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Abstract. Undeniably, the numerical evaluation of Computer Vision al-
gorithms is of utmost importance. However, often neglected is the role of
theoretical knowledge to interpret the numerical performance of those algo-
rithms. In addition, the lack of theoretical research in Computer Vision has
long been recognized. In this contribution, we demonstrate that extended
theoretical knowledge of a phenomenon enables one to design algorithms
that are better suited for the task at hand and to evaluate the theoretical as-
sumptions of other, similar algorithms. For instance, the problem posed by
multiple image motions was poorly understood in the frequency domain yet
frequency-based multiple motions algorithms were developed. We present
algorithms for computing multiple image motions arising from occlusion
and translucency which are capable of extracting the information-content
of occlusion boundaries and distinguish between those and additive translu-
cency phenomena. These algorithms are based on recent theoretical results
on occlusion and translucency in the frequency domain and demonstrate
that a complete theoretical understanding of a phenomenon is required in
order to design adequate algorithms. We conclude by proposing an evalua-
tion protocol which includes theoretical considerations and their influence
on the numerical evaluation of algorithms.

1. Introduction

The importance of motion in image processing cannot be understated:
in particular, approximations to image motion may be used to estimate
3D scene properties and motion parameters from a moving visual sensor
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(Longuet-Higgins, 81), to perform motion segmentation (Murray and Bux-
ton, 87), to compute the focus of expansion and time-to-collision (Over-
ington, 87), to perform motion-compensated image encoding (Musmann et
al., 85), to compute stereo disparity (Jenkin et al., 91) and to measure
biological parameters in medical imagery (Prince and McVeigh, 92).

Based on recent theoretical developments in discontinuous motion, we
devise multiple motion algorithms. We consider 1D and 2D signals, adopt a
constant model of velocity and use a robust statistical procedure to extract
multiple motions from local frequency spectra. The motion information
provided by the algorithms includes single velocity, multiple (2) velocities,
assessment of transparency versus occlusion, and upon occlusion events, the
orientation of the occlusion boundary and the identification of the occluding
signal.

1.1. LITERATURE SURVEY

Computing multiple motions is a complex and rarely undertaken task. In-
deed, most of the existing optical flow methods that have appeared in the
literature make an explicit use of the single motion hypothesis. However,
at motion discontinuities, where the information content of a signal mostly
resides, the hypothesis is violated. Area-based and feature-based correla-
tion techniques are equally sensitive to occlusion as local image structures
and features appear and disappear from one image to the next. To further
complicate matters, regularization techniques which impose a degree of con-
tinuity to optical flow are also clearly inadequate over occlusion boundaries.
However, in the more recent research in optical flow, the non-linear, dis-
continuous and multiple-valued nature of image motion in the coordinates
of the image plane has been recognized (Barron and Beauchemin, 95).

In order to allow multiple motion events in optical flow estimation pro-
cesses, a number of strategies have been devised, such as strong intensity
gradients acting as inhibitors of flow coherence (Nagel, 87) and robust esti-
mators designed to capture dominant motions (Black, 97). Other techniques
such as clustering (Schunck, 89), superposed motion layers and distribu-
tions (Shizawa and Mase, 91; Wang and Adelson, 93), parametric mod-
els of motion with discontinuous functions (Negahdaripour and Lee, 92;
Black and Jepson, 94) and mixtures of probability densities (Jepson and
Black, 91) have appeared.

Our approach emanates from recent theoretical results (Beauchemin
and Barron, 97; Beauchemin and Barron, 97; Beauchemin et al., 97) de-
scribing the Fourier structure of occlusion and translucency phenomena for
constant and linear models of optical flow and points to an evaluation pro-
tocol capable of assessing the impact of theoretical considerations onto the
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numerical evaluation of algorithms.

2. Structure of Occlusion

We proceed to describe the structure of occlusion events in the frequency
domain for 1D and 2D signals composed of an arbitrary number of distinct
frequencies.

Let I (z) and Is(z) be 1D functions satisfying Dirichlet conditions such
that they may be expressed as complex exponential series expansions:

o [e.e]
Ii(z) = Z cpe™®and  Iy(z) = Z ConemE2T (1)
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where n is integer, c¢1, and cg,, are complex coefficients and k; and ko are
the fundamental frequencies of both signals.

Let T)(z.t) = L (0\”(z,)) and Iy(z,t) = L) (2,t)), where v =
z — a;t. The frequency spectrum of the occlusion is:

i(k,w) = T Z Cln(s(k — nkl,w + nklalg)
+ (1—7‘(’) Z 02n5(k—nk2,w+nk2a26)
Lo i ((32n5(ka12 + w — nkyAag) B c1nd(kais + w)) 7
ne——o0 (k - nkg) (k — nkl)

(2)

where Aag = a16 — ag6.

In the 1D case, equation (2) reveals that the frequency spectra of both
signals are preserved to within scaling factors. In addition, the Dirac delta
functions §(ka12 + w) and 0(kais + w £ koAags) constitute linear spectra,
intersecting the frequencies of both the occluding and occluded signals,
and are oriented in the direction of the constraint line pertaining to the
occluding signal. Figure 1 shows a typical example with 1D translating
sinusoids in an occlusion scene.

Similarly, The frequency spectra for 2D signals are planar and preserved
to within scaling factors under occlusion. In addition, the distortion cast by
the occlusion boundary fits oriented planes parallel to the planar spectrum
of the occluding signal.
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Let I (x) and I5(x) be 2D functions satisfying Dirichlet conditions such
that they may be expressed as complex exponential series expansions:

< &
Il(X): Z ClneixTNkl and IQ(X): Z aneixTNkQ, (3)

n=—oc n=—oc

where n = (n,,n,)? and N = n’T are integers, x are spatial coordinates,
ky = (k1g, kly)T and ko = (kog, kgy)T are fundamental frequencies and ¢,

(0)

and con are complex coefficients. Let Ii(x,t) = I;(vy ' (x,t)), La(x,t) =

IQ(VgO) (x,t)), where vl(o) = x — a;t, and the occluding boundary be locally
represented by:

1 ifx'n; >0
0 otherwise,

Ut - { (@
where nj is a vector normal to the occluding boundary at x. The frequency
spectrum of the occlusion is:

9]
Ikw) = 7 Y cind(k — Nki,w+a] Nky)
n=-—oco
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(5)

where Aas = aj; —as.

Equation (5) is a generalization of equation (2) from 1D to 2D sig-
nals and its geometric interpretation is similar. For instance, frequencies
(Nki,—al Nk;) and (Nky, —ad Nky) fit the constraint planes of the oc-
cluding and occluded signals, defined as k{a; + w = 0 and k''ay + w = 0.
In the distortion term, the Dirac § function with arguments (k — Nko)’'ny
and k'a; + w — Aal Nk represent a set of lines parallel to the constraint
plane of the occluding signal k” a; +w = 0 and, for every discrete frequency
Nk; and Nks exhibited by both signals, there is a frequency spectrum fit-
ting the lines given by the intersection of planes k'a; +w — Aal Nky =
0 and (k — Nk;)’'n; = 0. The magnitudes of these spectra are deter-
mined by their corresponding scaling functions ¢in[(k — Nk;)"n; |7! and
CQn[(k — NkQ)Tnl }71.
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Figure 1. (from left to right): a) Gaussian-windowed 1D signal with sinusoidals acting

as occluding and occluded surfaces. The occluding signal has spatial frequency k1 = % and

velocity vi = (1,1). The occluded signal has frequency ks = 2?" and velocity vo = (—1,1).
b) Fourier spectrum of a). ¢) Gaussian-windowed 2D signal with sinusoidals acting as

occluding and occluded surfaces. The occluding signal has spatial frequency k1 = (2, 2%)

167 16
and velocity vi = (1,1,1). The occluded signal has frequency ko = (%", %”) and wvelocity
vy = (—1,-1,1). d) Fourier spectrum of c).

3. Estimation of Multiple Image Motion

Equations (2) and (5) provide a model of the Fourier spectrum at an
occlusion boundary. We devise, for both 1D and 2D image signals, algo-
rithms capable of extracting multiple velocity measurements along with
the information-content of occlusion boundaries.

3.1. 1D ALGORITHM

Given a frequency measurement m; = (l%j, @)1, its corresponding velocity
estimate is given by v; = (—w;/ l%j, )" and an error metric corresponding
to the angular deviation between a measurement m; and an estimate of
the ' velocity v;, under the assumption that 6 ~ sin 6, may be defined as
(Jepson and Black, 91):
m!v;
E(mhy, ¥) = (6)
([ |2 Vil

Under the assumption that angular errors are normally distributed, we
define a mixture of normal distributions to account for multiple motions
as:

2
G(m;) =Y mfi(my, ¥;), (7)

i=0
which is the PDF for measurement m; and where ; is a mixture probabil-
ity. Aside from posing homoscedasticity, we use a uniform outlier distribu-

tion. Measurements at a predetermined distance from other distributions
should be considered as outliers and not enter the estimation process. The
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constant probability of observing a noisy measurement is expressed as:

e%n (8)

from which it is noted that measurements at A standard deviations from
the means of the normal distributions are considered to be corrupted by
noise.

With the hypothesis of homoscedasticity, constant standard deviation
and uniform distribution of noisy measurements, we establish the iterative
equations for the Expectation-Maximization algorithm. The expectation
step is the computation of posterior probabilities, which we write as:

(k) 5o26%(m;.%i)

~ 2
+(0) _ e 9)

“ o (k) €m0 (k) T

Zt:l ,ﬂ—t e2a-v + 71—0 e 205
for s = 1,2, the number of normal distributionsand j = 1,...,n the number

of measurements. For the uniform distribution of noisy measurements we
write

(k) 522

. aifl e 202

k) _ 7_1220%‘ o —= (10)
Siy et T P

for j = 1,...,n. The equations for the maximization step, in which the

velocities and mixture probabilities are updated, we write:

n ~(k s - n s ~(k
(k+1) _ ijlTi(j )H(m]')mj Alht1) _ 2j=1 H(m]')Tz'(j)

i 7B () T k()

v

(11)

where #(m;) is the magnitude of m; and m; is its negative reciprocal.

In order to identify the spectra associated with occluding boundaries,
we first find peak frequency measurements for both signals. That is to say,
we find for signal ¢, the frequency m; such that 7, > 75 for ¢ # 7 and
x(my) is maximal and determine the strength of measurements m; along
the direction perpendicular to the hypothesized occluding velocity at the
peak frequency of the hypothesized occluded signal.

To test for the signal corresponding to velocity v; as occluding, the
procedure is to first consider only those measurements m; belonging to
the uniform distribution of the mixture: 7o; > 75, for 4 = 1,2 and j =
1...n, as determined by the EM algorithm and the peak frequency of the
signal corresponding to velocity v;, where ¢ # i. We then proceed with the
computation of the strengths of measurements confirming this hypothesis,
once again using mixture probabilities.
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Among measurements belonging to the uniform noise distribution, we
compute their posterior probability of being part of the distortion spectra
cast by the hypothesized occlusion and we also determine the posterior
probabilities of the measurements to be from the uniform noise distribution
to the exclusion of the spectra of the occlusion. Mixture proportions may be
obtained from these posterior probabilities that assess the hypothesis under
test. Thus, if velocity v; is occluding, then the strengths of measurements
confirming this hypothesis outnumber those pertaining to its contrary. This
hypothesis-testing method is applied to determine the image events giving
rise to multiple velocities.

3.2. 2D ALGORITHM

The algorithm for 2D signals is essentially similar to the 1D algorithm we
described. The measurements m; = (kxj,kyj,wj)T and velocity estimates
Vi = (vg, vy, )" are used in the error metric (6) to deterimine the posterior
probabilities 7;;, as is the case with the 1D algorithm. However, the choice of
velocity estimates differs substantially. In the case of 2D signals, the velocity
estimates at each EM iteration must maximize the numerator exponential
of (9). In this case, we follow the approach adopted by Jepson and Black
(Jepson and Black, 91), and consider the square of the error metric (6) as
the equation for which the solutions yield velocity estimates. We observe
that ¢2(m;, v;) may be written in matrix form as

(m;rvi)Q — VZTM]‘VZ' (12)

where M; = Ih]IhJT By selecting the eigenvector corresponding to the
minimum eigenvalue of M; for v;, we minimize (12). Since M; is real and
symmetric, its eigenvalues are real and non-degenerate and the eigenvectors
form an orthogonal basis in the space of measurements. In light of these
observations, we define

n k ~
(k+1) _ ijlTi(j )”(mj)Mj

by
' 2 j=1 r(m;)

(13)

(k+1)

as the matrix from which the velocity estimate v, is to be obtained in

the form of the eigenvector eng)
k+1)

corresponding to the minimum eigenvalue

ez( of 3J;. The minimum eigenvalue holds information about the velocity
estimate obtained from its corresponding eigenvector. A zero value for e;
indicates that the velocity measurement is normal, whereas a non zero value
indicates a full velocity measurement (Jahne, 90). To see this, consider a
set of observations consisting of collinear measurements, consistent with
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Figure 2. Ezperimental results. Occluding frequencies and velocities are labeled as k1 or
ki and v,. (top, left to right): a) 1D occlusion imagery with spatial frequencies ky = 2%
and ky = %" and velcities vi = (1,1) and v2 = (—1,1). b) Full optical flow. ¢) Occluding
velocities. d) Occluded velocities. (bottom, left to right): e) 2D occlusion imagery
with spatial frequencies k1 = (%, Zl—g) and ko = (%", %’T) and veleities vi = (1,1,1) and

vy = (—1,-1,1). f) Full optical flow. g) Occluding velocities. h) Occluded velocities.

a normal velocity. It is observed that in such circumstances, the lines of
matrix 3J; are linearly dependent, leading to a minimum eigenvalue of value
zero. The final eigenvalues e; contain information on the nature of the
measured velocities that is very relevant in most uses of image velocity.

Under the hypothesis of a straight-edged occlusion boundary, its nor-
mal may be estimated from the frequency structure of the occlusion (Beau-
chemin and Barron, 97). To perform this estimation, the algorithm recovers
the orientation of the spectrum cast by the occlusion about the maximum
frequency of the occluded signal, within a plane parallel to that of the oc-
cluding signal. To perform this estimation, it is necessary to include an
EM iteration which converges to this linear orientation within the specified
constraint plane.

4. Experiments

We report two numerical experiments on synthetic sinusoidal imagery com-
posed of a 1D and a 2D occlusion scene as described in Figure 2. The images
used for these experiments are noise-free and so are the computed optical
flow fields. It has been clear for some time that a number of vision algo-
rithms still fail to meet this fundamental criterion (Barron et al., 94). Local
frequency measurements are obtained for an image location by computing
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a local Fast Fourier Transform within regions of side size 32. We observed
that 30 iterations were sufficient for the EM algorithm to converge. The
initial estimates for velocities and mixture proportions may be chosen ran-
domly, but we prefer to have initial velocity estimates as apart as possible
in order to avoid convergence of both estimates to a single peak.

4.1. DISCUSSION

The nature of image motion, most particularly discontinuous motion in
frequency space, has long been unclear. The algorithms proposed herein
are based on a firm theoretical framework which describes the coherent
behavior of occlusion events in frequency space. Indeed, we strongly believe
that further developments in the field of optical flow and motion analysis
ought to be based on firmly established theoretical backgrounds rather than
incidental evidence, as is sometimes the case (Jain and Binford, 90).

In light of this, we propose a novel evaluation protocol which includes
theoretical considerations and their impact on numerical evaluations. By
considering the body of theoretical knowledge concerning a phonomenon,
such as image motion for instance, one is able to assess the numerical impact
that each part provided by a theoretical model has. For example, a formula-
tion of the algorithms in this contribution that would use the single motion
hypothesis may be numerically compared with the complete algorithms as
described on a relevant set of test images, thus numerically assessing the
gain provided by a more complete theoretical model. The cycle in which
this protocol operates may be defined by the following steps:

— Incrementally incorporate theoretical knowledge of the phenomenon
under study into a descriptive, computational model.

— Derive the corresponding algorithms based on the computational model.

— Numerically evaluate these algorithms on an appropriate set of images
and assess their accuracy.

— Repeat the steps until the computational model is entirely compliant
with the current body of applicable theoretical knowledge about the
phenomenon under study.

This iterative protocol allows to assess the impact that theoretical knowl-
edge has on numerical evaluations of algorithms and we believe it to be of
importance because of its ability to provide the necessary insights pertain-
ing to observed accuracy differentials of various algortihms.

However, by proposing such a protocol, we do not imply to shift the em-
phasis away from pure numerical evaluations. On the contrary, we merely
suggest to include such comparative numerical evaluations within this frame-
work in order to understand the numerical impact of computational models
derived from various bodies of theoretical knowledge.
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