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1 Introduction

Traditionally, image motion and its approximation known as optical flow have
been treated as continuous functions of the image domain [9]. However, in real-
istic imagery, one finds cases verifying this hypothesis exceedingly rarely. Many
phenomena may cause discontinuities in the optical flow function of imagery [16].
Among them, occlusion and translucency are frequent causes of discontinuities in
realistic imagery. In addition, their information content is useful to later stages
of processing [8] such as motion segmentation [1] and 3-d surface reconstruction
[17].

Occlusion boundaries are described as the partial occlusion of a surface by an-
other, while translucency is defined as occlusion of a surface by translucent ma-
terial. In realistic imagery, one finds occlusion to be the most frequent cause of
discontinuous motion.

Recently, a number of algorithms have been designed to handle multiple motions
[2]. Among these, we find constraint-line clustering algorithms [15], which use a
form of cluster analysis applied to sets of constraint lines to determine the dom-
inant motion of a given image region. Similarly, robust estimators are used to
recover dominant motion [6]. However, approaches focusing on the determination
of dominant motion do not explicitly form a multiple motion model in the sense
that they only provide one velocity measurement in regions where many motions
may prevail. Alternatively, a number of authors have studied inhibitory smooth-
ness constraints [13] which relax smoothness requirements at image regions of
high grayvalue gradients. Nonetheless, intensity discontinuities may not neces-
sarily represent motion discontinuities. Other approaches consist of refining the
boundaries of closed curves delimiting regions exhibiting coherent motion [14].
Again, such schemes are limited by an explicit single motion model.

Schemes for estimating optical flow at regions of partial translucency have also
appeared in the recent literature [5]. In the case of spatiotemporal frequency
models [8], translucency could be easily handled, given an appropriate constraint-
integration algorithm. In addition, schemes capable of handling both occlusion
and translucency have been devised. For instance, sequential tracking and reg-
istration algorithms which independently compute the velocity of objects from
a scene exhibiting different motions, while handling both occlusion and translu-
cency, have been used [10]. Multilayer and superposition models also provide
paradigms for the estimation of multiple velocities. These approaches consider
the optical flow function of the image as a superposition of motion layers, each
one described by a unique set of parameters, thus allowing discontinuous and
multiple-valued optical flow functions [7, 11, 16].



These approaches, while constituting valuable contributions, do not provide de-
scriptive models of phenomena such as occlusion and translucency. Further, it
is often difficult if not impossible to determine the nature of the image events
giving rise to multiple motions. In these schemes, occlusion may not be differen-
tiated from translucency and the explicit identification of the motions associated
with both the occluding and occluded signals remains an open problem. In this
contribution we demonstrate, under a minimal set of assumptions, that such dis-
tinctions can be made through a Fourier analysis of these image events. We also
show that translucency may be handled as a special case of occlusion.

2 Multiple motions

Given an arbitrary environment and a moving visual sensor, the motion field gen-
erated onto the imaging plane by a 3-d scene within the visual field 1s represented
as a function of the motion parameters of the visual sensor, usually expressed as
instantaneous translation T? = (T}, T, T,) and rotation Q7 = (Q,,Q,, Q.):
Z(x)" N T, — Tp) + 2ySde — (1 + 2%)Qy + y<2,
v = -1 2 ) (1)
Zx)'Wh - Ty) + (L4 y7)Qe — 2y — 29,

where xT' = (z,y) is the perspective projection of a point PT = (XY, Z) in the
visual field. Assuming that the motion of the visual sensor is continuous (that
is to say: € and T are differentiable with respect to time), discontinuities in
image motion are then introduced in (1) whenever the depth function Z(x) is
other than single-valued and differentiable. The occurrence of occlusion causes
the depth function to exhibit a discontinuity, whereas translucency leads to a
multiple-valued depth function.

Our motivation for conducting this study is to use occlusion phenomena as a
source of information rather than an obstacle in conflict with too simple hy-
potheses concerning the structure of optical flow fields, such as the single surface
assumption. Crucial information, such as the identification of image events lead-
ing to multiple motions, the determination of these motions and, under occlusion,
their identification as velocities of occluding and occluded surfaces, can be ob-
tained through a Fourier analysis of occlusion and transparency phenomena.
Throughout this contribution, we consider velocities as locally constant quantities
and 1mage signals as satisfying Dirichlet conditions.

2.1 Occlusion in the frequency domain

The Fourier transform of the optical flow constraint equation is obtained with
the differentiation property as:

F VI, )'v + 1] = il(k,w)é (k" v + w), (2)

where 7 is the imaginary number, i(k,w) is the Fourier transform of I(x,t) and
§(k”Tv+w) is a line-mass Dirac delta function. Expression (2) yields kv 4w = 0



as a constraint on velocity. Similarly, the Fourier transform of a translating
intensity profile I(x,¢) is obtained with the shift property as:

i(k,w) = / [ 16 v D

= I(k) (kTV—I—w) (3)

which also yields the constraint kTv 4+ w = 0. Hence, (2) and (3) demonstrate
that the frequency analysis of image motion is in accordance with the motion
constraint equation [8]. It is also observed that k”v 4 w = 0 represents, in the
frequency domain, an oriented plane passing through the origin, with normal
vector v representing full velocity, onto which the Fourier spectrum of I(x) lies?.
The discontinuities in optical flow arising from occlusion may be written by con-
sidering two translating intensity profiles, one partially occluding the other. Let
I,(x) and Is(x) be the intensity profiles of an object and a background scene.
An object indicator function such as

U(X):{ 1L (x) £ 0

0 otherwise

may be defined to specify the actual location of the object on the image plane.
The resulting intensity pattern is then written as a function of the intensity
profiles of the object, the background and the object indicator:

I(x,t) = Li(x — vit) + [1 = U(x — v11)] Ia(x — vat). (4)

By using the shift property of Fourier transforms, (4) is rewritten in spatiotem-
poral frequency space as:

Ik,w) = L(k)6(w+ vIk)+ I(k)s§(w + vik)
— [U)s@ +vT10)| + [Le(w + K] (5)

The first two terms of (5) are the signals associated with the object and the
background. The frequency spectra of I; and I are located on the planes defined
by the equations k' v; +w = 0 and k” vy 4+ w = 0 respectively. In addition, the
respective orientations of these planes fully determine v; and vy. The last term
of (5) describes the distortion created by the occlusion boundary. In the following
sections, this form of distortion is analized and its usefulness in determining image
events giving rise to multiple motions is shown.

1The aperture problem arises when the Fourier spectrum of I(X) is concentrated on a line
rather than on a plane [8, 12]. Spatiotemporally, this depicts the situation in which I(x)
exhibits a single orientation. In this case, one may only obtain the speed and direction of
motion normal to the orientation, noted as v . If many normal velocities are found in a single
neighbourhood, their respective lines fit the plane KTV 4+ w = 0 from which full velocity may
be obtained.



3 Frequency analysis of occlusion

The analysis begins with the consideration of a simple case consisting of two 1-d
sinusoidal intensity profiles. The results are then generalized to arbitrary 1-d and
2-d intensity profiles.

3.1 One-dimensional sinusoidal signals

The case in which two 1-d sinusoidals play the role of the object and the back-
ground is first considered. Let I(z,?) be a 1-d intensity function I(x) translat-
ing with velocity vy: I(z,t) = Ii(x — vit). Tts Fourier transform is i(k,w) =
il(k)é(kvl +w). Let I (#) be occluding another 1-d intensity pattern Io(z) mov-
ing with velocity vy. The resulting intensity profile can then be expressed as:

I(z,t) = u(zx — vit)Li (& — v1t) + (1 — u(e — v11))I2(z — val) (6)

where u(z) is Heaviside’s function representing the occluding point:

u(96):{1 ifz >0

0 otherwise.
The Fourier transform of the intensity profile (6) is:

I(k,w) = [a(k)8(kv +w)] * [T (k)6 (kvy +w)]
(k)6 (kvy 4+ w)] * [Ta(k)8(kve + w)]

(k)8 (kva + ), (7)

[
— [u
+ iz

where u(k) is the Fourier transform of Heaviside’s function u(z) written as u(k) =

w6(k) + (ik)~".

Proposition 1 Let Ij(z) and Iz(z) be cosine functions with respective angular
frequencies ky = 27 f1 > 0 and ks = 27f3 > 0 and let I (2 — v1t) = 1 cos(kiz —
vit) and Ia(w — vat) = egcos(kaw — vat). Then the frequency spectrum of the
occlusion obtained by substituting I,(x) and Ia(x) into (6) is:

I(k,w) gq&kikhw¢kwﬁ
1—
( 5 T)Czé(k:tkz,wq:kzvz)

1 (czé(kvl +wxkaAv)  e18(kvr + w))

2 (k £ k2) (k+ k) (8)
A number of conclusions can be drawn from proposition 1: Since the signals are
cosines, all their power content is real. In addition, the power content of the
distortion term is entirely imaginary, and form lines of decreasing power about
the frequencies of both the occluding and occluded signals. Their orientation is
inversely proportional to the velocity of the occluding signal, as —wv; is the slope

of the constraint lines.



3.2 One-dimensional arbitrary signals

In general, the occluding and occluded signals cannot be represented as simple
sinusoidal functions. To gain generality, I (z) and Is(#) may be expanded as a
series of complex exponentials, assuming that functions Iy (z) and Iy(x) satisfy
Dirichlet conditions.

Proposition 2 Let I () and Io(x) be functions satisfying Dirichlet conditions
such that they may be expressed as complex exponential series expansions:

Li(w) = o ctne ™™ To(w) = 300 cone™ 27, 9)

where n is integer, c1, and con are complex coefficients and ki and ko are the
fundamental frequencies of both signals. Then the frequency spectrum of the
occlusion obtained by substituting the frequency spectra of (9) into (6) is:

i(k,w) = 7 Z c1nb(k — nk1,w + nkivy)
+ (1—-m) Z cand(k — nko,w + nkovy)
= cond (kv + w — nkaAv)  c1,6(kvy +w)
— . 1
v (= (F—nkp) ) 10

Proposition 2 is an important generalization of the first one: Any signal which
represents a physical quantity satisfies Dirichlet conditions and therefore may be
expressed as an expansion of complex exponentials. Since ¢q,, and cs,, are complex
coefficients, the power contents of the signals are both real and imaginary.

3.3 Two-dimensional arbitrary signals

Imagery is the result of the projection of light reflected by environmental features
onto the imaging plane of the visual sensor. Hence, such signals are inherently
two dimensional. Towards a generalization of (10), (9) is expanded as series of
2-d complex exponentials.

Proposition 3 Let I (x) and Io(x) be 2-d functions satisfying Dirichlet condi-
tions such that they may be expressed as compler exponential series expansions:

Li(x) = (noi’ﬁlo,oo)cmeixTNkl I(x) = (noiﬁlo,oo)czneixTNkQ, (11)

where nT = (ng, ny) are integers, N = nT'I, xT' = (x,y) are spatial coordinates,
ki = (ko1, ky1) and ko = (keo, ky2) are spatial frequencies and cin and con are
complex coefficients. Also let the occluding boundary be locally represented by:

1 xTF>0
Ulx) = { 0 otherwise, (12)



where 1] is a vector normal to the instantaneous slope of the occluding boundary
at x. Then the frequency spectrum of the occlusion obtained by substituting the
frequency spectra of (11) and (12) into a 2-d version of (6) is:

(00,00)
i(k,w) = 7 Z clné(k—Nkl,w—l—vlTNkl)
Nn=—(00,00)
(00,00)
+ (I—-m) Z czné(k—Nkz,w—l—vaNkz)
Nn=—(00,00)
. (c2,00) cemd(kIvi +w —AvINks)  end(kTvy +w)
R M G e e e P,

(13)

where vi = (uy,v1), vi = (ug,v2) and Av = vi — vs.

Proposition 3 is a direct extension of proposition 2 in two spatial dimensions. For
this general case, the constraint lines of propositions 1 and 2 generated by both
the occluding and occluded signals and the distortion terms become constraint
planes. The frequency structures of individual signals are preserved to within
scaling factors.

3.4 Relation to translucency

Transmission of light through translucent material may cause multiple motions
to arise in the same image region. Generally, this effect is depicted on the image
plane as

I(x,t) = f(p1)(x — vit)Ia(x — vat), (14)
where f(p1) is a function of the density of the translucent material [8]. Under
the local assumption of spatially constant f(p;), with translucency factor ¢, (14)
is reformulated as a weighted superposition of intensity profiles:

I(x,t) = oLi(x — vit) + (1 — )Ia(x — vat), (15)

where I;(x,t) is the intensity profile of the translucent material and Ia(x,1) is
the intensity profile of the background. With I, (x) and I»(x) satisfying Dirichlet
conditions, the frequency spectrum of (15) is written as:

(00,00)
i(k,w) = Z clné(k—Nkl,w—l—vlTNkl)
n=—(co,00)
(00,00)
+ (1—¢) > cmb(k—Nkyw+ vl Nky). (16)
n=—(co,00)

With the exception of the distortion term, and to within scaling factors, (16) is
identical to (13). Hence, with respect to its frequency structure, translucency
may be reduced to a special case of occlusion for which the distortion terms
vanish.



3.5 Geometric interpretation

In the simplest case involving sinusoidal signals, Proposition 1 shows that the
frequency spectra of both signals are preserved to within scaling factors. In ad-
dition, the imaginary terms represent the frequency spectrum of the occlusion
boundary. Figure 2 shows one case of occlusion with a 1-d, Gaussian-windowed
sinusoidal signal. The velocity of the occluding signal is v1 = 1.0. The velocity of
the occluded signal 1s vo = —1.0. The spatial frequency of the occluding and oc-
cluded signals are k1 = ?—767 and ko = %T respectively. The vertical axis represents
temporal frequency w while the horizontal axis i1s spatial frequency k. The spec-
tral peaks located at +(k1,—k1v1) and +(ka, —kovs) depict the spatiotemporal
frequencies of both signals and fit the constraint lines kv; +w = 0 and kvy+w = 0.
The oblique spectra intesecting the peaks represent the spectrum generated by
the occlusion boundary and fit the constraint lines kiv; + w & ksvy = 0 and
kivi +w = 0. These lines are parallel to the constraint line of the occluding
signal. It also is interesting to observe From Proposition 2 that every non-zero
frequency of an occluded signal shows such a parallel line due to occlusion.

Figure 1: a) (left): Gaussian-smoothed frequency spectrum produced with (8). The

occluding and occluded signals have frequencies k1 = ?—g and k2 = 2?” and velocities

v1 =1 and v2 = —1 respectively. b) (right): Gaussian-smoothed frequency spectrum
produced with (10). The occluding signal has frequency & = ?—g and velocity v; = 1
while the occluded signal is composed of frequencies nk, = 27 (%) ,n=1,2,3 and

velocity vo = —1.

Proposition 3 is the generalization of Proposition 2 in 2D and its geometric
interpretation is similar. That is to say, the constraint lines of the signals and
the occlusion boundary become constraint planes. For instance, the frequencies
(Nky,—v{ Nk;) and (Nkz, —vZ Nks) fit the constraint planes of the occluding
and occluded signals, defined as kfvl +w =0 and kTv, = 0. In the distortion
term, the arguments of the Dirac é functions kv, +w—AvINk; and kTvy 4w
represent a set of planes parallel to the constraint plane of the occluding signal
k”v 4w = 0. That is to say, for every discrete frequency Nk; and Nk, exhibited
by both signals, there is a frequency spectrum fitting the planes given by k™ v; +
w—AvINk; = 0 and kv; +w = 0. The magnitudes of these planar spectra
are determined by their corresponding scaling functions ein[(k— Nk;)?7]~! and
can[(k—Nk2)T77]71. Hence, Proposition 3 reveals useful constraint planes, as the



power spectra of both signals peak within planes k”v; +w =0 and kT vo+w =0
and the constraint planes arising from the distortion are parallel to the spectrum
of the occluding signal I;(x,1).

4 Numerical experiments

Aside from deriving formal proofs?, several experiments were performed in sup-
port of the Propositions. The Fourier spectra obtained with both a standard
FFT algorithm and those predicted by the theory were compared.

In order to verify the propositions, two 1-d signals which respectively act as
occluding and occluded surfaces were used. Expression (6) is used with I,(z —
vit) = ey cos(kiz — v1t) and Io(xw — vat) = egcos(kex — vat), where I) and I
are the occluding and the occluded surfaces with respective frequencies ky = ?—767

and ko = %T. Constants ¢; and ¢s correspond to signal amplitudes. To limit

boundary conditions when numerically computing Fourier transforms, the signal
was windowed with a Gaussian envelope. The discrete Fourier transform of the

Figure 2: a) (left): Gaussian-windowed signal with sinusoidals acting as occluding and
occluded surfaces. The occluding signal has frequency k1 = ?—g and velocity v1 = 1. The
occluded signal has frequency k2 = 2= and velocity v = —1. b) (middle): Fourier
spectrum generated with a standard FFT algorithm. ¢) (right): Fourier spectrum

predicted by theory.

windowed signal obtained with a standard FFT algorithm is shown in Figure
2b, where the peaks associated with both sinusoidals and the distortion lines
are clearly visible. A discretized version of proposition 1, which models aliasing
effects 1s shown in Figure 2c for the same frequencies and velocities as in Figure
2b: The spectra obtained with both a standard FFT algorithm and the theoretical
results are essentially identical.

2The formal proofs of Propositions 1, 2 and 3 are found in [3]



5 Conclusion

Under a minimal set of hypotheses; such as locally constant velocity and intensity
profiles satisfying Dirichlet conditions, we have shown the Fourier structure of
occlusion and translucency phenomena in both 1 and 2D and outlined various
interesting geometrical properties. For instance, the constraint lines or planes
cast by the occlusion boundary have been characterized: In a multiple motion
situation, their presence indicates an occlusion while their absence indicates a
translucency phenomenon.

When a multiple motion situation is caused by an occlusion, the parallelism be-
tween the the distortion cast by the occluding boundary and the Fourier spectrum
of the occluding signal differentiates the velocity of the occluding signal from the
velocity of the occluded signal.

This analysis forms a basis for a class of constraint-grouping algorithms capable
of distinguishing occlusion from translucency and identifying occluded and oc-
cluding surfaces, along with their respective velocities. In addition, the inclusion
of the occlusion boundary distortions in models of multiple motions is likely to
result in further improvements of signal-to-noise ratios. The results of this theory
have been extended to linear models of optical flow and signal degeneracy caused
by the aperture problem [4].
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