
Aurate Numerial Fourier Transform in d-Dimensions.Normand Beaudoin Steven S. BeauheminThe University of Western Ontario, London, Canada N6A 5B7April 11, 2001.Abstrat. The lassial method of numerially omputing Fouriertransforms of digitized funtions in one or in d-dimensions is the so-alledDisrete Fourier Transform (DFT ) eÆiently implemented as Fast FourierTransform (FFT ) algorithms. In many ases, the DFT is not an adequateapproximation of the ontinuous Fourier transform. Beause the DFT isperiodial, spetrum aliasing may our. The method presented in thisontribution provides aurate approximations of the ontinuous Fouriertransform with similar time omplexity. The assumption of signal period-iity is no longer posed and allows to ompute numerial Fourier transformsin a broader domain of frequeny than the usual half-period of the DFT .The aliasing introdued by periodiity an be redued to a negligible leveleven with a relatively low number of sampled data points. In addition, thismethod yields aurate numerial derivatives of any order and polynomialsplines of any odd order with their optimum boundary onditions. Thenumerial error on results is easily estimated. The method is developed inone and in d-dimensions and numerial examples are presented.1. IntrodutionThe ubiquitous Fourier transform and its numerial ounterpart, the DisreteFourier Transform (DFT ), in one or many dimensions, are used in many �elds,suh as mathematis (linear systems, random proesses, probability, boundary-value problems), physis (quantum mehanis, optis, aoustis, astronomy),hemistry (spetrosopy, rystallography), and engineering (teleommuniation-s, signal proessing, image proessing, omputer vision, multidimensional signalproessing) [1, 2, 3, 4, 5℄.Although it is usual to onsider the DFT as a mathematial tool with its ownproperties, it ertainly makes sense to oneptualize it as the disrete version ofthe analytial Fourier transform and as an approximation of the latter [1℄. Inthis regard, the DFT , usually omputed via a fast Fourier transform (FFT )algorithm, must be used with aution sine it is not a orret approximationin all ases [6, 7, 8, 9℄. First, the DFT is periodial and it is only on onehalf of a period that it onstitutes an approximation of the Fourier transform.Seond, the sampling rate of the funtion to be submitted to the DFT is a1



Aurate Numerial Fourier Transform in d-Dimensions. 2ritial issue. Without sampling the time1 funtion at a suÆiently high rate, aphenomenon known as aliasing may beome intolerable and spoil the aurayof the DFT as an approximation of the Fourier transform. It ould be thoughtthat if the Nyquist riterion is ful�lled, everything should ome out �ne. TheNyquist riterion states that the sampling rate must be at least twie the highestfrequeny of the initial funtion [1, 2, 10℄. However, in applied siene, a funtionmay be de�ned between 0 and T only. Hene, the highest frequeny of suh atime-limited funtion is in�nite. Consequently, the DFT produes aliasing2. Oneould argue that, even though the highest frequeny is in�nite, it is possible tosuÆiently inrease the number of sampled data points suh that the error of theDFT beomes as small as one desires. However, the required number of datapoints ould be huge. As an example, for the funtion h (t) = e�50t; t 2 [0; 1℄ ;the error on DFT fhg, around f = 64; dereases roughly as N�1=3: Hene, onemust inrease N by a fator of 1000 to derease the error by a fator of 10.In some ases where the result of the DFT is used qualitatively, for examplein some FTIR (Fourier Transform Infrared Spetrometer) experiment where theresult is plotted and visually examined by an experiened spetrosopist, a highauray is not absolutely mandatory. But in some appliations, suh as in de-onvolution where a division is performed in the frequeny domain, a slight errorin the denominator funtion, partiularly when it is lose to zero, an seriouslydistort the result [11℄.However, one may inrease the auray of the numerial Fourier transformwhen the number of sampled data points is limited. This an be implementedthrough the assumption that the funtion from whih the sampled data points areextrated and its derivatives are ontinuous. The sampling proess, performedthrough the so-alled Dira omb [1℄, in a sense, isolates eah data point andonsiders them as independent from eah other. The funtion and its derivativesare no longer ontinuous. By re-establishing the ontinuity between the sampleddata points, a method that yields a highly aurate numerial Fourier transforman be devised. 2. Theory in d-dimensionLet ~t = (t1; t2 : : : td) 2 Rd and ~f = (f1; f2 : : : fd) 2 Rd , d 2 N� . R is the set ofreal numbers, N the set of nonnegative integers and N� = Nn f0g. Let us de�ne1Without loss of generality, the reiproal variables time (t) and frequeny (f) are usedthroughout this artile.2The usual method to avoid aliasing is to �lter out the high frequeny omponents thusmodifying the original signal.



Aurate Numerial Fourier Transform in d-Dimensions. 3a d-dimensional Heaviside's funtion:� :Rd ! R; � �~t� = dYi=1 � (ti) (1)in whih � and � are Heaviside's funtions in d-dimensions and in one dimensionrespetively. Let us de�ne two d-dimensional retangular funtions suh as:R �~t� = ��~t�~0�����~t + ~T+� and S �~t� = � �~t����~t + ~T� (2)with ~0� = (0�; 0�; : : : 0�) and ~T+ = �T+1 ; T+2 ; : : : ; T+d � , T� 2 R , T� > 0 , 8� ,and in whih:0� = lim"!0 (0� ") , T+� = lim"!0 (T� + ") , " 2 R , " > 0 (3)Let g : Rd ! (R or C ) ; (C is the �eld of omplex numbers) be a ontinuousfuntion that admits diretional derivatives of any order in any diretions for all~t suh that S �~t� 6= 0: We now de�ne the following funtion:h �~t� = R �~t� g �~t� (4)and adopt the following de�nition for the Fourier transform:F �h �~t�	 = ZRd h �~t� e�i2�~f �~td~t (5)By expanding the inner produt and reorganizing the terms, (5) beomes:F �h �~t�	 =1R�1 � � � 1R�1 � 1R�1 h (t1; : : : ; td) e�i2�f1�t1dt1� e�i2�f2�t2dt2 � � � e�i2�fd�tddtd (6)It is a known fat, evident from (6), that a d-dimensional Fourier transform ofa funtion an be performed by d suessive one dimensional Fourier transforms.Consequently, in the next setion we develop the theory in one dimension. Inthat ase, generi non-indexed variables as t; f; T::: that stand for any indexedvariable of a partiular dimension of the d-dimensional spae are used.



Aurate Numerial Fourier Transform in d-Dimensions. 43. Theory in one dimensionIn virtue of the properties of the di�erentiation of Heaviside's and Dira-deltafuntions (Æ) [2, 12℄, the nth derivative of h with respet to t is:h(n) (t) = � �t� 0��� ��t + T+� g(n) (t) +Dn (t) (7)in whih Dn (t) is de�ned as:Dn (t) =8<: 0 if n = 0n�1Pm=0�g(m) (0�) Æn�m�1 (t� 0�)� g(m) (T+) Æn�m�1 (t� T+)	 if n 2 N�(8)Eq. (7) and (8) express the fat that the nth derivative of h with respet to t isthe ordinary nth derivative of the funtion h stritly inside the retangular boxwhere it is ontinuous and di�erentiable, in addition to the nth derivative of h inthe regions where it is disontinuous.Aording to our de�nition of the Fourier transform, we have:F �h(n) (t)	 = 1Z�1 h(n) (t) e�i2�ftdt (9)We an expand the integral in (9) into parts to form:F �h(n) (t)	 = 0Z�1 h(n) (t) e�i2�ftdt+ TZ0 h(n) (t) e�i2�ftdt+ 1ZT h(n) (t) e�i2�ftdt (10)The sum of the �rst and last integrals of the right hand side of (10) learly isF fDn (t)g. Hene, (10) beomes:F �h(n) (t)	 = TZ0 h(n) (t) e�i2�ftdt+ F fDn (t)g (11)By separating the interval [0; T ℄ into N equal �t = T=N subintervals, (11) anbe rewritten as:F �h(n) (t)	 = N�1Xj=0 8<: (j+1)�tZj�t h(n) (t) e�i2�ftdt9=;+ F fDn (t)g ; j 2 N (12)



Aurate Numerial Fourier Transform in d-Dimensions. 5Sine h(n) is ontinuous and di�erentiable between 0 and T , it an be approxi-mated for t 2 [j�t; (j + 1)�t℄, for eah j 2 [0; N � 1℄, by a Taylor expansion:h(n) (t) = 1Xp=0 h(p+n)j (t� j�t)pp! ; p 2 N (13)where h(m)j is the mth derivative of h at t = j�t. Merging (12) and (13) yields:F �h(n) (t)	 =N�1Pj=0 ( (j+1)�tRj�t � 1Pp=0 h(p+n)j (t�j�t)pp! � e�i2�ftdt)+ F fDn (t)g ; j 2 N (14)With the substitution � = t� j�t and an adequate permutation of the integraland sums on j and p, (14) beomes:F �h(n) (t)	 = 1Xp=08<:0� �tZ0 � pe�i2�f�p! d�1A N�1Xj=0 h(p+n)j e�i2�fj�t!9=;+ F fDn (t)g(15)To numerially ompute the Fourier transform of h, we must evaluate it for somedisrete values of f . Let f = k�f = k=T , k 2 N be these disrete variables. Inaddition, let us de�ne Hk as the disrete version of F �h(n) (t)	 : The integral in(15) depends only on the variable f (or k) and on the parameters p and �t andan be evaluated analytially, whether f is ontinuous or disrete, one and forall, for eah value of p as: Ip = 1p! �tZ0 � pe�i2�f�d� (16)Sine the integral in the de�nition of Ip is always �nite and, in the ontext ofthe Gamma funtion [13℄, p! = �1 when p is a negative integer, then Ip = 0 forp < 0.The summation on j in (15), when f = k�f = k=T , is the disrete Fouriertransform of the sequene h(p+n)j , j 2 [0; N � 1℄ � N [1℄. We denote it as Fp+n;k.Sine �t = T=N and f = k=T , we have:Fp+n;k = N�1Xj=0 h(p+n)j e�i2� kjN (17)



Aurate Numerial Fourier Transform in d-Dimensions. 6One should note that although we wrote Ip and Fp+n;k instead of Ip (f or k) andFp+n;k (f or k), these funtions always depend on f or k.Substituting (16) and (17) in (15), we obtain the following result:F �h(n) (t)	 = 1Xp=0 IpFp+n;k + F fDn (t)g (18)When n = 0; (18) beomes: Hk = 1Xp=0 IpFp;k (19)Now, integrating by parts the right hand side of (9) yields:F �h(n+1)	 = i2�fF �h(n)	 (20)De�ning bn = i2�fF fDng�F fDn+1g , ombining (18) and (20) and reorganizingthe terms yields:�i2�fI0Fn;k + 1Xp=1 �I(p�1) � i2�fIp�Fp+n;k = bn (21)With the de�nition J� = I��1 � i2�fI� , (21) beomes:J0Fn;k + 1Xp=1 JpFp+n;k = bn (22)Given the de�nition of g and h, we have g(n) (0�) = g(n) (0) = h(n) (0) andg(n) (T+) = g(n) (T ) = h(n) (T ). Using these fats in addition to the propertiesof Fourier transforms and those of Dira delta funtions [12℄, one easily observesthat expanding bn results in the simple following form:bn = h(n) (T ) e�i2�fT � h(n) (0) (23)In the disrete ase, where f = k=T , (23) takes the following simple and signi�-ant form: bn = h(n) (T )� h(n) (0) = h(n)N � h(n)0 (24)Up to this point, all equations are rigorously exat sine p tends towards in�nity.However, in pratial situations we introdue an approximation by limiting therange on p. Let us de�ne � 2 N , the trunating parameter, whih, for reasonsdisussed later, is always hosen as an odd integer. We refer to it as the order ofthe system.



Aurate Numerial Fourier Transform in d-Dimensions. 7Let us expand (22) for eah value of n 2 [0; � � 1℄ � N . This generates asystem of � di�erent equations and, for eah of these, we let p range from 1 to� � n� 1. This gives the following system, whih is written in matrix form:26664 J0 J1 � � � J��10 J0 � � � J��2... ... . . . ...0 0 � � � J0
3777526664 F0;kF1;k...F��1;k

37775 ' 26664 b0b1...b��1
37775 (25)or, more ompatly as: MaFa ' B (26)Note that the matrix Ma is ompletely known sine eah of its terms dependsonly on f . The general expression for the elements of Ma is:(Ma)�� = I����1 � i2�fI��� = J��� (27)Matrix B is unknown. If it were, we ould evaluate Fa from (26):Fa ' M�1a B (28)However, for f = �N�f , � 2 N , the solutions would stritly diverge. Indeed,for these partiular values of f , det (Ma) = 0. However, for values of f aroundN�f=2, the approximation (28) is quite aurate. We take advantage of this fatto ompute B.The �rst element of Fa, whih is (Fa)1 = F0;k, is the DFT of the sequene hj.It is ompletely determined for eah value of k. It is not the same situation forthe other elements of Fa whih are still unknown. Furthermore, the elements ofmatrix M�1a are given for eah value of f . We an then extrat the following from(28): F0;k ' �row1M�1a �B = �X�=1 �M�1a �1;� (B)� (29)Let us now de�ne 
 , an interval of � values of k, entered at N=2:
 = �N2 � �� � 12 � ; N2 + �� � 12 �� = [k1; k2; : : : ; k�℄ � N (30)Let us expand (29) for eah value of k 2 
. (It is understood that in pratialases, for eah instane of f in eah term, one has to replae it by k�f .) Doing



Aurate Numerial Fourier Transform in d-Dimensions. 8so yields the following system of linear equations:26664 F0;k1F0;k2...F0;k�
37775 ' 26666664

�(M�1a )1;1 jk1� �(M�1a )1;2 jk1� � � � �(M�1a )1;� jk1��(M�1a )1;1 jk2� �(M�1a )1;2 jk2� � � � �(M�1a )1;� jk2�... ... . . . ...�(M�1a )1;1 jk�� �(M�1a )1;2 jk�� � � � �(M�1a )1;� jk��
3777777526664 b0b1...b��1

37775(31)Note that (M�1a )1;� jk� is ompat notation for (M�1a )1;� evaluated at k = k� andf = k��f . Let us express (31) in a more ompat form as F ' WB, from whihwe diretly dedue the following matrix equation:B ' W�1F (32)Eq. (32) ompletely determines B from F0;k (the disrete Fourier transform ofthe digitized funtion h). Aording to (24), the knowledge of B spei�es bm(m 2 [0; � � 1℄ ). They are the boundary onditions of the system.Although B is ompletely determined, (28) annot be used, for reasons men-tioned earlier, to evaluate Fa. Considering the �rst element of Fa as known (it isthe DFT of h), we again expand (22), but in a slightly di�erent manner than wedid to obtain (25). We one more expand it for eah value of n 2 [0; � � 1℄ � N .This generates a system of � equations, and for eah of these we let p range,this time, from 1 to � � n. Thereafter, the terms are reorganized to obtain thefollowing system, whih is written again in matrix form:26664 J1 J2 � � � J�J0 J1 � � � J��1... ... . . . ...0 0 � � � J1
3777526664 F1;kF2;k...F�;k

37775 ' 26664 b0b1...b��1
37775+ 26664 �J0F0;k0...0 37775 (33)or, more ompatly as: MbFb ' B+ C (34)The general expression for elements of Mb is thus:(Mb)�� = I��� � i2�fI���+1 = J���+1 (35)Let us now write (34) as: Fb ' M�1b (B+ C) (36)The advantage of (28) over (36) is that it allows, through (32), to omputeB. However, it shows singularities at f = �N�f , � 2 N whih prevent us to



Aurate Numerial Fourier Transform in d-Dimensions. 9ompute Fa. Conversely, the advantage of (36) is that it exhibits a higher orderthan (28) and, provided that � is odd, Fb is omputable for values of f = k�f .One should note that, with (36), undetermined values appear for f = �N�f , butthey an always be solved by Hospital's rule for any odd order. For even orders,there are singularities at f = (�+ 1=2)N�f that annot be removed. This is animperative reason to hoose odd values for �.With the knowledge of Fb from (36), the terms of (19), for p 2 [0; �℄, areompletely determined. Thus, the trunated version of (19) an be written as:Hk ' �Xp=0 IpFp;k (37)Let us de�ne a one-row matrix as I� = [I1 I2 � � � I�℄, and write (37) as follows:Hk ' I0F0;k + I�Fb (38)With (38), we approximate the Fourier transform (or the inverse Fourier trans-form) of a digitized funtion in one dimension. The digitized Fourier transformalulated with (38) is not band-limited (as with the DFT whih is periodial).Eq. (38) remains valid and aurate as an approximation of the analytial Fouri-er transform for positive or negative values of k suh that jkj > N=2 or even forjkj > N � 1. (This last property and the following, briey mentioned in the restof this setion, have been disussed and illustrated with examples in [14℄.)A lose examination of (31), (33) and (38) reveals that the omputation ofonly one FFT is required. The other terms form a orreting operation to beapplied one on eah of the N values of the FFT . The time omplexity of theorreting operation is O (N) and the time omplexity of the FFT is O (N logN).Hene, the time omplexity of the entire algorithm is O (N logN) when � is keptonstant. The time omplexity relatively to �; the order of the system, is O ��2� ;but, as long as � � �opt; the errors on omputed results derease exponentiallywith the inrease of the order �. Hene, as long as one an a�ord to inrease �,the trade-o� is strongly bene�ial.Eq. (38) ontains the symboli form of Fb whih an be used as is to form asingle symboli formula without having its terms evaluated numerially. On theother hand, if, for instane, (36) is used to numerially ompute eah term ofFb for values of k from 0 to N � 1, it produes � di�erent sequenes of numberswhih are atually aurate approximations of the DFT of the derivatives h(p)j ,for values of p 2 [1; �℄. Thus, applying the inverse DFT operation to eah ofthese sequenes generates the orresponding sequenes h(p)j that are very auratenumerial derivatives of the initial funtion h(0)j of all orders from 1 to �. This



Aurate Numerial Fourier Transform in d-Dimensions. 10implies that one an numerially ompute very aurately the derivatives of anyorder of a digitized funtion or signal.Derivatives alulated in that way are ontinuous in-between and at eah da-ta point. Thus, we obtain spline polynomials of any odd order, with their orre-sponding properties, merely withDFT (FFT ). Furthermore, sine (32) is used toompute B, these spline interpolation polynomials, whatever their order, alwaysexhibit optimal boundary onditions, that is to say, aurate end derivatives foreah order [15℄. Suh aurate high-order spline interpolation polynomials allowintegrals between any limit to be aurately omputed.Let R� be any result (Fourier transform, derivative or integral) obtained withan arbitrary order �. As long as � + 2 � �opt, the error on R� (noted E�) an befairly estimated sine R�+2 relatively to R� an be onsidered almost as the exatresult. To do so, one an use the following relation: E� = O (R�+2 � R�) ; whereO is any operator one an de�ne to meet spei� needs.4. Bak in d-dimensionsIn the previous setion we have obtained a highly aurate method to omputethe Fourier transform in one dimension. Aording to (6), this method an beapplied sequentially to ompute an aurate d-dimensional Fourier transform. Inthis multidimensional ase, for eah � 2 f1; 2; � � � ; dg we have t� 2 [0; T�℄. Thisinterval is separated into N� equal �t� = T�=N� parts, and f� = k��f� =k�=T�. As with the ordinary DFT (FFT ), the order in whih the dimensionsare treated is irrelevant. The number of times (38) has to be applied to omputea d-dimensional Fourier transform is:PQ where P = dY�=1N� and Q = dX�=1 1N� (39)The time omplexity is then O (P logP ) : Let us put N� = a�N; 8�; a� beingonstants. It is easy to show that the time omplexity is O �Nd logN� whih isthe same as for the DFT in d-dimensions.5. Example in 2 dimensionsIn this setion, an example in two dimensions is used to illustrate the algorithm.The hoie of suh an example is not obvious. That is to say, the funtionshould not be a trivial one; it must be diÆult enough for the omputation of theFourier transform to be numerially demanding. On the other hand, for purposeof omparison and auray testing, the Fourier transform of the funtion mustbe analytially known. The hosen initial funtion for our example is then the



Aurate Numerial Fourier Transform in d-Dimensions. 11following omplex funtion:h (t1; t2) =�os (9t1) os (11t1 + 17t2) e�2:5t1 ; e�2(t1+t2) + e[�100(t1�0:5)2�50(t2�0:5)2℄� ;T1 = T2 = 1 (40)The real part is a ombination of damped osillations that are slanted in virtue ofthe damping. The imaginary part is a non-symmetrial Gaussian peak purposelyslanted by an exponential to avoid error anellation by symmetry. For bothvariables, the funtion is disontinuous at 0 and at T�; 8�. Figures 1.a and 1.bshow, respetively, the modulus of (40) and of its analytial Fourier transformfor N1 = N2 = 128. The formula of the analytial Fourier transform of this twodimensional funtion is not shown here sine it requires several pages of text.
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Aurate Numerial Fourier Transform in d-Dimensions. 13
0

20
40

60
80

100
120

0
20

40
60

80
100

120

0
0.05

0.1
0.15

0.2

0
20

40
60

80
100

120

0
20

40
60

80
100

120

0

0.2

0.4

0.6

(a) jHkj (b) jError on Hkj � 10�17Figure 3: Modulus of the numerial Fourier transform given by (38), with � = 13;and modulus of error on Hk (�10�17) : The error is omputed on the full rangeof the 128� 128 data points. Maximum error = 0:7� 10�17:tools to numerially ompute the Fourier transform of a digitized funtion ind-dimensions is the DFT; eÆiently implemented as the FFT algorithm. How-ever, in many ases the DFT is not an adequate numerial approximation of theFourier transform.On the one hand, there is the perfet analytial Fourier transform that is,most of the time, not pratial and, on the other hand, we have the very eÆientFFT whih omputes an approximation of the Fourier transform without anyattempt to redue the unavoidable ravages of the Dira omb. The method pre-sented in this ontribution is in-between these two extremes; its position beingadjusted by the value of �; the order of the system. The method provides aurateapproximations of the ontinuous Fourier transform, is no longer periodial andomputes the numerial Fourier transform in a broader frequeny domain thanthe half-period of the DFT . The aliasing an be redued to a negligible level evenwith a relatively low number of sampled data points. The method gives auratenumerial partial derivatives of any order and the polynonial splines of any oddorder with their optimal boundary onditions. The error an be easily omputedby omparing the results of two suessive odd orders. The time omplexity, rel-atively to the number of sampled data points, is the same as for the FFT: Thetime omplexity, relatively to � (independent of the time omplexity relativelyto N) is O ��2�, while the auray inreases exponentially with �. Hene, thenumerial auray inreases muh more rapidly than the omputational ost ofthe proposed method.



Aurate Numerial Fourier Transform in d-Dimensions. 14N� 8 16 32 64 1281 1� 10�2 1� 10�3 2� 10�4 2� 10�5 3� 10�63 3� 10�1 1� 10�3 9� 10�6 3� 10�7 1� 10�85 1� 10�2 8� 10�7 6� 10�9 5� 10�117 4� 10�6 1� 10�10 3� 10�139 3� 10�12 2� 10�1511 8� 10�14 9� 10�1813 2� 10�15 8� 10�20DFT 3� 10�2 9� 10�3 3� 10�3 8� 10�4 2� 10�4Table 1: Average of the modulus of the error on the numerial Fourier transformof the funtion given by (40) and omputed with (38) for di�erent values of Nand �. The last line is the average of the modulus of the error of the DFT of thesame funtion. Referenes[1℄ E. O. Brigham. The fast Fourier transform. Prentie-Hall, 1974.[2℄ N. Morrison. Introdution to Fourier analysis. Wiley-Intersiene, 1994.[3℄ L. Marhildon. M�eanique Quantique. De Boek Universit�e, 2000.[4℄ C. Kittel. Physique de l'�etat solide. Dunod Universit�e, 1983.[5℄ L. G. Shapiro and G. C. Stokman. Computer Vision. Prentie Hall, 2001.[6℄ J. Shutte. Rev. Si. Instrum., 52(3):400, 1981.[7℄ S. Makinen. Rev. Si. Instrum., 53(5):627, 1982.[8℄ S. Sorella and S. K. Ghosh. Rev. Si. Instrum., 55(8):1348, 1984.[9℄ M. Froeyen and L. Hellemans. Rev. Si. Instrum., 56(12):2325, 1985.[10℄ J. D. Gaskill. Linear Systems, Fourier Transform, and Optis. Prentie-Hall,1974.[11℄ N. Beaudoin. PhD. Thesis. Universit�e du Qu�ebe �a Trois-Rivi�eres. Canada,1999.[12℄ E. Butkov. Mathematial Physis. Addison-Wesler Reading, 1968.
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