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t. The 
lassi
al method of numeri
ally 
omputing Fouriertransforms of digitized fun
tions in one or in d-dimensions is the so-
alledDis
rete Fourier Transform (DFT ) eÆ
iently implemented as Fast FourierTransform (FFT ) algorithms. In many 
ases, the DFT is not an adequateapproximation of the 
ontinuous Fourier transform. Be
ause the DFT isperiodi
al, spe
trum aliasing may o

ur. The method presented in this
ontribution provides a

urate approximations of the 
ontinuous Fouriertransform with similar time 
omplexity. The assumption of signal period-i
ity is no longer posed and allows to 
ompute numeri
al Fourier transformsin a broader domain of frequen
y than the usual half-period of the DFT .The aliasing introdu
ed by periodi
ity 
an be redu
ed to a negligible leveleven with a relatively low number of sampled data points. In addition, thismethod yields a

urate numeri
al derivatives of any order and polynomialsplines of any odd order with their optimum boundary 
onditions. Thenumeri
al error on results is easily estimated. The method is developed inone and in d-dimensions and numeri
al examples are presented.1. Introdu
tionThe ubiquitous Fourier transform and its numeri
al 
ounterpart, the Dis
reteFourier Transform (DFT ), in one or many dimensions, are used in many �elds,su
h as mathemati
s (linear systems, random pro
esses, probability, boundary-value problems), physi
s (quantum me
hani
s, opti
s, a
ousti
s, astronomy),
hemistry (spe
tros
opy, 
rystallography), and engineering (tele
ommuni
ation-s, signal pro
essing, image pro
essing, 
omputer vision, multidimensional signalpro
essing) [1, 2, 3, 4, 5℄.Although it is usual to 
onsider the DFT as a mathemati
al tool with its ownproperties, it 
ertainly makes sense to 
on
eptualize it as the dis
rete version ofthe analyti
al Fourier transform and as an approximation of the latter [1℄. Inthis regard, the DFT , usually 
omputed via a fast Fourier transform (FFT )algorithm, must be used with 
aution sin
e it is not a 
orre
t approximationin all 
ases [6, 7, 8, 9℄. First, the DFT is periodi
al and it is only on onehalf of a period that it 
onstitutes an approximation of the Fourier transform.Se
ond, the sampling rate of the fun
tion to be submitted to the DFT is a1
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riti
al issue. Without sampling the time1 fun
tion at a suÆ
iently high rate, aphenomenon known as aliasing may be
ome intolerable and spoil the a

ura
yof the DFT as an approximation of the Fourier transform. It 
ould be thoughtthat if the Nyquist 
riterion is ful�lled, everything should 
ome out �ne. TheNyquist 
riterion states that the sampling rate must be at least twi
e the highestfrequen
y of the initial fun
tion [1, 2, 10℄. However, in applied s
ien
e, a fun
tionmay be de�ned between 0 and T only. Hen
e, the highest frequen
y of su
h atime-limited fun
tion is in�nite. Consequently, the DFT produ
es aliasing2. One
ould argue that, even though the highest frequen
y is in�nite, it is possible tosuÆ
iently in
rease the number of sampled data points su
h that the error of theDFT be
omes as small as one desires. However, the required number of datapoints 
ould be huge. As an example, for the fun
tion h (t) = e�50t; t 2 [0; 1℄ ;the error on DFT fhg, around f = 64; de
reases roughly as N�1=3: Hen
e, onemust in
rease N by a fa
tor of 1000 to de
rease the error by a fa
tor of 10.In some 
ases where the result of the DFT is used qualitatively, for examplein some FTIR (Fourier Transform Infrared Spe
trometer) experiment where theresult is plotted and visually examined by an experien
ed spe
tros
opist, a higha

ura
y is not absolutely mandatory. But in some appli
ations, su
h as in de-
onvolution where a division is performed in the frequen
y domain, a slight errorin the denominator fun
tion, parti
ularly when it is 
lose to zero, 
an seriouslydistort the result [11℄.However, one may in
rease the a

ura
y of the numeri
al Fourier transformwhen the number of sampled data points is limited. This 
an be implementedthrough the assumption that the fun
tion from whi
h the sampled data points areextra
ted and its derivatives are 
ontinuous. The sampling pro
ess, performedthrough the so-
alled Dira
 
omb [1℄, in a sense, isolates ea
h data point and
onsiders them as independent from ea
h other. The fun
tion and its derivativesare no longer 
ontinuous. By re-establishing the 
ontinuity between the sampleddata points, a method that yields a highly a

urate numeri
al Fourier transform
an be devised. 2. Theory in d-dimensionLet ~t = (t1; t2 : : : td) 2 Rd and ~f = (f1; f2 : : : fd) 2 Rd , d 2 N� . R is the set ofreal numbers, N the set of nonnegative integers and N� = Nn f0g. Let us de�ne1Without loss of generality, the re
ipro
al variables time (t) and frequen
y (f) are usedthroughout this arti
le.2The usual method to avoid aliasing is to �lter out the high frequen
y 
omponents thusmodifying the original signal.
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tion:� :Rd ! R; � �~t� = dYi=1 � (ti) (1)in whi
h � and � are Heaviside's fun
tions in d-dimensions and in one dimensionrespe
tively. Let us de�ne two d-dimensional re
tangular fun
tions su
h as:R �~t� = ��~t�~0�����~t + ~T+� and S �~t� = � �~t����~t + ~T� (2)with ~0� = (0�; 0�; : : : 0�) and ~T+ = �T+1 ; T+2 ; : : : ; T+d � , T� 2 R , T� > 0 , 8� ,and in whi
h:0� = lim"!0 (0� ") , T+� = lim"!0 (T� + ") , " 2 R , " > 0 (3)Let g : Rd ! (R or C ) ; (C is the �eld of 
omplex numbers) be a 
ontinuousfun
tion that admits dire
tional derivatives of any order in any dire
tions for all~t su
h that S �~t� 6= 0: We now de�ne the following fun
tion:h �~t� = R �~t� g �~t� (4)and adopt the following de�nition for the Fourier transform:F �h �~t�	 = ZRd h �~t� e�i2�~f �~td~t (5)By expanding the inner produ
t and reorganizing the terms, (5) be
omes:F �h �~t�	 =1R�1 � � � 1R�1 � 1R�1 h (t1; : : : ; td) e�i2�f1�t1dt1� e�i2�f2�t2dt2 � � � e�i2�fd�tddtd (6)It is a known fa
t, evident from (6), that a d-dimensional Fourier transform ofa fun
tion 
an be performed by d su

essive one dimensional Fourier transforms.Consequently, in the next se
tion we develop the theory in one dimension. Inthat 
ase, generi
 non-indexed variables as t; f; T::: that stand for any indexedvariable of a parti
ular dimension of the d-dimensional spa
e are used.
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al Fourier Transform in d-Dimensions. 43. Theory in one dimensionIn virtue of the properties of the di�erentiation of Heaviside's and Dira
-deltafun
tions (Æ) [2, 12℄, the nth derivative of h with respe
t to t is:h(n) (t) = � �t� 0��� ��t + T+� g(n) (t) +Dn (t) (7)in whi
h Dn (t) is de�ned as:Dn (t) =8<: 0 if n = 0n�1Pm=0�g(m) (0�) Æn�m�1 (t� 0�)� g(m) (T+) Æn�m�1 (t� T+)	 if n 2 N�(8)Eq. (7) and (8) express the fa
t that the nth derivative of h with respe
t to t isthe ordinary nth derivative of the fun
tion h stri
tly inside the re
tangular boxwhere it is 
ontinuous and di�erentiable, in addition to the nth derivative of h inthe regions where it is dis
ontinuous.A

ording to our de�nition of the Fourier transform, we have:F �h(n) (t)	 = 1Z�1 h(n) (t) e�i2�ftdt (9)We 
an expand the integral in (9) into parts to form:F �h(n) (t)	 = 0Z�1 h(n) (t) e�i2�ftdt+ TZ0 h(n) (t) e�i2�ftdt+ 1ZT h(n) (t) e�i2�ftdt (10)The sum of the �rst and last integrals of the right hand side of (10) 
learly isF fDn (t)g. Hen
e, (10) be
omes:F �h(n) (t)	 = TZ0 h(n) (t) e�i2�ftdt+ F fDn (t)g (11)By separating the interval [0; T ℄ into N equal �t = T=N subintervals, (11) 
anbe rewritten as:F �h(n) (t)	 = N�1Xj=0 8<: (j+1)�tZj�t h(n) (t) e�i2�ftdt9=;+ F fDn (t)g ; j 2 N (12)
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e h(n) is 
ontinuous and di�erentiable between 0 and T , it 
an be approxi-mated for t 2 [j�t; (j + 1)�t℄, for ea
h j 2 [0; N � 1℄, by a Taylor expansion:h(n) (t) = 1Xp=0 h(p+n)j (t� j�t)pp! ; p 2 N (13)where h(m)j is the mth derivative of h at t = j�t. Merging (12) and (13) yields:F �h(n) (t)	 =N�1Pj=0 ( (j+1)�tRj�t � 1Pp=0 h(p+n)j (t�j�t)pp! � e�i2�ftdt)+ F fDn (t)g ; j 2 N (14)With the substitution � = t� j�t and an adequate permutation of the integraland sums on j and p, (14) be
omes:F �h(n) (t)	 = 1Xp=08<:0� �tZ0 � pe�i2�f�p! d�1A N�1Xj=0 h(p+n)j e�i2�fj�t!9=;+ F fDn (t)g(15)To numeri
ally 
ompute the Fourier transform of h, we must evaluate it for somedis
rete values of f . Let f = k�f = k=T , k 2 N be these dis
rete variables. Inaddition, let us de�ne Hk as the dis
rete version of F �h(n) (t)	 : The integral in(15) depends only on the variable f (or k) and on the parameters p and �t and
an be evaluated analyti
ally, whether f is 
ontinuous or dis
rete, on
e and forall, for ea
h value of p as: Ip = 1p! �tZ0 � pe�i2�f�d� (16)Sin
e the integral in the de�nition of Ip is always �nite and, in the 
ontext ofthe Gamma fun
tion [13℄, p! = �1 when p is a negative integer, then Ip = 0 forp < 0.The summation on j in (15), when f = k�f = k=T , is the dis
rete Fouriertransform of the sequen
e h(p+n)j , j 2 [0; N � 1℄ � N [1℄. We denote it as Fp+n;k.Sin
e �t = T=N and f = k=T , we have:Fp+n;k = N�1Xj=0 h(p+n)j e�i2� kjN (17)
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al Fourier Transform in d-Dimensions. 6One should note that although we wrote Ip and Fp+n;k instead of Ip (f or k) andFp+n;k (f or k), these fun
tions always depend on f or k.Substituting (16) and (17) in (15), we obtain the following result:F �h(n) (t)	 = 1Xp=0 IpFp+n;k + F fDn (t)g (18)When n = 0; (18) be
omes: Hk = 1Xp=0 IpFp;k (19)Now, integrating by parts the right hand side of (9) yields:F �h(n+1)	 = i2�fF �h(n)	 (20)De�ning bn = i2�fF fDng�F fDn+1g , 
ombining (18) and (20) and reorganizingthe terms yields:�i2�fI0Fn;k + 1Xp=1 �I(p�1) � i2�fIp�Fp+n;k = bn (21)With the de�nition J� = I��1 � i2�fI� , (21) be
omes:J0Fn;k + 1Xp=1 JpFp+n;k = bn (22)Given the de�nition of g and h, we have g(n) (0�) = g(n) (0) = h(n) (0) andg(n) (T+) = g(n) (T ) = h(n) (T ). Using these fa
ts in addition to the propertiesof Fourier transforms and those of Dira
 delta fun
tions [12℄, one easily observesthat expanding bn results in the simple following form:bn = h(n) (T ) e�i2�fT � h(n) (0) (23)In the dis
rete 
ase, where f = k=T , (23) takes the following simple and signi�-
ant form: bn = h(n) (T )� h(n) (0) = h(n)N � h(n)0 (24)Up to this point, all equations are rigorously exa
t sin
e p tends towards in�nity.However, in pra
ti
al situations we introdu
e an approximation by limiting therange on p. Let us de�ne � 2 N , the trun
ating parameter, whi
h, for reasonsdis
ussed later, is always 
hosen as an odd integer. We refer to it as the order ofthe system.



A

urate Numeri
al Fourier Transform in d-Dimensions. 7Let us expand (22) for ea
h value of n 2 [0; � � 1℄ � N . This generates asystem of � di�erent equations and, for ea
h of these, we let p range from 1 to� � n� 1. This gives the following system, whi
h is written in matrix form:26664 J0 J1 � � � J��10 J0 � � � J��2... ... . . . ...0 0 � � � J0
3777526664 F0;kF1;k...F��1;k

37775 ' 26664 b0b1...b��1
37775 (25)or, more 
ompa
tly as: MaFa ' B (26)Note that the matrix Ma is 
ompletely known sin
e ea
h of its terms dependsonly on f . The general expression for the elements of Ma is:(Ma)�� = I����1 � i2�fI��� = J��� (27)Matrix B is unknown. If it were, we 
ould evaluate Fa from (26):Fa ' M�1a B (28)However, for f = �N�f , � 2 N , the solutions would stri
tly diverge. Indeed,for these parti
ular values of f , det (Ma) = 0. However, for values of f aroundN�f=2, the approximation (28) is quite a

urate. We take advantage of this fa
tto 
ompute B.The �rst element of Fa, whi
h is (Fa)1 = F0;k, is the DFT of the sequen
e hj.It is 
ompletely determined for ea
h value of k. It is not the same situation forthe other elements of Fa whi
h are still unknown. Furthermore, the elements ofmatrix M�1a are given for ea
h value of f . We 
an then extra
t the following from(28): F0;k ' �row1M�1a �B = �X�=1 �M�1a �1;� (B)� (29)Let us now de�ne 
 , an interval of � values of k, 
entered at N=2:
 = �N2 � �� � 12 � ; N2 + �� � 12 �� = [k1; k2; : : : ; k�℄ � N (30)Let us expand (29) for ea
h value of k 2 
. (It is understood that in pra
ti
al
ases, for ea
h instan
e of f in ea
h term, one has to repla
e it by k�f .) Doing
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37775 ' 26666664

�(M�1a )1;1 jk1� �(M�1a )1;2 jk1� � � � �(M�1a )1;� jk1��(M�1a )1;1 jk2� �(M�1a )1;2 jk2� � � � �(M�1a )1;� jk2�... ... . . . ...�(M�1a )1;1 jk�� �(M�1a )1;2 jk�� � � � �(M�1a )1;� jk��
3777777526664 b0b1...b��1

37775(31)Note that (M�1a )1;� jk� is 
ompa
t notation for (M�1a )1;� evaluated at k = k� andf = k��f . Let us express (31) in a more 
ompa
t form as F
 ' WB, from whi
hwe dire
tly dedu
e the following matrix equation:B ' W�1F
 (32)Eq. (32) 
ompletely determines B from F0;k (the dis
rete Fourier transform ofthe digitized fun
tion h). A

ording to (24), the knowledge of B spe
i�es bm(m 2 [0; � � 1℄ ). They are the boundary 
onditions of the system.Although B is 
ompletely determined, (28) 
annot be used, for reasons men-tioned earlier, to evaluate Fa. Considering the �rst element of Fa as known (it isthe DFT of h), we again expand (22), but in a slightly di�erent manner than wedid to obtain (25). We on
e more expand it for ea
h value of n 2 [0; � � 1℄ � N .This generates a system of � equations, and for ea
h of these we let p range,this time, from 1 to � � n. Thereafter, the terms are reorganized to obtain thefollowing system, whi
h is written again in matrix form:26664 J1 J2 � � � J�J0 J1 � � � J��1... ... . . . ...0 0 � � � J1
3777526664 F1;kF2;k...F�;k

37775 ' 26664 b0b1...b��1
37775+ 26664 �J0F0;k0...0 37775 (33)or, more 
ompa
tly as: MbFb ' B+ C (34)The general expression for elements of Mb is thus:(Mb)�� = I��� � i2�fI���+1 = J���+1 (35)Let us now write (34) as: Fb ' M�1b (B+ C) (36)The advantage of (28) over (36) is that it allows, through (32), to 
omputeB. However, it shows singularities at f = �N�f , � 2 N whi
h prevent us to
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ompute Fa. Conversely, the advantage of (36) is that it exhibits a higher orderthan (28) and, provided that � is odd, Fb is 
omputable for values of f = k�f .One should note that, with (36), undetermined values appear for f = �N�f , butthey 
an always be solved by Hospital's rule for any odd order. For even orders,there are singularities at f = (�+ 1=2)N�f that 
annot be removed. This is animperative reason to 
hoose odd values for �.With the knowledge of Fb from (36), the terms of (19), for p 2 [0; �℄, are
ompletely determined. Thus, the trun
ated version of (19) 
an be written as:Hk ' �Xp=0 IpFp;k (37)Let us de�ne a one-row matrix as I� = [I1 I2 � � � I�℄, and write (37) as follows:Hk ' I0F0;k + I�Fb (38)With (38), we approximate the Fourier transform (or the inverse Fourier trans-form) of a digitized fun
tion in one dimension. The digitized Fourier transform
al
ulated with (38) is not band-limited (as with the DFT whi
h is periodi
al).Eq. (38) remains valid and a

urate as an approximation of the analyti
al Fouri-er transform for positive or negative values of k su
h that jkj > N=2 or even forjkj > N � 1. (This last property and the following, brie
y mentioned in the restof this se
tion, have been dis
ussed and illustrated with examples in [14℄.)A 
lose examination of (31), (33) and (38) reveals that the 
omputation ofonly one FFT is required. The other terms form a 
orre
ting operation to beapplied on
e on ea
h of the N values of the FFT . The time 
omplexity of the
orre
ting operation is O (N) and the time 
omplexity of the FFT is O (N logN).Hen
e, the time 
omplexity of the entire algorithm is O (N logN) when � is kept
onstant. The time 
omplexity relatively to �; the order of the system, is O ��2� ;but, as long as � � �opt; the errors on 
omputed results de
rease exponentiallywith the in
rease of the order �. Hen
e, as long as one 
an a�ord to in
rease �,the trade-o� is strongly bene�
ial.Eq. (38) 
ontains the symboli
 form of Fb whi
h 
an be used as is to form asingle symboli
 formula without having its terms evaluated numeri
ally. On theother hand, if, for instan
e, (36) is used to numeri
ally 
ompute ea
h term ofFb for values of k from 0 to N � 1, it produ
es � di�erent sequen
es of numberswhi
h are a
tually a

urate approximations of the DFT of the derivatives h(p)j ,for values of p 2 [1; �℄. Thus, applying the inverse DFT operation to ea
h ofthese sequen
es generates the 
orresponding sequen
es h(p)j that are very a

uratenumeri
al derivatives of the initial fun
tion h(0)j of all orders from 1 to �. This
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an numeri
ally 
ompute very a

urately the derivatives of anyorder of a digitized fun
tion or signal.Derivatives 
al
ulated in that way are 
ontinuous in-between and at ea
h da-ta point. Thus, we obtain spline polynomials of any odd order, with their 
orre-sponding properties, merely withDFT (FFT ). Furthermore, sin
e (32) is used to
ompute B, these spline interpolation polynomials, whatever their order, alwaysexhibit optimal boundary 
onditions, that is to say, a

urate end derivatives forea
h order [15℄. Su
h a

urate high-order spline interpolation polynomials allowintegrals between any limit to be a

urately 
omputed.Let R� be any result (Fourier transform, derivative or integral) obtained withan arbitrary order �. As long as � + 2 � �opt, the error on R� (noted E�) 
an befairly estimated sin
e R�+2 relatively to R� 
an be 
onsidered almost as the exa
tresult. To do so, one 
an use the following relation: E� = O (R�+2 � R�) ; whereO is any operator one 
an de�ne to meet spe
i�
 needs.4. Ba
k in d-dimensionsIn the previous se
tion we have obtained a highly a

urate method to 
omputethe Fourier transform in one dimension. A

ording to (6), this method 
an beapplied sequentially to 
ompute an a

urate d-dimensional Fourier transform. Inthis multidimensional 
ase, for ea
h � 2 f1; 2; � � � ; dg we have t� 2 [0; T�℄. Thisinterval is separated into N� equal �t� = T�=N� parts, and f� = k��f� =k�=T�. As with the ordinary DFT (FFT ), the order in whi
h the dimensionsare treated is irrelevant. The number of times (38) has to be applied to 
omputea d-dimensional Fourier transform is:PQ where P = dY�=1N� and Q = dX�=1 1N� (39)The time 
omplexity is then O (P logP ) : Let us put N� = a�N; 8�; a� being
onstants. It is easy to show that the time 
omplexity is O �Nd logN� whi
h isthe same as for the DFT in d-dimensions.5. Example in 2 dimensionsIn this se
tion, an example in two dimensions is used to illustrate the algorithm.The 
hoi
e of su
h an example is not obvious. That is to say, the fun
tionshould not be a trivial one; it must be diÆ
ult enough for the 
omputation of theFourier transform to be numeri
ally demanding. On the other hand, for purposeof 
omparison and a

ura
y testing, the Fourier transform of the fun
tion mustbe analyti
ally known. The 
hosen initial fun
tion for our example is then the
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omplex fun
tion:h (t1; t2) =�
os (9t1) 
os (11t1 + 17t2) e�2:5t1 ; e�2(t1+t2) + e[�100(t1�0:5)2�50(t2�0:5)2℄� ;T1 = T2 = 1 (40)The real part is a 
ombination of damped os
illations that are slanted in virtue ofthe damping. The imaginary part is a non-symmetri
al Gaussian peak purposelyslanted by an exponential to avoid error 
an
ellation by symmetry. For bothvariables, the fun
tion is dis
ontinuous at 0 and at T�; 8�. Figures 1.a and 1.bshow, respe
tively, the modulus of (40) and of its analyti
al Fourier transformfor N1 = N2 = 128. The formula of the analyti
al Fourier transform of this twodimensional fun
tion is not shown here sin
e it requires several pages of text.
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al behavior is evident.Figure 2.b shows the modulus of the error of the DFT relatively to the analyti
alFourier transform. To be fair, this error must indeed be 
omputed on the �rst(N1=2)� (N2=2) data points only, sin
e the DFT is periodi
al.Figure 3.a shows the numeri
al Fourier transform of h 
omputed with (38)for � = 13: It is 
learly seen that this approximation behaves as the analyti
alFourier transform and is not periodi
al. Figure 3.b shows the modulus of the errorof this approximation relatively to the analyti
al Fourier transform, 
omputed,
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tor in Figures 2.b and 3.b.This same eq. (38), used for Figure 3, is used again, on the same fun
tion(eq. 40) with di�erent values of N = N1 = N2 and �. The averages of the moduliof the error on the numeri
al Fourier transform given by (38) relatively to theexa
t analyti
al Fourier transform are shown in Table 1 in addition to the resultsobtained with the DFT .We observe that for small values of N (a
tually for N = 8); in
reasing � doesnot improve a

ura
y. It means that the optimum value of � 
alled �opt is alreadyrea
hed. If N is slightly in
reased, �opt grows rapidly and the smallest possibleerror de
reases dramati
ally. For N = 8; �opt < 3: For N = 16; �opt < 5: ForN = 32; �opt = 5: For N � 64; �opt � 13: We also note that, ex
ept for smallvalues of N , the error from (38) is always mu
h smaller than the error from theDFT and, for any �; it de
reases more rapidly with the in
rease of N than doesthe error from the DFT with the same in
rease in N:6. Con
lusionAn analyti
al fun
tion 
ontains an in�nite quantity of information [16℄. It is pos-sible, in prin
iple, at least when the Fourier integral is analyti
ally obtainable,to 
ompute its Fourier transform exa
tly. In all other 
ases we have to resort tonumeri
al te
hniques and depart from analyti
al forms. The 
lassi
al samplingof a fun
tion uses the Dira
 
omb whi
h reje
ts an in�nite quantity of informa-tion to make the digitized fun
tion manageable on a �nite 
omputer. The usual



A

urate Numeri
al Fourier Transform in d-Dimensions. 13
0

20
40

60
80

100
120

0
20

40
60

80
100

120

0
0.05

0.1
0.15

0.2

0
20

40
60

80
100

120

0
20

40
60

80
100

120

0

0.2

0.4

0.6

(a) jHkj (b) jError on Hkj � 10�17Figure 3: Modulus of the numeri
al Fourier transform given by (38), with � = 13;and modulus of error on Hk (�10�17) : The error is 
omputed on the full rangeof the 128� 128 data points. Maximum error = 0:7� 10�17:tools to numeri
ally 
ompute the Fourier transform of a digitized fun
tion ind-dimensions is the DFT; eÆ
iently implemented as the FFT algorithm. How-ever, in many 
ases the DFT is not an adequate numeri
al approximation of theFourier transform.On the one hand, there is the perfe
t analyti
al Fourier transform that is,most of the time, not pra
ti
al and, on the other hand, we have the very eÆ
ientFFT whi
h 
omputes an approximation of the Fourier transform without anyattempt to redu
e the unavoidable ravages of the Dira
 
omb. The method pre-sented in this 
ontribution is in-between these two extremes; its position beingadjusted by the value of �; the order of the system. The method provides a

urateapproximations of the 
ontinuous Fourier transform, is no longer periodi
al and
omputes the numeri
al Fourier transform in a broader frequen
y domain thanthe half-period of the DFT . The aliasing 
an be redu
ed to a negligible level evenwith a relatively low number of sampled data points. The method gives a

uratenumeri
al partial derivatives of any order and the polynonial splines of any oddorder with their optimal boundary 
onditions. The error 
an be easily 
omputedby 
omparing the results of two su

essive odd orders. The time 
omplexity, rel-atively to the number of sampled data points, is the same as for the FFT: Thetime 
omplexity, relatively to � (independent of the time 
omplexity relativelyto N) is O ��2�, while the a

ura
y in
reases exponentially with �. Hen
e, thenumeri
al a

ura
y in
reases mu
h more rapidly than the 
omputational 
ost ofthe proposed method.
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