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The Frequency Structure of 1D Occluding Image
Signals

Steven S. Beauchemin and John L. Barron

Abstract— We present a theoretical investigation of the
frequency structure of 1D occluding image signals. We
show that image signal occlusion contains relevant informa-
tion which is most easily extractable from its representa-
tion in the frequency domain. For instance, the occluding
and occluded signal velocities may be identified as such and
translucency phenomena may be understood in the terms
of this theoretical investigation. In addition, it is found
that the structure of occluding 1D signals is invariant under
constant and linear models of signal velocity. This theoret-
ical framework can be used to describe the exact frequency
structure of non-Fourier motion and bridges the gap be-
tween such visual phenomena and their understanding in
the frequency domain.

Keywords— Occlusion, Fourier transforms, Optical Flow,
Non-Fourier motion

I. INTRODUCTION

HE problem posed by occlusion and translucency phe-

nomena is investigated for 1D image signals. Tradi-
tionally, signal velocity has been computed directly from
spatial extents with tracking and matching processes or
spatiotemporal derivatives. These techniques impose strin-
gent signal characteristics to ensure their correctness. For
instance, spatiotemporal numerical derivation of a trans-
lating signal implies the sampling of a continuous signal
over the extent of derivation. Such processes approximate
reality only if computed over extents that do not contain
occlusion discontinuities or that are not a mixture of two
or more signals due to translucent effects.

The inability of classical spatiotemporal processes to re-
solve signal velocity over extents exhibiting signal occlu-
sion or translucency indicates that such phenomena might
be better understood in another domain of representation.
We postulate that spatiotemporal information constitutes
an obstacle to determining the translational rates of oc-
cluding or translucent 1D image signals and we derive, for
various models of translation and in the frequency domain,
several theorems describing the frequency structure of sig-
nal discontinuities arising from occlusion in the spatiotem-
poral domain. We consider constant and linear models of
signal translation and show that translucency phenomena
may be understood as special cases of the theoretical re-
sults exposed herein.
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A. Methodology

To analyze the frequency structure of 1D occluding im-
age signals while preserving representations that are as
general as possible, an effort is made to pose only those
hypotheses that preserve the generality of the analysis to
follow. We describe the assumptions and the proof tech-
niques with which the theoretical results are obtained.

Image Signals The geometry of image formation, al-
though a simple process, generally yields complex
signals. Conceptually, assumptions concerning scene
structure should not be made, as they constrain the
geometry of observable scenes. In addition, any mea-
sured physical signal, such as image intensities, satis-
fies Dirichlet conditions. Such signals admit a finite
number of finite discontinuities, are absolutely inte-
grable and may be expanded into complex exponen-
tial series. Dirichlet conditions constitute the sum of
assumptions made on 1D image signals.

Velocity On a local basis, constant models of sig-
nal translation may be adequate to describe velocity.
However, linear models admit an increased number of
deformations, such as signal dilation. Hence, the ex-
tent used for signal analysis may be larger with linear
models. We considered both constant and linear mod-
els, leaving deformations of higher order for further
analysis.

Occluding Points Occluding points in 1D image sig-
nals are represented with Heaviside’s functions. In 1D,
this model is adequate in the sense that it entierly com-
prises the occluding phenomenon. However, when 2D
signals are concerned, occluding boundaries between
objects and backgrounds may have various shapes and
the use of a 2D Heaviside’s function as an occluding
boundary model limits the validity of the analysis to
local extents.

Proof Techniques The Theorems and their Corollar-
ies established in this analysis emanate from a general
approach to modeling 1D signals exhibiting occlusion
discontinuities. An equation which describes the spa-
tiotemporal pattern of the superposition of a 1D back-
ground and an occluding 1D signal is given [3].

A characteristic function describing the position an
occluding signal occupies within the imaging space of
the visual sensor is defined as

() = 1 if  within extent of occluding signal
XE=1 0 otherwise,

1)
and two 1D image signals I; (z) and I»(x), correspond-
ing to the occluding and occluded signals respectively,
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are defined to form the complete signal pattern

I(z,t) = L (@ 6)x@" (1)
+ 1= x(" (2,) | LS (2,1), (2)

where n in vl(n) (z,t) represents the model of velocity
being used. For instance, n = 0 is constant and n =1
is linear velocity. Note that the characteristic function
describing the object in (2) has the same velocity as
its corresponding intensity pattern I;(z).

In this equation are inserted the hypotheses made on
its various components and the structure of 1D oc-
clusion in the frequency domain is developed. That
is to say, signal structures are expanded into complex
exponential series

o

Z Cmeimnki7 (3)

n=—od

where I;(z) is the i*" intensity pattern, ¢z, are complex
coefficients, n are integers, and k; is the fundamental
frequency of the expansion. This frequency represents
the discretization step of the signal. Occlusion bound-
aries are represented with 1D Heaviside’s functions

u(m):{(l)

Relevance of Fourier Analysis Many algorithms op-
erating in the Fourier domain for which a claim of mul-
tiple motions capability is made have been developed
[7]. However, this is performed without a complete
knowledge of the frequency structure of occlusion phe-
nomena. In addition, non-Fourier spectra, including
occlusion and translucency effects have been conjec-
tured to have mathematically simple characterizations
in Fourier space [5]. Consequently, the use of Fourier
analysis as a local tool is justified as long as one re-
alizes that it constitutes a global idealization of local
phenomena. In that sense, Fourier analysis is used as
a local tool whenever Gabor filters, wavelets or local
Discrete Fourier Transforms are employed for signal
analysis.

Experimental Technique Given the theoretical na-
ture of this contribution, the purpose of the numerical
experiments is to verify the validity of the theoretical
results. In order to accomplish this, the frequency con-
tent of the image signals used in the experiments must
be entirely known to the experimenter, thus forbidding
the use of natural image sequences. In addition, im-
age signals with single frequency components are used
in order to facilitate the interpretation of experiments
involving Fast Fourier transforms. The use of more
complex signals impedes a careful examination of the
numerical results and do not extend the understand-
ing of the phenomena under study in any particular
way.

ifz>0
otherwise.

(4)

B. Problem Definition

It is clear that velocity discontinuities are different from
signal discontinuities. However, there is a recurrent confu-
sion within the existing literature related to optical flow.
For instance, many image velocity techniques which employ
regularization processes often include a relaxation of the
smoothness requirement within extents exhibiting strong
intensity variations [8], [9], [10], [1], although signal dis-
continuities may not correspond to velocity discontinuities.
Indeed, the discontinuities caused by occlusion are extrin-
sic whereas signal discontinuities are intrinsic in terms of
signal properties.

II. OcCLUSION IN THE FREQUENCY DOMAIN

The Fourier transform of a translating 1D image signal
I(z,t) is obtained with the shift property as

// (z — vt) e hrtwt) g dy

I(k)s(kv + w), (5)

I(k,w) =

where kv +w = 0 represents an oriented line containing the
origin of the frequency domain, onto which the spectrum
i(k) lies. The slope of the linear spectrum is proportional
to v, the velocity of the signal.

Following Fleet and Jepson [4], velocity discontinuities
arising from occlusion may be written by considering two
translating signals, one partially occluding the other. Let
I, (z) and I, (z) be two translating signals coupled with the
characteristic function (1) indicating the occluding signal
position. The resulting 1D occlusion scene may be written
in terms of the translating signals and the characteristic
function as

I(z,t) = Ii(z—wunt)x(z—vt)
+ [1—x(z —nt)]l(z — vat). (6)

By using the shift property of Fourier transforms, (6) is
rewritten in spatiotemporal frequency space as

I(k,w) =

+ L(k)dé(kvy + w). (7)

The first two terms of (7) correspond to the occluding and
occluded signals convolved with the Fourier spectrum of the
occlusion boundary and constitute the spectral distortion
introduced by the discontinuity.

A. Models of Velocity

The velocity function may be expressed as a polynomial
in the coordinate system of the signal. Generally, a Taylor
series expansion for an i*" image plane velocity may be
written as

§ithky, ok
| ®)

z,t=0
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We adopt the notation 'U(l)(CU,t) =

i

where p + ¢ <= n.
an T — ajpt to describe 1D, linear velocity and UEO) (z,t) =
x — a2t for constant velocity. Negative rates of translation
are used without loss of generality and for mere mathemat-

ical convenience.

B. Occlusion with Constant Velocity

In this section, two cases of occlusion with constant mod-
els of velocity are considered. The analysis begins with the
consideration of a simple case consisting of 1D sinusoidal
intensity profiles translating at constant velocities. This
result is then generalized to arbitrary signals and linear
models of velocity.

B.1 Sinusoidal Signals

Let I (x) be occluding a 1D intensity pattern I(z), with
respective velocities v§0) (z,t) and véo) (z,t). The resulting
intensity profile can then be expressed as

I(z,) = u(” (@)L (1)
+ (1 —u (@)L (@.0))  (9)

where u(z) is (4). The Fourier transform of (9) is

(k)o(kaiz + w)] * [F(k)é(kau + w)]
(k)5(ka12 + u_))] * [12 (k)(S(kan + w)]
(k)d(kass + w),

I(k,w) = [a
~ [d
+ 1 (10)
where u(k) = 7d(k) + (ik) ™" is the Fourier transform of
Heaviside’s function.

Theorem 1: Let I;(z) and I,(x) be cosine functions with
respective angular frequencies k; = 27 f; > 0 and ky =
2w fy > 0 and let Iy (vgo) (z,t)) = c1 cos(ki(z — arot)) and
L (0" (2,1)) = cocos(ka(z — asst)).
trum of the occlusion is

The frequency spec-

I(k,w) =
gclé(k} + khw F klam) +
(1—m)

CQ(S(k + kg,w F k2a22) +

i 025(ka12 +w+ sz(lz) _ les(kalg + u.))
2 (k £ k») (k k1)

(11)

where Aas = a15 — a9».

Theorem 1 is derived to characterize occlusion with the
simplest parameters, such as a constant model of velocity,
the structure of occlusion boundaries and the number of
distinct frequencies to represent both the occluding and
occluded signals. A number of fundamental observations
can still be made even under these restrictive assumptions:

e The occlusion scene in frequency space consists of the

Fourier transform of Heaviside’s function convolved
with every non-zero frequencies of both the occluding
and occluded signals. The result of these convolutions

are the distortion terms cast by the phenomenon of
occlusion.

o The power content of the distortion term forms linear
spectra of decreasing power about the frequencies of
both signals and their orientation is consonant with
the velocity of the occluding signal. Hence, The de-
tection of this orientation allows to identify the oc-
cluding velocity, leaving the occluded velocity to be
interpreted as such.

B.2 Generalized Signals

In general, the occluding and occluded signals cannot be
represented as simple sinusoidal functions. To gain gen-
erality, I () and I,(z) are be expanded as complex ex-
ponential expansions, assuming that functions I;(x) and
I, (z) satisfy Dirichlet conditions [6].

Theorem 2: Let I, (z) and I,(z) be functions satisfying
Dirichlet conditions such that they may be expressed as
complex exponential series expansions

oo
E Clnemklz

Lz) =
ILy(z) = Z Cone™h2T (12)

where n is integer, c¢i, and co, are complex coefficients
and k; and k, are the fundamental frequencies of the

Let Ti(z,t) = T, (0\”(2,)) and Iy(z,t) =
Ig(véo) (z,t)). The frequency spectrum of the occlusion is

expansions.

i(k,w) = 7 Z c1nd(k — nki,w + nkias)
+ (1-m) Z cand(k — nka,w + nkoass)
. > 02n6(ka12 +w — nkgAag)
+ zn;m < (k — nky)
c1nd(kars + w)
_anOABhz T &) 1
(h— k1) (13)

Theorem 2 generalizes Theorem 1 to signals composed of
an arbitrary number of discrete frequencies. Dirichlet con-
ditions are hypothesized for each signal, since any physical
signal satisfies such conditions. The properties of Theorem
1 hold for the generalized signals of Theorem 2. Indeed,
both velocities and their respective signals can be discrim-
inated, as is the case for Theorem 1.

The definition of signal velocity as a constant trans-
lational rate is limited. To gain generality, signal dila-
tion is included and the velocity function is written as
vl(l)(a:,t) = anT — apt.

Theorem 3: Let I (a112) and Is(aq2;1 z) be functions satis-
fying Dirichlet conditions such that they may be expressed

as complex exponential series expansions:

o
11(01133) = E Clnemkla“w

n=—od
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[e.e]

E c2neznk2a21w7

n=-—oo

Iz(azl.’lf) = (14)

where n is integer, ¢, and cs, are complex coefficients
and k; and ks, are the fundamental frequencies of the ex-

pansions. Also let Iy (z,t) = Il(vp(m,t)) and Iy(z,t) =
12(1;5”(9:, t)). The frequency spectrum of occlusion is

i(k,w) = 7 Z c1n0(k — nkiayr,w + nkias)

+ (1 —7T) Z ané(k—nkgagl,w-‘r‘nkQaQQ)
. > cond (Y1 k + w — nkapr2)

+ 1 sgn(au) n;m ( (k — nkzas)
ok ) w)> (15)

(k} — nklau)
where
1/%’ _ aﬁ and <Z5z'j _ aj1ai2 — ailajZ-

: s
Theorem 3 showsﬂthe frequency structuirle of occluding 1D
image signals and, when put in relation with Theorem 2, it
is observed that the structure of occlusion is invariant with
respect to both constant and linear models of velocity.

Theorems 1 through 3 show the structure of occlusion in
the Fourier domain for constant and linear models of veloc-
ity for 1D image signals. These structures have interesting
properties which we proceed to formally state in the form
of Corollaries.

Corollary 1: The structure of occlusion is invariant under
constant and linear models of velocity.

Under constant and linear models of velocity, it is found
that the structural aspect of the Fourier spectrum is iden-
tical. The power generated by the distortion fits lines that
are parallel to the constraint line of the occluding signal.
Although the orientation of these structures depict ratios of
the linear parameters, a collection of those in a spatiotem-
poral extent yields these parameters in the least-squares
sense. This result also indicates that this structural invari-
ance may be used to detect occlusions under constant or
linear velocity equally accurately with a unique mechanism.

Corollary 2: Under an occlusion phenomenon, the veloc-
ities of the occluding and occluded signals can always be
identified as such.

Under occlusion, the orientations of the distortion terms
are essentially parallel to the constraint line of the occlud-
ing signal. Hence, the orientation of the constraint line
containing the origin and parallel to the distortion terms
yields the velocity of the occluding signal, thus leaving the
occluded signal velocity to be interpreted as such.

B.3 Geometric Interpretation

We performed a series of experiments to graphically
demonstrate the composition of a simple occlusion scene
composed of 1D sinusoidal signals. In addition, the signals

are Gaussian-windowed to avoid the Gibbs phenomenon
when computing their Fast Fourier Transforms (FFTs).
Figure 1la, b and ¢ show the components of a simple oc-
clusion scene, pictured in Figure 1d. Figure 1la is the oc-
cluding signal with spatial frequency % and velocity —1.0,

such that
2

I (z,t) = cos (z +1) (16)
16

and in 1b) is the occluded signal with spatial frequency %’r

and velocity 1.0, yielding

I,(z,t) = cos (%T(a: - t)) . (17)

The occluding boundary in Figure 1c) is the 1D step func-
tion (4) and translates with a velocity identical to that of
the occluding signal.

The resulting occlusion scene in Figure 1d) is constructed
with (6), where I; is (16), Is is (17) and x is (4). Figures le
through h show the amplitude spectra of figures 1a through
d respectively, where it is easily observed the the spectrum
of the step function (4) is convolved with each frequency
of both sinusoidals.

III. NUMERICAL EXPERIMENTS

Several experiments were performed in support of the
Theorems. The Fourier spectra obtained with both a stan-
dard FFT algorithm and those predicted by the theory are
compared. In addition, phase shifts and non-Fourier mo-
tions are examined.

In order to perform the numerical experiments, two 1D
sinusoidals which respectively act as occluding and oc-
cluded signals are used.

Expression (9) is used with I, (vgo) (z,t)) = ¢1 cos(ky (z —
aot)) and Ig(véo)(az,t)) = ¢ cos(ka(x — agat)), where I;
and I, are the occluding and occluded signals with respec-
tive frequencies k; = % and ky = %’T. Constants ¢; and cs
correspond to signal amplitudes. To limit boundary condi-
tions when numerically computing Fourier transforms, the
signal is windowed with a Gaussian envelope. The resulting
signal is analytically expressed as

I(z,t)G(x,t; 0) (18)

3

2,.2
s ]
B .

To"

where

G(z,t;0) =

A standard deviation of 35.0, measured in image units, is
used for the windowing of the signal. The discrete Fourier
transforms occlusion scenes such as (18) obtained with a
standard FFT algorithm are shown in Figure 2e through
h. Analytically, the continuous Fourier transform of (18)
is

I(k,w) * G(k,w;0) (19)

where I(k,w) is a discretized version of Theorem 1 which
models aliasing effects due to periodicity. Figures 2i
through 1 show the corresponding theoretical predictions.
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Amplitude Spectrum of Sinusoid 2

Amplitude Spectrum of Step Function

i) j) k) 1)
Fig. 1. (top): The composition of a simple 1D occlusion scene. a) The occluding sinusoidal signal with frequency ki1 = 21—’5 and velocity
a2 = —1.0. b) The occluded sinusoidal signal with frequency k> = %" and velocity aza = 1.0. c¢) The translating step function used

to create the occlusion scene. d) The occlusion as a combination of a), b) and c). (center): Image plots of amplitude spectra and

(bottom): amplitude spectra as 3D graphs.

The spectra obtained with both a standard FFT algorithm
and the theoretical results are essentially identical. These
experiments are performed with various velocities for the
occluding signal. Figures 2a through d show the occlusion
scenes with respective occluding velocities of a;; = —1.0,
—0.5, 0.5 and 1.0. When both the occluding and occluded
signals have identical velocities as in Figure 2d, the spa-
tiotemporal frequencies and the distortion terms align to
form a linear spectrum. This is a typical case of signal
discontinuities that do not constitute velocity discontinu-
ities. Figure 2 shows that the orientation of the distortion
entirely depends on the velocity of the occluding signal. In
all cases, the distortion is parallel to the constraint line of
the occluding signal.

A. Translucency

In the context of image signals, transmission of light
through translucent material may cause multiple signal ve-
locities to arise in a given spatial extent. Generally, this
effect is mathematically expressed as

I(z, 1) = f(p1) (01 (2, 1)Lz (v2 (2, 1)), (20)

where f(p1) is a function of the density of the translucent
signal [3]. Under the local assumption of spatially constant
f(p1) with translucency factor ¢, (20) is reformulated as a
weighted superposition of signals, written as

I(z,t) = pLi(vi(z,1) + (1 — @)I2(v2(z, 1)),

where I; (vy (z,t)) is the intensity profile of the translucent
signal and I (va(z, t)) is the intensity profile of the occluded
signal. With Iy (v1(z,1)) and Iy(v2(2,t)) satisfying Dirich-
let conditions, the frequency spectrum of (21) is written
as

(21)

i(k,w) = Z c1nd(k — nky,w + nkias)
+ (1—<p) Z Czné(k—nkQ,w-f-nkzan)

(22)

With the exception of the distortion term, and to within
scaling factors, (22) is identical to (15)and, with respect
to its frequency structure, translucency may be reduced to
a special case of occlusion for which the distortion terms
vanish.
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ke i)

Fig. 2.

27

Comparison of numerical results against theoretical predictions. Frequencies k1 and ko of the occluding and occluded signals are =%

d)
/
/
h)
/
/
1)

and =& respectively. The velocity of the occluded signal is aza = 1.0. (top): a) a12 = —1.0; b) a12 = —0.5; ¢) a12 = 0.5; d) a12 = 1.0.
(center): e) through h) Fast Fourier transforms of corresponding occlusion scene (bottom): i) through 1) Theoretical results.

8

B. Generalized Occluding Point

For reasons of simplicity and clarity, in each Theorem
and numerical result, the occluding point contained the
origin of the coordinate system. We generalize this by de-
scribing the occlusion as

m@:{

where tg is a shift from the origin and its Fourier spectrum
becomes

Lifz+t >0

0 otherwise (23)

etk (no(k) — ik~ ') §(kas + w) (24)
Equation (23) can be further simplified as
7o(k) — ik etk §(kay + w) (25)

The Fourier spectrum of the occluding point is to be con-
volved with the complex exponential series expansions of
the occluding and occluded signals and subsequently with
the Fourier transform of the Gaussian window. In the case
of the occluding signal, the convolution with the the oc-
cluding point can be written as

o

s Z clné(k—nkl,w—f-nklalg)—

n=—od

ito(k—nky) C1nd(k — nki, kais + w)

i 26
e (k — nk) (26)
and, similarly for the occluded signal
s Z ané(k—nkg,w-‘rnkgagg)—
ieito(kfnkQ) C2n6(k — nk27 kass + w) (27)

(k} — nkz)

These convolutions are combined together to obtain the
Fourier spectrum of occlusion with a generalized occluding
point. We conducted experiments with 1D image signals
and shifted the occlusion point with different values of #q
n (23). As observed in Figure 3, these phase shifts have no
effect on the amplitude spectrum of occlusion in frequency
space. The variations in the amplitude spectra are due
to the Gaussian windowing of the occlusion scene. For
instance, the frequency peaks of the occluding signal in
Figure 3e show more power than those of the occluded
signal, owing to the fact that the signal is dominant within
the Gaussian window. The contrary is observed when the
occluded signal occupies most of the window, as shown in
Figure 3h.
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Fig. 3.
Corresponding frequency spectra.

Phase shifts from occluding edge. (top): a) tg = —20.0. b) tg = —10.0. c) tgp = 10.0. d) to = 20.0. (bottom) e) through h):
The relative magnitude between the occluding and occluded signals depend on their respective wvisible

areas under the Gaussian envelope. For instance, The frequencies of the occluding signal dominate over those of the occluded signal in

e), and vice versa in h).

C. Non-Fourier Motion

Non-Fourier visual stimuli, to which belong occlusion
translucency and occlusion effects, have been studied
mainly with respect to the motion percept these stim-
uli elicit among human subjects [2], [11], [12]. However,
more recently, it has been conjectured that a viable com-
putational analysis of Non-Fourier motion could be carried
out with Fourier analysis, since many Non-Fourier stim-
uli appear to have simple frequency characterizations [5].
We extend the concept of Non-Fourier stimuli such as oc-
clusion and translucency from being not explained by its
Fourier characteristics to the establishment of exact fre-
quency models of visual stimuli exhibiting occlusions and
translucencies.

Non-Fourier motions generate power distributions that
are inconsistent with translational motion. Sources of Non-
Fourier motion include such phenomena as translucency
and occlusion and, in particular, Zanker’s Theta motion
stimuli involving occlusion [12]. This category of motion
is described by an occlusion window that translates with
a velocity that is uncorrelated with the velocities of the
occluding and occluded signals. For 1D image signals un-
der constant velocity, this type of occlusion scene can be
expressed as

I(z,t) =

(28)

As Zanker and Fleet [12], [5], we model the occlusion win-

dow with a rectangle function in the spatial coordinate as

0if |z > }
(IR) =1 sil=m=r e
L || <

Such a function has a non-zero value in the interval [z¢ —
g,:ro + g] and zero otherwise. We then write the Fourier
transform of the occlusion scene (28) as

I(k,w) =

K Z sinc(k — nky)c1nd(kvs — nkiAaz) —

n=-—oo

K Z sinc(k — nka)cand(kvs — nkaAas) +

o0

Z an(s(k — nk2,w + nk2a22),

n=—oo

(30)

where sinc(k) = ¥7 Aaz = aza—ai2, Aas = ass—aq2 and
the phase shift from zq in (29) is K = b~ te 20" The
spectra d(kase + w — nki1Aaz) and §(kass + w — nkoAas)
are consonant with the motion of the occluding window
and represent a case of Non-Fourier motion, as they do not
contain the origin.

We performed two experiments with Theta motions as
pictured in Figure 4. Tt is easily observed that the spectrum
of the sinc function is convolved with each frequency of
both signals and that its orientation is descriptive of the
velocity of the window. As expected, the visible peaks
represent the motions of both signals in the usual sense.
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b) d)
Fig. 4. Ezamples of Theta Motion. a): Velocities of occlusion window, occluding and occluded signals are az = 0.5, v1 = 1.0 and vay = —2.0
respectively. b): Frequency spectrum of a). c): Velocities of occlusion window, occluding and occluded signals are vz = —0.5, v1 = —2.0

and vy = 1.0 respectively. d): Frequency spectrum of c).

IV. CONCLUSION

The motivation for such a theoretical framework em-
anates from the observation that occlusion and translu-
cency in the context of computing optical flow constitute
difficult challenges and threatens its precise computation.
The theoretical results cast light on the exact structure of
occlusion in the frequency domain.

Theorem 1 addresses occlusion in the simplest context
and even with such restrictive assumptions, the frequency
structure of occlusion can be outlined. Theorem 2 gen-
eralizes Theorem 1 to signals composed of an arbitrary
number of discrete frequencies. Dirichlet conditions are
hypothesized for each signal, since any physical signal sat-
isfies such conditions. It follows that complex exponential
expansions are suitable to represent them. The properties
of Theorem 1 hold for the arbitrary signals of Theorem 2
as it is possible to measure both velocities and associate
them with their respective signal. In addition, Theorems
2 and 3 show that the frequency structure of occlusion is
invariant with respect to translational and linear models
of signal velocity. It is also shown that the theoretical ap-
proach is capable of expressing the frequency structure of
non-Fourier motions.
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