instance, The frequencies of the occluding signal dominate over those of the occluded signal ine), and vice versa in h).C. Non-Fourier MotionNon-Fourier visual stimuli, to which belong occlusiontranslucency and occlusion e�ects, have been studiedmainly with respect to the motion percept these stim-uli elicit among human subjects [2], [11], [12]. However,more recently, it has been conjectured that a viable com-putational analysis of Non-Fourier motion could be carriedout with Fourier analysis, since many Non-Fourier stim-uli appear to have simple frequency characterizations [5].We extend the concept of Non-Fourier stimuli such as oc-clusion and translucency from being not explained by itsFourier characteristics to the establishment of exact fre-quency models of visual stimuli exhibiting occlusions andtranslucencies.Non-Fourier motions generate power distributions thatare inconsistent with translational motion. Sources of Non-Fourier motion include such phenomena as translucencyand occlusion and, in particular, Zanker's Theta motionstimuli involving occlusion [12]. This category of motionis described by an occlusion window that translates witha velocity that is uncorrelated with the velocities of theoccluding and occluded signals. For 1D image signals un-der constant velocity, this type of occlusion scene can beexpressed asI(x; t) = �(v(0)3 (x; t))I1(v(0)1 (x; t))� �(v(0)3 (x; t))I2(v(0)2 (x; t))+ I2(v(0)2 (x; t)): (28)As Zanker and Fleet [12], [5], we model the occlusion win-

dow with a rectangle function in the spatial coordinate as��x� x0b � = 8>>>><>>>>: 0 if ��x�x0b �� > 1212 if ��x�x0b �� = 121 if ��x�x0b �� < 12 : (29)Such a function has a non-zero value in the interval [x0 �b2 ; x0 + b2 ] and zero otherwise. We then write the Fouriertransform of the occlusion scene (28) asI(k; !) =K 1Xn=�1 sinc(k � nk1)c1n�(kv3 � nk1�a3)�K 1Xn=�1 sinc(k � nk2)c2n�(kv3 � nk2�a2) +1Xn=�1 c2n�(k � nk2; ! + nk2a22); (30)where sinc(k) = sin kk , �a3 = a32�a12, �a2 = a22�a12 andthe phase shift from x0 in (29) is K = b�1e�ikx0b�1 . Thespectra �(ka32 + ! � nk1�a3) and �(ka32 + ! � nk2�a2)are consonant with the motion of the occluding windowand represent a case of Non-Fourier motion, as they do notcontain the origin.We performed two experiments with Theta motions aspictured in Figure 4. It is easily observed that the spectrumof the sinc function is convolved with each frequency ofboth signals and that its orientation is descriptive of thevelocity of the window. As expected, the visible peaksrepresent the motions of both signals in the usual sense.
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6-t x 6-! kx 6-t x 6-! kxa) b) c) d)Fig. 4. Examples of Theta Motion. a): Velocities of occlusion window, occluding and occluded signals are a3 = 0:5, v1 = 1:0 and v2 = �2:0respectively. b): Frequency spectrum of a). c): Velocities of occlusion window, occluding and occluded signals are v3 = �0:5, v1 = �2:0and v2 = 1:0 respectively. d): Frequency spectrum of c).IV. ConclusionThe motivation for such a theoretical framework em-anates from the observation that occlusion and translu-cency in the context of computing optical 
ow constitutedi�cult challenges and threatens its precise computation.The theoretical results cast light on the exact structure ofocclusion in the frequency domain.Theorem 1 addresses occlusion in the simplest contextand even with such restrictive assumptions, the frequencystructure of occlusion can be outlined. Theorem 2 gen-eralizes Theorem 1 to signals composed of an arbitrarynumber of discrete frequencies. Dirichlet conditions arehypothesized for each signal, since any physical signal sat-is�es such conditions. It follows that complex exponentialexpansions are suitable to represent them. The propertiesof Theorem 1 hold for the arbitrary signals of Theorem 2as it is possible to measure both velocities and associatethem with their respective signal. In addition, Theorems2 and 3 show that the frequency structure of occlusion isinvariant with respect to translational and linear modelsof signal velocity. It is also shown that the theoretical ap-proach is capable of expressing the frequency structure ofnon-Fourier motions.AcknowledgmentsThe authors wish to thank NSERC for supporting thisresearch. References[1] J. Aisbett. Optical 
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