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ABSTRACT. The classical method of numerically computing Fourier
transforms of digitized functions in one or in d-dimensions is the so-called
Discrete Fourier Transform (DFT) efficiently implemented as Fast Fourier
Transform (FFT) algorithms. In many cases, the DF'T is not an adequate
approximation of the continuous Fourier transform. Because the DFT is
periodical, spectrum aliasing may occur. The method presented in this
contribution provides accurate approximations of the continuous Fourier
transform with similar time complexity. The assumption of signal period-
icity is no longer posed and allows to compute numerical Fourier transforms
in a broader domain of frequency than the usual half-period of the DF'T.
The aliasing introduced by periodicity can be reduced to a negligible level
even with a relatively low number of sampled data points. In addition, this
method yields accurate numerical derivatives of any order and polynomial
splines of any odd order with their optimum boundary conditions. The
numerical error on results is easily estimated. The method is developed in
one and in d-dimensions and numerical examples are presented.

1. INTRODUCTION

The ubiquitous Fourier transform and its numerical counterpart, the Discrete
Fourier Transform (DFT), in one or many dimensions, are used in many fields,
such as mathematics (linear systems, random processes, probability, boundary-
value problems), physics (quantum mechanics, optics, acoustics, astronomy),
chemistry (spectroscopy, crystallography), and engineering (telecommunication-
s, signal processing, image processing, computer vision, multidimensional signal
processing) [1, 2, 3, 4, 5].

Although it is usual to consider the DF'T as a mathematical tool with its own
properties, it certainly makes sense to conceptualize it as the discrete version of
the analytical Fourier transform and as an approximation of the latter [1]. In
this regard, the DFT, usually computed via a fast Fourier transform (FFT)
algorithm, must be used with caution since it is not a correct approximation
in all cases [6, 7, 8, 9]. First, the DFT is periodical and it is only on one
half of a period that it constitutes an approximation of the Fourier transform.
Second, the sampling rate of the function to be submitted to the DFT is a
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critical issue. Without sampling the time! function at a sufficiently high rate, a
phenomenon known as aliasing may become intolerable and spoil the accuracy
of the DF'T" as an approximation of the Fourier transform. It could be thought
that if the Nyquist criterion is fulfilled, everything should come out fine. The
Nyquist criterion states that the sampling rate must be at least twice the highest
frequency of the initial function [1, 2, 10]. However, in applied science, a function
may be defined between 0 and 7" only. Hence, the highest frequency of such a
time-limited function is infinite. Consequently, the DFT produces aliasing®. One
could argue that, even though the highest frequency is infinite, it is possible to
sufficiently increase the number of sampled data points such that the error of the
DFT becomes as small as one desires. However, the required number of data
points could be huge. As an example, for the function h(t) = e ™" t € [0,1],
the error on DFT {h}, around f = 64, decreases roughly as N~'/3. Hence, one
must increase N by a factor of 1000 to decrease the error by a factor of 10.

In some cases where the result of the DF'T is used qualitatively, for example
in some FTIR (Fourier Transform Infrared Spectrometer) experiment where the
result is plotted and visually examined by an experienced spectroscopist, a high
accuracy is not absolutely mandatory. But in some applications, such as in de-
convolution where a division is performed in the frequency domain, a slight error
in the denominator function, particularly when it is close to zero, can seriously
distort the result [11].

However, one may increase the accuracy of the numerical Fourier transform
when the number of sampled data points is limited. This can be implemented
through the assumption that the function from which the sampled data points are
extracted and its derivatives are continuous. The sampling process, performed
through the so-called Dirac comb [1], in a sense, isolates each data point and
considers them as independent from each other. The function and its derivatives
are no longer continuous. By re-establishing the continuity between the sampled
data points, a method that yields a highly accurate numerical Fourier transform
can be devised.

2. THEORY IN d-DIMENSION

Let i = (t,ts...1q) € RY and f = (f1, fo...fs) € R, d € N*. R is the set of
real numbers, N the set of nonnegative integers and N* = N\ {0}. Let us define

'Without loss of generality, the reciprocal variables time (t) and frequency (f) are used
throughout this article.

2The usual method to avoid aliasing is to filter out the high frequency components thus
modifying the original signal.
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a d-dimensional Heaviside’s function:

d

x R =R x () =]]x®) (1)

=1

in which x and y are Heaviside’s functions in d-dimensions and in one dimension
respectively. Let us define two d-dimensional rectangular functions such as:

RE)=x (-0 )x (- F+T") and  S@H=x@x(-7+T) @

with 0~ = (07,07,...07) and T+ = (T}, T5",...,Tf) , T, € R, T, > 0, Vo,
and in which:

0 =lm@©O-¢c), Tf=lm(T+e), eccR,=>0 (3)
e—

e—0

Let g : R — (Ror C), (C is the field of complex numbers) be a continuous
function that admits directional derivatives of any order in any directions for all
¢ such that S (f) # (0. We now define the following function:

h(f) =R (#)g () (4)

and adopt the following definition for the Fourier transform:
F{h@} = [n@)e T 6
Rd

By expanding the inner product and reorganizing the terms, (5) becomes:

Fin@)}) =
(6)

[ [ [ ht,... ta) e"%f]'“dt]} e T ¥
—00 —0o0 L—oo

It is a known fact, evident from (6), that a d-dimensional Fourier transform of
a function can be performed by d successive one dimensional Fourier transforms.
Consequently, in the next section we develop the theory in one dimension. In
that case, generic non-indexed variables as ¢, f, T... that stand for any indexed
variable of a particular dimension of the d-dimensional space are used.
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3. THEORY IN ONE DIMENSION
In virtue of the properties of the differentiation of Heaviside's and Dirac-delta
functions () [2, 12], the n'* derivative of h with respect to ¢ is:

R (@) =x(E—07) x (=t +T7) g™ (t) + Dy (t) (7)
in which D,, (t) is defined as:

D, (t) =

0 if n=0

n—1

3 {9t (07)0" ™ (1= 07) =g (T8 (e =T} i ne N

m=0

(8)

Eq. (7) and (8) express the fact that the n'* derivative of h with respect to ¢ is
the ordinary n'" derivative of the function h strictly inside the rectangular box
where it is continuous and differentiable, in addition to the n** derivative of h in

the regions where it is discontinuous.
According to our definition of the Fourier transform, we have:

F{n™ ()} = / ht™ () e 9)
We can expand the integral in (9) into parts to form:
0 T o)
F{nm @)} = / A (t) e~ 2t gt / A (t) e~ 2t gt / AW (t) e 27Tt dt (10)
—00 0 T

The sum of the first and last integrals of the right hand side of (10) clearly is
F{D, (t)}. Hence, (10) becomes:

F{R 0} = [0 @ >+ F (D, (1)) (1)

By separating the interval [0, 7] into N equal At = T'/N subintervals, (11) can
be rewritten as:

1 GHD)AE

F ™ (1)} = / W™ (tye ™ dt p + F{D, (1)} , jEN (12)

0

<

jAt
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Since h(™ is continuous and differentiable between 0 and T, it can be approxi-
mated for t € [jA¢, (j + 1) At], for each j € [0, N — 1], by a Taylor expansion:

o BT (4 — GAL)P

h(n) (t) _ Z J -

p=0

, pEN (13)

where h;m)is the m!" derivative of h at t = jAt. Merging (12) and (13) yields:
F {0 () -

N-1 (G+1AL / h(.p+n)(t7jAt)p ) (]‘4)
SO (S et b4 F (D, @) L jeN

Jj=0 JAL p=0

With the substitution 7 = ¢ — jAt¢ and an adequate permutation of the integral
and sums on j and p, (14) becomes:

At
00 p,—12nfT N-1 . .
T {h(n) (t)} _ Z /LdT (Z h§p+n)6127rfJAt) + }—{Dn (t)}
p=0 j=0

p!

0
(15)
To numerically compute the Fourier transform of A, we must evaluate it for some
discrete values of f. Let f = kAf = k/T, k € N be these discrete variables. In
addition, let us define Hj as the discrete version of F {h(”) (7‘)} . The integral in
(15) depends only on the variable f (or k) and on the parameters p and At and
can be evaluated analytically, whether f is continuous or discrete, once and for

all, for each value of p as:

At

I, = l| Pe T dr (16)
p-.
0
Since the integral in the definition of I, is always finite and, in the context of
the Gamma function [13], p! = oo when p is a negative integer, then I, = 0 for
p < 0.
The summation on j in (15), when f = kAf = k/T, is the discrete Fourier

transform of the sequence h§p+n), j€[0,N —1] Cc N [1]. We denote it as Fj,;, 4.

Since At =T/N and f = k/T, we have:

=2

—1

Fp+n,k h.§p+”)efi27r% (17)

<.
Il
=}
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One should note that although we wrote I, and F,, ; instead of I, (f or k) and
Fyink (f or k), these functions always depend on f or k.
Substituting (16) and (17) in (15), we obtain the following result:

FIO 0} =3 LFye + F (D, (1)) (18)

p=0
When n = 0, (18) becomes:
Hy,=> I,F,, (19)
p=0
Now, integrating by parts the right hand side of (9) yields:
F{ntY =iz fF {n™} (20)

Defining b,, = 27 fF {D, } —F {Dy,41} , combining (18) and (20) and reorganizing
the terms yields:

—i2nfIoFok + Y (Ip—1) = 20 f 1) Fping = by (21)
p=1
With the definition J, = I, 1 — 27 fI, , (21) becomes:

JOFn,k; + Z Jpr+n,k - bn (22)
p=1

Given the definition of ¢ and h, we have ¢ (07) = ¢™ (0) = h(™ (0) and
g™ (T*) = g™ (T) = h™ (T). Using these facts in addition to the properties
of Fourier transforms and those of Dirac delta functions [12], one easily observes
that expanding b,, results in the simple following form:

b, = " (T) e~ 21T — b (0) (23)

In the discrete case, where f = k/T , (23) takes the following simple and signifi-

cant form:
by = W™ (T) = h™ (0) = Al — i (24)

Up to this point, all equations are rigorously exact since p tends towards infinity.
However, in practical situations we introduce an approximation by limiting the
range on p. Let us define § € N, the truncating parameter, which, for reasons
discussed later, is always chosen as an odd integer. We refer to it as the order of
the system.
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Let us expand (22) for each value of n € [0,6 — 1] C N. This generates a
system of 6 different equations and, for each of these, we let p range from 1 to
6 —n — 1. This gives the following system, which is written in matrix form:

n ][R ] [ ]
N I (25)
0 0 o o || P by
or, more compactly as:
M,F, ~ B (26)

Note that the matrix M, is completely known since each of its terms depends
only on f. The general expression for the elements of M, is:

(M) = Tys — 27 f Ty = o (27)
Matrix B is unknown. If it were, we could evaluate F, from (26):
F,~M-'B (28)

However, for f = kNAf, k € N, the solutions would strictly diverge. Indeed,
for these particular values of f, det (M,) = 0. However, for values of f around
NAf/2, the approximation (28) is quite accurate. We take advantage of this fact
to compute B.

The first element of F,, which is (F,), = Foy, is the DFT of the sequence h;.
It is completely determined for each value of k. It is not the same situation for
the other elements of F, which are still unknown. Furthermore, the elements of
matrix M, ! are given for each value of f. We can then extract the following from
(28):

For ~ (rowﬂ\/l{:l) B =
m

(M), (B), (29)

0
=1

Let us now define € | an interval of € values of k, centered at N/2:

Q:[%—(%) | %+(9T1>}:[k1,k2,...,kg]cN (30)

Let us expand (29) for each value of k£ € Q. (It is understood that in practical
cases, for each instance of f in each term, one has to replace it by kA f.) Doing
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so yields the following system of linear equations:

[ o | (M l) (M) ale) o (M) ]

Fﬂ,kz ((M;])m |kz) ((M;])I,Q kz) ((M;])La ‘kz)

k9> | bg—1

(31)
Note that (M, '), . [x, is compact notation for (M), . evaluated at k = kg and
[ =kgAf. Let us express (31) in a more compact form as F. ~ WB, from which

we directly deduce the following matrix equation:

L ) () (e

B~W'F, (32)

Eq. (32) completely determines B from Fpy (the discrete Fourier transform of
the digitized function h). According to (24), the knowledge of B specifies by,
(m € [0,6 — 1] ). They are the boundary conditions of the system.

Although B is completely determined, (28) cannot be used, for reasons men-
tioned earlier, to evaluate F,. Considering the first element of F, as known (it is
the DFT of h), we again expand (22), but in a slightly different manner than we
did to obtain (25). We once more expand it for each value of n € [0,6 — 1] C N.
This generates a system of  equations, and for each of these we let p range,
this time, from 1 to # — n. Thereafter, the terms are reorganized to obtain the
following system, which is written again in matrix form:

L B I I
S N (33)
0 0 - i || Fu b 0

or, more compactly as:

The general expression for elements of My is thus:
(Mb)uu = [M*V - Z.27Tf]ufu+1 = Ju—p+1 (35)

Let us now write (34) as:

Fy~ M, " (B+C) (36)

The advantage of (28) over (36) is that it allows, through (32), to compute
B. However, it shows singularities at f = kNAf, k € N which prevent us to
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compute F,. Conversely, the advantage of (36) is that it exhibits a higher order
than (28) and, provided that 6 is odd, F; is computable for values of f = kAf.
One should note that, with (36), undetermined values appear for f = kNAf, but
they can always be solved by Hospital’s rule for any odd order. For even orders,
there are singularities at f = (k + 1/2) NAf that cannot be removed. This is an
imperative reason to choose odd values for 6.

With the knowledge of F, from (36), the terms of (19), for p € [0,6], are
completely determined. Thus, the truncated version of (19) can be written as:

0
Hy~ > 1,y (37)
p=0
Let us define a one-row matrix as lg = [I; Iy --- Iy], and write (37) as follows:
Hy, ~ Iy Fyp + loFy (38)

With (38), we approximate the Fourier transform (or the inverse Fourier trans-
form) of a digitized function in one dimension. The digitized Fourier transform
calculated with (38) is not band-limited (as with the DFT which is periodical).
Eq. (38) remains valid and accurate as an approximation of the analytical Fouri-
er transform for positive or negative values of k such that |[k| > N/2 or even for
k| > N — 1. (This last property and the following, briefly mentioned in the rest
of this section, have been discussed and illustrated with examples in [14].)

A close examination of (31), (33) and (38) reveals that the computation of
only one F'F'T is required. The other terms form a correcting operation to be
applied once on each of the N values of the FFFT. The time complexity of the
correcting operation is O (V) and the time complexity of the FFT is O (N log N).
Hence, the time complexity of the entire algorithm is O (N log N) when 6 is kept
constant. The time complexity relatively to 6, the order of the system, is O (02) ,
but, as long as 6 < 0,,, the errors on computed results decrease exponentially
with the increase of the order #. Hence, as long as one can afford to increase 6,
the trade-off is strongly beneficial.

Eq. (38) contains the symbolic form of F, which can be used as is to form a
single symbolic formula without having its terms evaluated numerically. On the
other hand, if, for instance, (36) is used to numerically compute each term of
F, for values of k£ from 0 to N — 1, it produces 6 different sequences of numbers
which are actually accurate approximations of the DF'T of the derivatives h,g-p),
for values of p € [1,6]. Thus, applying the inverse DFT operation to each of

these sequences generates the corresponding sequences h'P that are very accurate

j
numerical derivatives of the initial function hgo)of all orders from 1 to 6. This
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implies that one can numerically compute very accurately the derivatives of any
order of a digitized function or signal.

Derivatives calculated in that way are continuous in-between and at each da-
ta point. Thus, we obtain spline polynomials of any odd order, with their corre-
sponding properties, merely with DFT (FFT). Furthermore, since (32) is used to
compute B, these spline interpolation polynomials, whatever their order, always
exhibit optimal boundary conditions, that is to say, accurate end derivatives for
each order [15]. Such accurate high-order spline interpolation polynomials allow
integrals between any limit to be accurately computed.

Let Ry be any result (Fourier transform, derivative or integral) obtained with
an arbitrary order . As long as § + 2 < f,,,, the error on Ry (noted Ej) can be
fairly estimated since Ry, relatively to Ry can be considered almost as the exact
result. To do so, one can use the following relation: Ey = O (Ryyo — Ry), where
O is any operator one can define to meet specific needs.

4. BACK IN d-DIMENSIONS

In the previous section we have obtained a highly accurate method to compute
the Fourier transform in one dimension. According to (6), this method can be
applied sequentially to compute an accurate d-dimensional Fourier transform. In
this multidimensional case, for each « € {1,2,---,d} we have t, € [0,T,]. This
interval is separated into N, equal At, = T,/N, parts, and f, = k,Af, =
ko/Ts. As with the ordinary DFT (FFT), the order in which the dimensions
are treated is irrelevant. The number of times (38) has to be applied to compute
a d-dimensional Fourier transform is:

a=1

d d
1
PQ) where P:”N(X and Q:E . (39)
—1 '8
B=1

The time complexity is then O (Plog P). Let us put N, = a,N, Vo, a, being
constants. It is easy to show that the time complexity is O (Nd log N) which is
the same as for the DF'T in d-dimensions.

5. EXAMPLE IN 2 DIMENSIONS
In this section, an example in two dimensions is used to illustrate the algorithm.
The choice of such an example is not obvious. That is to say, the function
should not be a trivial one; it must be difficult enough for the computation of the
Fourier transform to be numerically demanding. On the other hand, for purpose
of comparison and accuracy testing, the Fourier transform of the function must
be analytically known. The chosen initial function for our example is then the
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following complex function:

h, (t] y tg) —
(COS (9t1) coS (11t1 + 17t2) 6—2.5t1 ’ 672(t1+t2) + e[—l00(t170_5)2750(t270_5)2]) ’

T] - TQ - 1

(40)
The real part is a combination of damped oscillations that are slanted in virtue of
the damping. The imaginary part is a non-symmetrical Gaussian peak purposely
slanted by an exponential to avoid error cancellation by symmetry. For both
variables, the function is discontinuous at 0 and at 7, VYa. Figures 1.a and 1.b
show, respectively, the modulus of (40) and of its analytical Fourier transform
for Ny = Ny = 128. The formula of the analytical Fourier transform of this two
dimensional function is not shown here since it requires several pages of text.

100

120 120

(a) 1 (1, 12). (b) [F {h (1. 1)}
Figure 1: Modulus of h and of F {h}.

Figure 2.a shows the DF'T of h. The expected periodical behavior is evident.
Figure 2.b shows the modulus of the error of the DF'T relatively to the analytical
Fourier transform. To be fair, this error must indeed be computed on the first
(N1/2) x (N9/2) data points only, since the DF'T is periodical.

Figure 3.a shows the numerical Fourier transform of h computed with (38)
for § = 13. It is clearly seen that this approximation behaves as the analytical
Fourier transform and is not periodical. Figure 3.b shows the modulus of the error
of this approximation relatively to the analytical Fourier transform, computed,
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(a) [DFT {h} | (b) |Error on DFT {h}| x 102

Figure 2: Modulus of DFT {h} and of error on DFT {h} (x107%). The error is
computed on the first 64 x 64 data points only. Maximum error = 0.3 x 1072

this time, on the full range of the N; x N, data points. For comparison, one
should note the vertical scale factor in Figures 2.b and 3.b.

This same eq. (38), used for Figure 3, is used again, on the same function
(eq. 40) with different values of N = Ny = N, and 6. The averages of the moduli
of the error on the numerical Fourier transform given by (38) relatively to the
exact analytical Fourier transform are shown in Table 1 in addition to the results
obtained with the DF'T.

We observe that for small values of N (actually for N = 8), increasing 6 does
not improve accuracy. It means that the optimum value of ¢ called 6, is already
reached. If N is slightly increased, ,, grows rapidly and the smallest possible
error decreases dramatically. For N = 8, 0,,, < 3. For N = 16, 0,,, < 5. For
N = 32, 0,y = 5. For N > 64, 0,,, > 13. We also note that, except for small
values of N, the error from (38) is always much smaller than the error from the
DFT and, for any 0, it decreases more rapidly with the increase of N than does
the error from the DFT with the same increase in N.

6. CONCLUSION
An analytical function contains an infinite quantity of information [16]. It is pos-
sible, in principle, at least when the Fourier integral is analytically obtainable,
to compute its Fourier transform exactly. In all other cases we have to resort to
numerical techniques and depart from analytical forms. The classical sampling
of a function uses the Dirac comb which rejects an infinite quantity of informa-
tion to make the digitized function manageable on a finite computer. The usual
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(a) |Hgl (b) |Error on Hy| x 10717

Figure 3: Modulus of the numerical Fourier transform given by (38), with § = 13,
and modulus of error on Hy, (x107'"). The error is computed on the full range
of the 128 x 128 data points. Maximum error = 0.7 x 1077,

tools to numerically compute the Fourier transform of a digitized function in
d-dimensions is the DF'T, efficiently implemented as the F'F'T" algorithm. How-
ever, in many cases the DF'T" is not an adequate numerical approximation of the
Fourier transform.

On the one hand, there is the perfect analytical Fourier transform that is,
most of the time, not practical and, on the other hand, we have the very efficient
FF'T which computes an approximation of the Fourier transform without any
attempt to reduce the unavoidable ravages of the Dirac comb. The method pre-
sented in this contribution is in-between these two extremes; its position being
adjusted by the value of f, the order of the system. The method provides accurate
approximations of the continuous Fourier transform, is no longer periodical and
computes the numerical Fourier transform in a broader frequency domain than
the half-period of the DF'T". The aliasing can be reduced to a negligible level even
with a relatively low number of sampled data points. The method gives accurate
numerical partial derivatives of any order and the polynonial splines of any odd
order with their optimal boundary conditions. The error can be easily computed
by comparing the results of two successive odd orders. The time complexity, rel-
atively to the number of sampled data points, is the same as for the F'F'T. The
time complexity, relatively to 6 (independent of the time complexity relatively
to N) is O (92), while the accuracy increases exponentially with 6. Hence, the
numerical accuracy increases much more rapidly than the computational cost of
the proposed method.
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L | N |
o | 8 16 32 64 128 |
1 [1x10?[1x10°]2x10 "] 2x10° [ 3x10°
3 [[3x107[1x10%][9x10°[3x10 7 [ 1x10°"
5 1x102[8x107[6x10° [5x10 "
7 Ax10°]1x10 " [3x10 "
9 3x10 2 2x10"
11 8x10 "M 9x10 "
13 2x 1075 [ 8x10%

[DFT [3x102[9x107[3x107]8x10* [ 2x10" |

Table 1: Average of the modulus of the error on the numerical Fourier transform
of the function given by (40) and computed with (38) for different values of N
and . The last line is the average of the modulus of the error of the DF'T" of the
same function.
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