
A theory of occlusionin the context of optical owSteven S. Beauchemin and John L. Barron1 IntroductionTraditionally, image motion and its approximation known as optical ow havebeen treated as continuous functions of the image domain [9]. However, in real-istic imagery, one �nds cases verifying this hypothesis exceedingly rarely. Manyphenomena may cause discontinuities in the optical ow function of imagery [16].Among them, occlusion and translucency are frequent causes of discontinuities inrealistic imagery. In addition, their information content is useful to later stagesof processing [8] such as motion segmentation [1] and 3-d surface reconstruction[17].Occlusion boundaries are described as the partial occlusion of a surface by an-other, while translucency is de�ned as occlusion of a surface by translucent ma-terial. In realistic imagery, one �nds occlusion to be the most frequent cause ofdiscontinuous motion.Recently, a number of algorithms have been designed to handle multiple motions[2]. Among these, we �nd constraint-line clustering algorithms [15], which use aform of cluster analysis applied to sets of constraint lines to determine the dom-inant motion of a given image region. Similarly, robust estimators are used torecover dominant motion [6]. However, approaches focusing on the determinationof dominant motion do not explicitly form a multiple motion model in the sensethat they only provide one velocity measurement in regions where many motionsmay prevail. Alternatively, a number of authors have studied inhibitory smooth-ness constraints [13] which relax smoothness requirements at image regions ofhigh grayvalue gradients. Nonetheless, intensity discontinuities may not neces-sarily represent motion discontinuities. Other approaches consist of re�ning theboundaries of closed curves delimiting regions exhibiting coherent motion [14].Again, such schemes are limited by an explicit single motion model.Schemes for estimating optical ow at regions of partial translucency have alsoappeared in the recent literature [5]. In the case of spatiotemporal frequencymodels [8], translucency could be easily handled, given an appropriate constraint-integration algorithm. In addition, schemes capable of handling both occlusionand translucency have been devised. For instance, sequential tracking and reg-istration algorithms which independently compute the velocity of objects froma scene exhibiting di�erent motions, while handling both occlusion and translu-cency, have been used [10]. Multilayer and superposition models also provideparadigms for the estimation of multiple velocities. These approaches considerthe optical ow function of the image as a superposition of motion layers, eachone described by a unique set of parameters, thus allowing discontinuous andmultiple-valued optical ow functions [7, 11, 16].



These approaches, while constituting valuable contributions, do not provide de-scriptive models of phenomena such as occlusion and translucency. Further, itis often di�cult if not impossible to determine the nature of the image eventsgiving rise to multiple motions. In these schemes, occlusion may not be di�eren-tiated from translucency and the explicit identi�cation of the motions associatedwith both the occluding and occluded signals remains an open problem. In thiscontribution we demonstrate, under a minimal set of assumptions, that such dis-tinctions can be made through a Fourier analysis of these image events. We alsoshow that translucency may be handled as a special case of occlusion.2 Multiple motionsGiven an arbitrary environment and a moving visual sensor, the motion �eld gen-erated onto the imaging plane by a 3-d scene within the visual �eld is representedas a function of the motion parameters of the visual sensor, usually expressed asinstantaneous translation TT = (Tx; Ty; Tz) and rotation 
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z � ; (1)where xT = (x; y) is the perspective projection of a point PT = (X;Y; Z) in thevisual �eld. Assuming that the motion of the visual sensor is continuous (thatis to say: 
 and T are di�erentiable with respect to time), discontinuities inimage motion are then introduced in (1) whenever the depth function Z(x) isother than single-valued and di�erentiable. The occurrence of occlusion causesthe depth function to exhibit a discontinuity, whereas translucency leads to amultiple-valued depth function.Our motivation for conducting this study is to use occlusion phenomena as asource of information rather than an obstacle in conict with too simple hy-potheses concerning the structure of optical ow �elds, such as the single surfaceassumption. Crucial information, such as the identi�cation of image events lead-ing to multiple motions, the determination of these motions and, under occlusion,their identi�cation as velocities of occluding and occluded surfaces, can be ob-tained through a Fourier analysis of occlusion and transparency phenomena.Throughout this contribution, we consider velocities as locally constant quantitiesand image signals as satisfying Dirichlet conditions.2.1 Occlusion in the frequency domainThe Fourier transform of the optical ow constraint equation is obtained withthe di�erentiation property as:F �rI(x; t)Tv + It� = iÎ(k; !)�(kTv + !); (2)where i is the imaginary number, Î(k; !) is the Fourier transform of I(x; t) and�(kTv+!) is a line-mass Dirac delta function. Expression (2) yields kTv+! = 0



as a constraint on velocity. Similarly, the Fourier transform of a translatingintensity pro�le I(x; t) is obtained with the shift property as:Î(k; !) = Z Z I(x � vt)e�i(kTx+!t)dxdt= Î(k)�(kTv + !); (3)which also yields the constraint kTv + ! = 0. Hence, (2) and (3) demonstratethat the frequency analysis of image motion is in accordance with the motionconstraint equation [8]. It is also observed that kTv + ! = 0 represents, in thefrequency domain, an oriented plane passing through the origin, with normalvector v representing full velocity, onto which the Fourier spectrum of I(x) lies1.The discontinuities in optical ow arising from occlusion may be written by con-sidering two translating intensity pro�les, one partially occluding the other. LetI1(x) and I2(x) be the intensity pro�les of an object and a background scene.An object indicator function such asU(x) = � 1 if I1(x) 6= 00 otherwisemay be de�ned to specify the actual location of the object on the image plane.The resulting intensity pattern is then written as a function of the intensitypro�les of the object, the background and the object indicator:I(x; t) = I1(x � v1t) + [1�U(x� v1t)] I2(x � v2t): (4)By using the shift property of Fourier transforms, (4) is rewritten in spatiotem-poral frequency space as:Î(k; !) = Î1(k)�(! + vT1 k) + Î2(k)�(! + vT2 k)� hÛ(k)�(! + vT1 k)i � hÎ2(k)�(! + vT2 k)i : (5)The �rst two terms of (5) are the signals associated with the object and thebackground. The frequency spectra of I1 and I2 are located on the planes de�nedby the equations kTv1 + ! = 0 and kTv2 + ! = 0 respectively. In addition, therespective orientations of these planes fully determine v1 and v2. The last termof (5) describes the distortion created by the occlusion boundary. In the followingsections, this form of distortion is analized and its usefulness in determining imageevents giving rise to multiple motions is shown.1The aperture problem arises when the Fourier spectrum of I(x) is concentrated on a linerather than on a plane [8, 12]. Spatiotemporally, this depicts the situation in which I(x)exhibits a single orientation. In this case, one may only obtain the speed and direction ofmotion normal to the orientation, noted as v?. If many normal velocities are found in a singleneighbourhood, their respective lines �t the plane kTv + ! = 0 from which full velocity maybe obtained.



3 Frequency analysis of occlusionThe analysis begins with the consideration of a simple case consisting of two 1-dsinusoidal intensity pro�les. The results are then generalized to arbitrary 1-d and2-d intensity pro�les.3.1 One-dimensional sinusoidal signalsThe case in which two 1-d sinusoidals play the role of the object and the back-ground is �rst considered. Let I(x; t) be a 1-d intensity function I1(x) translat-ing with velocity v1: I(x; t) = I1(x � v1t). Its Fourier transform is Î(k; !) =Î1(k)�(kv1+!). Let I1(x) be occluding another 1-d intensity pattern I2(x) mov-ing with velocity v2. The resulting intensity pro�le can then be expressed as:I(x; t) = u(x� v1t)I1(x� v1t) + (1� u(x� v1t))I2(x� v2t) (6)where u(x) is Heaviside's function representing the occluding point:u(x) = � 1 if x � 00 otherwise.The Fourier transform of the intensity pro�le (6) is:Î(k; !) = [û(k)�(kv1 + !)] � [Î1(k)�(kv1 + !)]� [û(k)�(kv1 + !)] � [Î2(k)�(kv2 + !)]+ Î2(k)�(kv2 + !); (7)where û(k) is the Fourier transform of Heaviside's function u(x) written as û(k) =��(k) + (ik)�1.Proposition 1 Let I1(x) and I2(x) be cosine functions with respective angularfrequencies k1 = 2�f1 > 0 and k2 = 2�f2 > 0 and let I1(x� v1t) = c1 cos(k1x�v1t) and I2(x � v2t) = c2 cos(k2x � v2t). Then the frequency spectrum of theocclusion obtained by substituting I1(x) and I2(x) into (6) is:Î(k; !) = �2 c1�(k � k1; ! � k1v1)+ (1� �)2 c2�(k � k2; ! � k2v2)+ i2 �c2�(kv1 + ! � k2�v)(k � k2) � c1�(kv1 + !)(k � k1) � (8)A number of conclusions can be drawn from proposition 1: Since the signals arecosines, all their power content is real. In addition, the power content of thedistortion term is entirely imaginary, and form lines of decreasing power aboutthe frequencies of both the occluding and occluded signals. Their orientation isinversely proportional to the velocity of the occluding signal, as �v1 is the slopeof the constraint lines.



3.2 One-dimensional arbitrary signalsIn general, the occluding and occluded signals cannot be represented as simplesinusoidal functions. To gain generality, I1(x) and I2(x) may be expanded as aseries of complex exponentials, assuming that functions I1(x) and I2(x) satisfyDirichlet conditions.Proposition 2 Let I1(x) and I2(x) be functions satisfying Dirichlet conditionssuch that they may be expressed as complex exponential series expansions:I1(x) =P1n=�1 c1neink1x I2(x) =P1n=�1 c2neink2x; (9)where n is integer, c1n and c2n are complex coe�cients and k1 and k2 are thefundamental frequencies of both signals. Then the frequency spectrum of theocclusion obtained by substituting the frequency spectra of (9) into (6) is:Î(k; !) = � 1Xn=1 c1n�(k � nk1; ! + nk1v1)+ (1� �) 1Xn=�1 c2n�(k � nk2; ! + nk2v2)+ i 1Xn=�1�c2n�(kv1 + ! � nk2�v)(k � nk2) � c1n�(kv1 + !)(k � nk1) � : (10)Proposition 2 is an important generalization of the �rst one: Any signal whichrepresents a physical quantity satis�es Dirichlet conditions and therefore may beexpressed as an expansion of complex exponentials. Since c1n and c2n are complexcoe�cients, the power contents of the signals are both real and imaginary.3.3 Two-dimensional arbitrary signalsImagery is the result of the projection of light reected by environmental featuresonto the imaging plane of the visual sensor. Hence, such signals are inherentlytwo dimensional. Towards a generalization of (10), (9) is expanded as series of2-d complex exponentials.Proposition 3 Let I1(x) and I2(x) be 2-d functions satisfying Dirichlet condi-tions such that they may be expressed as complex exponential series expansions:I1(x) =P(1;1)n=�(1;1) c1neixTNk1 I2(x) =P(1;1)n=�(1;1) c2neixTNk2 ; (11)where nT = (nx; ny) are integers, N = nT I, xT = (x; y) are spatial coordinates,k1 = (kx1; ky1) and k2 = (kx2; ky2) are spatial frequencies and c1n and c2n arecomplex coe�cients. Also let the occluding boundary be locally represented by:U(x) = � 1 if xT~� � 00 otherwise, (12)



where ~� is a vector normal to the instantaneous slope of the occluding boundaryat x. Then the frequency spectrum of the occlusion obtained by substituting thefrequency spectra of (11) and (12) into a 2-d version of (6) is:Î(k; !) = � (1;1)Xn=�(1;1) c1n�(k� Nk1; ! + vT1 Nk1)+ (1 � �) (1;1)Xn=�(1;1) c2n�(k �Nk2; ! + vT2 Nk2)+ i (1;1)Xn=�(1;1)�c2n�(kTv1 + ! ��vTNk2)(k� Nk2)T~� � c1n�(kTv1 + !)(k� Nk1)T ~� � ;(13)where vT1 = (u1; v1), vT2 = (u2; v2) and �v = v1 � v2.Proposition 3 is a direct extension of proposition 2 in two spatial dimensions. Forthis general case, the constraint lines of propositions 1 and 2 generated by boththe occluding and occluded signals and the distortion terms become constraintplanes. The frequency structures of individual signals are preserved to withinscaling factors.3.4 Relation to translucencyTransmission of light through translucent material may cause multiple motionsto arise in the same image region. Generally, this e�ect is depicted on the imageplane as I(x; t) = f(�1)(x � v1t)I2(x� v2t); (14)where f(�1) is a function of the density of the translucent material [8]. Underthe local assumption of spatially constant f(�1), with translucency factor ', (14)is reformulated as a weighted superposition of intensity pro�les:I(x; t) = 'I1(x� v1t) + (1� ')I2(x � v2t); (15)where I1(x; t) is the intensity pro�le of the translucent material and I2(x; t) isthe intensity pro�le of the background. With I1(x) and I2(x) satisfying Dirichletconditions, the frequency spectrum of (15) is written as:Î(k; !) = ' (1;1)Xn=�(1;1) c1n�(k� Nk1; ! + vT1 Nk1)+ (1 � ') (1;1)Xn=�(1;1) c2n�(k �Nk2; ! + vT2 Nk2): (16)With the exception of the distortion term, and to within scaling factors, (16) isidentical to (13). Hence, with respect to its frequency structure, translucencymay be reduced to a special case of occlusion for which the distortion termsvanish.



3.5 Geometric interpretationIn the simplest case involving sinusoidal signals, Proposition 1 shows that thefrequency spectra of both signals are preserved to within scaling factors. In ad-dition, the imaginary terms represent the frequency spectrum of the occlusionboundary. Figure 2 shows one case of occlusion with a 1-d, Gaussian-windowedsinusoidal signal. The velocity of the occluding signal is v1 = 1:0. The velocity ofthe occluded signal is v2 = �1:0. The spatial frequency of the occluding and oc-cluded signals are k1 = 2�16 and k2 = 2�8 respectively. The vertical axis representstemporal frequency ! while the horizontal axis is spatial frequency k. The spec-tral peaks located at �(k1;�k1v1) and �(k2;�k2v2) depict the spatiotemporalfrequencies of both signals and �t the constraint lines kv1+! = 0 and kv2+! = 0.The oblique spectra intesecting the peaks represent the spectrum generated bythe occlusion boundary and �t the constraint lines k1v1 + ! � k2v2 = 0 andk1v1 + ! = 0. These lines are parallel to the constraint line of the occludingsignal. It also is interesting to observe From Proposition 2 that every non-zerofrequency of an occluded signal shows such a parallel line due to occlusion.
Figure 1: a) (left): Gaussian-smoothed frequency spectrum produced with (8). Theoccluding and occluded signals have frequencies k1 = 2�16 and k2 = 2�8 and velocitiesv1 = 1 and v2 = �1 respectively. b) (right): Gaussian-smoothed frequency spectrumproduced with (10). The occluding signal has frequency k1 = 2�16 and velocity v1 = 1while the occluded signal is composed of frequencies nk2 = 2� �n8 � ; n = 1; 2; 3 andvelocity v2 = �1.Proposition 3 is the generalization of Proposition 2 in 2D and its geometricinterpretation is similar. That is to say, the constraint lines of the signals andthe occlusion boundary become constraint planes. For instance, the frequencies(Nk1;�vT1 Nk1) and (Nk2;�vT2Nk2) �t the constraint planes of the occludingand occluded signals, de�ned as kT1 v1 + ! = 0 and kTv2 = 0. In the distortionterm, the arguments of the Dirac � functions kTv1+!��vTNk2 and kTv1+!represent a set of planes parallel to the constraint plane of the occluding signalkTv1+! = 0. That is to say, for every discrete frequency Nk1 and Nk2 exhibitedby both signals, there is a frequency spectrum �tting the planes given by kTv1+! � �vTNk2 = 0 and kTv1 + ! = 0. The magnitudes of these planar spectraare determined by their corresponding scaling functions c1n[(k�Nk1)T~� ]�1 andc2n[(k�Nk2)T~� ]�1. Hence, Proposition 3 reveals useful constraint planes, as the



power spectra of both signals peak within planes kTv1+! = 0 and kTv2+! = 0and the constraint planes arising from the distortion are parallel to the spectrumof the occluding signal I1(x; t).4 Numerical experimentsAside from deriving formal proofs2, several experiments were performed in sup-port of the Propositions. The Fourier spectra obtained with both a standardFFT algorithm and those predicted by the theory were compared.In order to verify the propositions, two 1-d signals which respectively act asoccluding and occluded surfaces were used. Expression (6) is used with I1(x �v1t) = c1 cos(k1x � v1t) and I2(x � v2t) = c2 cos(k2x � v2t), where I1 and I2are the occluding and the occluded surfaces with respective frequencies k1 = 2�16and k2 = 2�8 . Constants c1 and c2 correspond to signal amplitudes. To limitboundary conditions when numerically computing Fourier transforms, the signalwas windowed with a Gaussian envelope. The discrete Fourier transform of the
Figure 2: a) (left): Gaussian-windowed signal with sinusoidals acting as occluding andoccluded surfaces. The occluding signal has frequency k1 = 2�16 and velocity v1 = 1. Theoccluded signal has frequency k2 = 2�8 and velocity v2 = �1. b) (middle): Fourierspectrum generated with a standard FFT algorithm. c) (right): Fourier spectrumpredicted by theory.windowed signal obtained with a standard FFT algorithm is shown in Figure2b, where the peaks associated with both sinusoidals and the distortion linesare clearly visible. A discretized version of proposition 1, which models aliasinge�ects is shown in Figure 2c for the same frequencies and velocities as in Figure2b: The spectra obtained with both a standard FFT algorithmand the theoreticalresults are essentially identical.2The formal proofs of Propositions 1, 2 and 3 are found in [3]



5 ConclusionUnder a minimal set of hypotheses, such as locally constant velocity and intensitypro�les satisfying Dirichlet conditions, we have shown the Fourier structure ofocclusion and translucency phenomena in both 1 and 2D and outlined variousinteresting geometrical properties. For instance, the constraint lines or planescast by the occlusion boundary have been characterized: In a multiple motionsituation, their presence indicates an occlusion while their absence indicates atranslucency phenomenon.When a multiple motion situation is caused by an occlusion, the parallelism be-tween the the distortion cast by the occluding boundary and the Fourier spectrumof the occluding signal di�erentiates the velocity of the occluding signal from thevelocity of the occluded signal.This analysis forms a basis for a class of constraint-grouping algorithms capableof distinguishing occlusion from translucency and identifying occluded and oc-cluding surfaces, along with their respective velocities. In addition, the inclusionof the occlusion boundary distortions in models of multiple motions is likely toresult in further improvements of signal-to-noise ratios. The results of this theoryhave been extended to linear models of optical ow and signal degeneracy causedby the aperture problem [4].References[1] G. Adiv. Determining three-dimensional motion and structure from opticalow generated by several moving objects. IEEE PAMI, 7(4):384{401, 1985.[2] S. S. Beauchemin and J. L. Barron. The computation of optical ow. ACMComputing Surveys, 27(3):433{467, 1995.[3] S. S. Beauchemin and J. L. Barron. A theory of occlusion. Technical ReportTR-449, Dept. of Computer Science, Univ. of Western Ontario, March 1995.[4] S. S. Beauchemin, A. Chalifour, and J. L. Barron. Discontinuous opticalow: Recent theoretical results. In Vision Interface, pages 57{64, Kelowna,Canada, May 1997.[5] J. R. Bergen, P. J. Burt, R. Hingorani, and S. Peleg. Three-frame algorithmfor estimating two-component image motion. IEEE PAMI, 14(9):886{896,1992.[6] M. J. Black and P. Anandan. A model for the detection of motion over time.In Proceedings of ICCV, pages 33{37, Osaka, Japan, December 1990.[7] T. Darrell and A. Pentland. Robust estimation of a multi-layered motionrepresentation. In IEEE Proceedings of Workshop on Visual Motion, pages173{178, Princeton, New Jersey, October 1991.
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