
EVALUATION OF COMPUTER VISION ALGORITHMSThe Role of TheoryS. S. BEAUCHEMIN AND R. BAJCSYGRASP LaboratoryDepartment of Engineering and Information SciencesUniversity of PennsylvaniaPhiladelphia PA 19104-6228USAAbstract. Undeniably, the numerical evaluation of Computer Vision al-gorithms is of utmost importance. However, often neglected is the role oftheoretical knowledge to interpret the numerical performance of those algo-rithms. In addition, the lack of theoretical research in Computer Vision haslong been recognized. In this contribution, we demonstrate that extendedtheoretical knowledge of a phenomenon enables one to design algorithmsthat are better suited for the task at hand and to evaluate the theoretical as-sumptions of other, similar algorithms. For instance, the problem posed bymultiple image motions was poorly understood in the frequency domain yetfrequency-based multiple motions algorithms were developed. We presentalgorithms for computing multiple image motions arising from occlusionand translucency which are capable of extracting the information-contentof occlusion boundaries and distinguish between those and additive translu-cency phenomena. These algorithms are based on recent theoretical resultson occlusion and translucency in the frequency domain and demonstratethat a complete theoretical understanding of a phenomenon is required inorder to design adequate algorithms. We conclude by proposing an evalua-tion protocol which includes theoretical considerations and their in
uenceon the numerical evaluation of algorithms.1. IntroductionThe importance of motion in image processing cannot be understated:in particular, approximations to image motion may be used to estimate3D scene properties and motion parameters from a moving visual sensor



2 S. S. BEAUCHEMIN AND R. BAJCSY(Longuet-Higgins, 81), to perform motion segmentation (Murray and Bux-ton, 87), to compute the focus of expansion and time-to-collision (Over-ington, 87), to perform motion-compensated image encoding (Musmann etal., 85), to compute stereo disparity (Jenkin et al., 91) and to measurebiological parameters in medical imagery (Prince and McVeigh, 92).Based on recent theoretical developments in discontinuous motion, wedevise multiple motion algorithms. We consider 1D and 2D signals, adopt aconstant model of velocity and use a robust statistical procedure to extractmultiple motions from local frequency spectra. The motion informationprovided by the algorithms includes single velocity, multiple (2) velocities,assessment of transparency versus occlusion, and upon occlusion events, theorientation of the occlusion boundary and the identi�cation of the occludingsignal.1.1. LITERATURE SURVEYComputing multiple motions is a complex and rarely undertaken task. In-deed, most of the existing optical 
ow methods that have appeared in theliterature make an explicit use of the single motion hypothesis. However,at motion discontinuities, where the information content of a signal mostlyresides, the hypothesis is violated. Area-based and feature-based correla-tion techniques are equally sensitive to occlusion as local image structuresand features appear and disappear from one image to the next. To furthercomplicate matters, regularization techniques which impose a degree of con-tinuity to optical 
ow are also clearly inadequate over occlusion boundaries.However, in the more recent research in optical 
ow, the non-linear, dis-continuous and multiple-valued nature of image motion in the coordinatesof the image plane has been recognized (Barron and Beauchemin, 95).In order to allow multiple motion events in optical 
ow estimation pro-cesses, a number of strategies have been devised, such as strong intensitygradients acting as inhibitors of 
ow coherence (Nagel, 87) and robust esti-mators designed to capture dominant motions (Black, 97). Other techniquessuch as clustering (Schunck, 89), superposed motion layers and distribu-tions (Shizawa and Mase, 91; Wang and Adelson, 93), parametric mod-els of motion with discontinuous functions (Negahdaripour and Lee, 92;Black and Jepson, 94) and mixtures of probability densities (Jepson andBlack, 91) have appeared.Our approach emanates from recent theoretical results (Beaucheminand Barron, 97; Beauchemin and Barron, 97; Beauchemin et al., 97) de-scribing the Fourier structure of occlusion and translucency phenomena forconstant and linear models of optical 
ow and points to an evaluation pro-tocol capable of assessing the impact of theoretical considerations onto the



Evaluation of Computer Vision Algorithms 3numerical evaluation of algorithms.2. Structure of OcclusionWe proceed to describe the structure of occlusion events in the frequencydomain for 1D and 2D signals composed of an arbitrary number of distinctfrequencies.Let I1(x) and I2(x) be 1D functions satisfying Dirichlet conditions suchthat they may be expressed as complex exponential series expansions:I1(x) = 1Xn=�1 c1neink1x and I2(x) = 1Xn=�1 c2neink2x; (1)where n is integer, c1n and c2n are complex coe�cients and k1 and k2 arethe fundamental frequencies of both signals.Let I1(x; t) = I1(v(0)1 (x; t)) and I2(x; t) = I2(v(0)2 (x; t)), where v(0)i =x� ait. The frequency spectrum of the occlusion is:Î(k; !) = � 1Xn=i�1 c1n�(k � nk1; ! + nk1a16)+ (1� �) 1Xn=�1 c2n�(k � nk2; ! + nk2a26)+ i 1Xn=�1�c2n�(ka12 + ! � nk2�a6)(k � nk2) � c1n�(ka12 + !)(k � nk1) � ; (2)where �a6 = a16 � a26.In the 1D case, equation (2) reveals that the frequency spectra of bothsignals are preserved to within scaling factors. In addition, the Dirac deltafunctions �(ka12 + !) and �(ka12 + ! � k2�a22) constitute linear spectra,intersecting the frequencies of both the occluding and occluded signals,and are oriented in the direction of the constraint line pertaining to theoccluding signal. Figure 1 shows a typical example with 1D translatingsinusoids in an occlusion scene.Similarly, The frequency spectra for 2D signals are planar and preservedto within scaling factors under occlusion. In addition, the distortion cast bythe occlusion boundary �ts oriented planes parallel to the planar spectrumof the occluding signal.



4 S. S. BEAUCHEMIN AND R. BAJCSYLet I1(x) and I2(x) be 2D functions satisfying Dirichlet conditions suchthat they may be expressed as complex exponential series expansions:I1(x) = ~1Xn=� ~1 c1neixTNk1 and I2(x) = ~1Xn=� ~1 c2neixTNk2 ; (3)where n = (nx; ny)T and N = nT I are integers, x are spatial coordinates,k1 = (k1x; k1y)T and k2 = (k2x; k2y)T are fundamental frequencies and c1nand c2n are complex coe�cients. Let I1(x; t) = I1(v(0)1 (x; t)), I2(x; t) =I2(v(0)2 (x; t)), where v(0)i = x� ait, and the occluding boundary be locallyrepresented by: U(x) = � 1 if xTn1 � 00 otherwise, (4)where n1 is a vector normal to the occluding boundary at x. The frequencyspectrum of the occlusion is:Î(k; !) = � ~1Xn=� ~1 c1n�(k�Nk1; ! + aT1Nk1)+ (1� �) ~1Xn=� ~1 c2n�(k �Nk2; ! + aT2Nk2)+ i ~1;Xn=� ~1 c2n�((k �Nk2)Tn?1 ;kTa1 + ! ��aT6Nk2)(k�Nk2)Tn1� c1n�((k �Nk1)Tn?1 ;kTa1 + !)(k�Nk1)Tn1 ! (5)where �a6 = a1 � a2.Equation (5) is a generalization of equation (2) from 1D to 2D sig-nals and its geometric interpretation is similar. For instance, frequencies(Nk1;�aT1Nk1) and (Nk2;�aT2Nk2) �t the constraint planes of the oc-cluding and occluded signals, de�ned as kT1 a1 + ! = 0 and kTa2 + ! = 0.In the distortion term, the Dirac � function with arguments (k�Nk2)Tn?1and kTa1 + ! ��aT6Nk2 represent a set of lines parallel to the constraintplane of the occluding signal kTa1+! = 0 and, for every discrete frequencyNk1 and Nk2 exhibited by both signals, there is a frequency spectrum �t-ting the lines given by the intersection of planes kTa1 + ! � �aT6Nk2 =0 and (k � Nk1)Tn?1 = 0. The magnitudes of these spectra are deter-mined by their corresponding scaling functions c1n[(k �Nk1)Tn1 ]�1 andc2n[(k�Nk2)Tn1 ]�1.



Evaluation of Computer Vision Algorithms 5
Figure 1. (from left to right): a) Gaussian-windowed 1D signal with sinusoidals actingas occluding and occluded surfaces. The occluding signal has spatial frequency k1 = 2�16 andvelocity v1 = (1; 1). The occluded signal has frequency k2 = 2�8 and velocity v2 = (�1; 1).b) Fourier spectrum of a). c) Gaussian-windowed 2D signal with sinusoidals acting asoccluding and occluded surfaces. The occluding signal has spatial frequency k1 = ( 2�16 ; 2�16 )and velocity v1 = (1; 1; 1). The occluded signal has frequency k2 = ( 2�8 ; 2�8 ) and velocityv2 = (�1;�1; 1). d) Fourier spectrum of c).3. Estimation of Multiple Image MotionEquations (2) and (5) provide a model of the Fourier spectrum at anocclusion boundary. We devise, for both 1D and 2D image signals, algo-rithms capable of extracting multiple velocity measurements along withthe information-content of occlusion boundaries.3.1. 1D ALGORITHMGiven a frequency measurement m̂j = (k̂j ; !̂j)T , its corresponding velocityestimate is given by v̂i = (�!̂j=k̂j ; 1)T and an error metric correspondingto the angular deviation between a measurement m̂j and an estimate ofthe ith velocity v̂i, under the assumption that � � sin �, may be de�ned as(Jepson and Black, 91): �(m̂j; v̂i) = m̂Tj v̂ikm̂jk2kv̂ik2 : (6)Under the assumption that angular errors are normally distributed, wede�ne a mixture of normal distributions to account for multiple motionsas: G(m̂j) = 2Xi=0 �ifi(m̂j; v̂i); (7)which is the PDF for measurement m̂j and where �i is a mixture probabil-ity. Aside from posing homoscedasticity, we use a uniform outlier distribu-tion. Measurements at a predetermined distance from other distributionsshould be considered as outliers and not enter the estimation process. The



6 S. S. BEAUCHEMIN AND R. BAJCSYconstant probability of observing a noisy measurement is expressed as:1p2��v e��22�2n ; (8)from which it is noted that measurements at � standard deviations fromthe means of the normal distributions are considered to be corrupted bynoise.With the hypothesis of homoscedasticity, constant standard deviationand uniform distribution of noisy measurements, we establish the iterativeequations for the Expectation-Maximization algorithm. The expectationstep is the computation of posterior probabilities, which we write as:�̂ (k)ij = �̂(k)i e �12�2v �2(m̂j ;v̂i)P2t=1 �̂(k)t e �12�2v �2(m̂j;v̂t) + �̂(k)0 e��22�2n (9)for i = 1; 2, the number of normal distributions and j = 1; : : : ; n the numberof measurements. For the uniform distribution of noisy measurements wewrite �̂ (k)0j = �̂(k)0 e��22�2vP2t=1 �̂(k)t e �12�2v �2(m̂j;v̂t) + �̂(k)0 e��22�2n (10)for j = 1; : : : ; n. The equations for the maximization step, in which thevelocities and mixture probabilities are updated, we write:v̂(k+1)i = Pnj=1 �̂ (k)ij �(m̂j)m̂?j�̂(k)i Pnj=1 �(m̂j) �̂(k+1)i = Pnj=1 �(m̂j)�̂ (k)ijPnj=1 �(m̂j) ; (11)where �(m̂j) is the magnitude of m̂j and m̂?j is its negative reciprocal.In order to identify the spectra associated with occluding boundaries,we �rst �nd peak frequency measurements for both signals. That is to say,we �nd for signal t, the frequency m̂t such that �tk > �ik for t 6= i and�(m̂t) is maximal and determine the strength of measurements m̂j alongthe direction perpendicular to the hypothesized occluding velocity at thepeak frequency of the hypothesized occluded signal.To test for the signal corresponding to velocity vi as occluding, theprocedure is to �rst consider only those measurements m̂j belonging tothe uniform distribution of the mixture: �0j > �ij, for i = 1; 2 and j =1 : : : n, as determined by the EM algorithm and the peak frequency of thesignal corresponding to velocity vt, where t 6= i. We then proceed with thecomputation of the strengths of measurements con�rming this hypothesis,once again using mixture probabilities.



Evaluation of Computer Vision Algorithms 7Among measurements belonging to the uniform noise distribution, wecompute their posterior probability of being part of the distortion spectracast by the hypothesized occlusion and we also determine the posteriorprobabilities of the measurements to be from the uniform noise distributionto the exclusion of the spectra of the occlusion. Mixture proportions may beobtained from these posterior probabilities that assess the hypothesis undertest. Thus, if velocity v̂i is occluding, then the strengths of measurementscon�rming this hypothesis outnumber those pertaining to its contrary. Thishypothesis-testing method is applied to determine the image events givingrise to multiple velocities.3.2. 2D ALGORITHMThe algorithm for 2D signals is essentially similar to the 1D algorithm wedescribed. The measurements m̂j = (kxj ; kyj ; !j)T and velocity estimatesv̂i = (vx; vy; vt)T are used in the error metric (6) to deterimine the posteriorprobabilities �ij, as is the case with the 1D algorithm. However, the choice ofvelocity estimates di�ers substantially. In the case of 2D signals, the velocityestimates at each EM iteration must maximize the numerator exponentialof (9). In this case, we follow the approach adopted by Jepson and Black(Jepson and Black, 91), and consider the square of the error metric (6) asthe equation for which the solutions yield velocity estimates. We observethat �2(m̂j; v̂i) may be written in matrix form as(mTj vi)2 = vTi Mjvi (12)where Mj = m̂jm̂Tj . By selecting the eigenvector corresponding to theminimum eigenvalue of Mj for vi, we minimize (12). Since Mj is real andsymmetric, its eigenvalues are real and non-degenerate and the eigenvectorsform an orthogonal basis in the space of measurements. In light of theseobservations, we de�ne�(k+1)i = Pnj=1 � (k)ij �(m̂j)MjPnj=1 �(m̂j) (13)as the matrix from which the velocity estimate v(k+1)i is to be obtained inthe form of the eigenvector e(k+1)i corresponding to the minimum eigenvaluee(k+1)i of �i. The minimum eigenvalue holds information about the velocityestimate obtained from its corresponding eigenvector. A zero value for eiindicates that the velocity measurement is normal, whereas a non zero valueindicates a full velocity measurement (Jahne, 90). To see this, consider aset of observations consisting of collinear measurements, consistent with
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Figure 2. Experimental results. Occluding frequencies and velocities are labeled as k1 ork1 and v1. (top, left to right): a) 1D occlusion imagery with spatial frequencies k1 = 2�16and k2 = 2�8 and velcities v1 = (1; 1) and v2 = (�1; 1). b) Full optical 
ow. c) Occludingvelocities. d) Occluded velocities. (bottom, left to right): e) 2D occlusion imagerywith spatial frequencies k1 = ( 2�16 ; 2�16 ) and k2 = ( 2�8 ; 2�8 ) and velcities v1 = (1; 1; 1) andv2 = (�1;�1; 1). f) Full optical 
ow. g) Occluding velocities. h) Occluded velocities.a normal velocity. It is observed that in such circumstances, the lines ofmatrix �i are linearly dependent, leading to a minimum eigenvalue of valuezero. The �nal eigenvalues ei contain information on the nature of themeasured velocities that is very relevant in most uses of image velocity.Under the hypothesis of a straight-edged occlusion boundary, its nor-mal may be estimated from the frequency structure of the occlusion (Beau-chemin and Barron, 97). To perform this estimation, the algorithm recoversthe orientation of the spectrum cast by the occlusion about the maximumfrequency of the occluded signal, within a plane parallel to that of the oc-cluding signal. To perform this estimation, it is necessary to include anEM iteration which converges to this linear orientation within the speci�edconstraint plane.4. ExperimentsWe report two numerical experiments on synthetic sinusoidal imagery com-posed of a 1D and a 2D occlusion scene as described in Figure 2. The imagesused for these experiments are noise-free and so are the computed optical
ow �elds. It has been clear for some time that a number of vision algo-rithms still fail to meet this fundamental criterion (Barron et al., 94). Localfrequency measurements are obtained for an image location by computing



Evaluation of Computer Vision Algorithms 9a local Fast Fourier Transform within regions of side size 32. We observedthat 30 iterations were su�cient for the EM algorithm to converge. Theinitial estimates for velocities and mixture proportions may be chosen ran-domly, but we prefer to have initial velocity estimates as apart as possiblein order to avoid convergence of both estimates to a single peak.4.1. DISCUSSIONThe nature of image motion, most particularly discontinuous motion infrequency space, has long been unclear. The algorithms proposed hereinare based on a �rm theoretical framework which describes the coherentbehavior of occlusion events in frequency space. Indeed, we strongly believethat further developments in the �eld of optical 
ow and motion analysisought to be based on �rmly established theoretical backgrounds rather thanincidental evidence, as is sometimes the case (Jain and Binford, 90).In light of this, we propose a novel evaluation protocol which includestheoretical considerations and their impact on numerical evaluations. Byconsidering the body of theoretical knowledge concerning a phonomenon,such as image motion for instance, one is able to assess the numerical impactthat each part provided by a theoretical model has. For example, a formula-tion of the algorithms in this contribution that would use the single motionhypothesis may be numerically compared with the complete algorithms asdescribed on a relevant set of test images, thus numerically assessing thegain provided by a more complete theoretical model. The cycle in whichthis protocol operates may be de�ned by the following steps:� Incrementally incorporate theoretical knowledge of the phenomenonunder study into a descriptive, computational model.� Derive the corresponding algorithms based on the computational model.� Numerically evaluate these algorithms on an appropriate set of imagesand assess their accuracy.� Repeat the steps until the computational model is entirely compliantwith the current body of applicable theoretical knowledge about thephenomenon under study.This iterative protocol allows to assess the impact that theoretical knowl-edge has on numerical evaluations of algorithms and we believe it to be ofimportance because of its ability to provide the necessary insights pertain-ing to observed accuracy di�erentials of various algortihms.However, by proposing such a protocol, we do not imply to shift the em-phasis away from pure numerical evaluations. On the contrary, we merelysuggest to include such comparative numerical evaluations within this frame-work in order to understand the numerical impact of computational modelsderived from various bodies of theoretical knowledge.
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