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We propose a mathematical model for vision-based autonomous navigation on
general terrains. Our model, a generalization of Mallot’s inverse perspective, assumes the
direction of gravity and the speed of the mobile agent to be known, thus combining visual,
inertial, and navigational information into a coherent scheme. Experiments showing the
viability of this approach are presented and a sensitivity analysis with random, zero-mean
Gaussian noise is provided.

tive mapping

Introduction

Needless to say, there is a growing interest in the field of vision-based
autonomous navigation, partly due to its important applications in natural
and man-made environments (Batavia et al., 2002; Baten et al., 1998; Choi
et al., 1999; Desouza and Kak, 2002; Tang and Yuta, 2001; Tang and Yuta,
2002; Wijesoma et al., 2002).

The complexity of the navigation problem increases with that of the
terrain and the environment in general. Navigation over rough terrains
requires a vision system to react correctly with respect to the conditions
posed by navigational surfaces with significant irregularities.

In general, perception systems rely on sensors such as sonar, lasers,
or range finders. In addition, their outputs may be fused to increase the
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reliability of the perception process. Environmental data captured and fused
in this way may then be used for essential navigation tasks such as relative
position and egomotion estimation (Jin et al., 2003; Kim and Kim, 2003),
obstacle detection and avoidance (Ku and Tsai, 1999), and path planning
(Desouza and Kak, 2002).

Relative position may be estimated through spatial relations to exter-
nal objects such as land-marks or through incremental movement estima-
tion using odometry and gyroscopes. Path planning methods depend on
many factors, such as the complexity of the navigational tasks, the level of
knowledge about the environment, and the dimension of the navigational
problem. For instance, in the 1-dimensional case, the navigation is kept
with a fixed distance to a reference line. In 2 and 3-dimensional navigation,
landmarks are commonly used for estimating the current position and per-
forming local path planning. Topological and geometrical relations between
environmental elements and features are represented by various spatial
maps that are established prior to the navigational task. For instance,
landmark maps hold the information about the position of landmarks on
the terrain, whereas passability maps represent the traversable paths on the
terrain, or the location of obstacles in the environment. With the knowledge
of the relative position of the moving sensor and the information held in
the landmark and passability maps, navigating becomes a relatively trivial
task. However, solving this problem with potentially unreliable information
about the environment or the location of obstacles is very challenging.

The use of motion information for navigational purposes such as optical
flow poses significant problems in general. The difficulty of obtaining numer-
ically accurate and meaningful optical flow measurements has been known
for some time (Barron et al., 1994). For this and other reasons, if one could
impose additional constraints onto the spatiotemporal structure of optical
flow, one could most probably obtain better flow estimation. For instance,
Mallot’s inverse perspective mapping model eliminates optical flow diver-
gence, provided that the navigational path on the terrain remains perfectly
flat. As a result, when the sensing agent moves in a straight line, the optical
flow estimates are then isotropically parallel and their magnitudes describe
the corresponding terrain heights.

In this contribution, we propose a generalization of this model for un-

As we demonstrate, it is possible to maintain a correct optical flow pattern
in spite of the motion experienced by the visual sensor while navigating
on an uneven terrain. We also provide noise analysis to the reconstructed
3d world model. Our proposed model will be used without being provided
with landmark or passability maps. Ultimately, the mobile agent is required
to make real-time navigational decisions, using the perceived information

even terrains, modeled as triangulations of randomly generated height points.
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of the direction of the gravity field.
This contribution is organized as follows: section 1 defines the coordinate

systems involved, section 2 is a synopsis of Mallot’s perspective and inverse
perspective mapping model, section 4 outlines the problems encountered
while applying this model on uneven terrains, section 5 is a description
of our proposed perspective and inverse perspective mathematical models,
and section 6 presents a noise sensitivity analysis for our proposed model.

1. Coordinate Systems

The projection of a 3d world point onto the image plane involves three
coordinate systems and two transformations. The world coordinate system
W is described with 3 primary axes, X, Y , and Z. A point in the 3d world
is denoted by Pw and the coordinates of this point are (Pwx , Pwy , Pwz).
The point Pw is transformed from the world coordinate system W into the
camera coordinate system C giving a point Pc = (Pcx , Pcy , Pcz), where cx,
cy, and cz are the sensor axes defined in the world coordinate system. The
point Pc is projected into the image plane giving a corresponding point Pi.
This point is described in an image plane coordinate system I(a, b).

2. Mallot’s Model

Mallot’s model presents an inverse perspective scheme for navigation on flat
terrains. It is a bird’s eye model where the imagery recorded by the visual
sensor undergoes a mathematical transformation such that the sensor’s gaze
axis becomes perpendicular to the navigational surface. This transforma-
tion effectively nulls the perspective effects within the resulting optical flow
and allows for a simple procedure to estimate obstacle locations.

2.1. PERSPECTIVE MAPPING

Perspective mapping or projection may be written in the following way:⎛⎝ PIa

PIb

−f

⎞⎠ =
−f

Pcz

⎛⎝ Pcx

Pcy

Pcz

⎞⎠ (1)

where f is the focal length. Figure 1 shows the world map of a triangulated
flat terrain captured by a perspective visual sensor.

Figure 2a shows the perspective mapping image from the visual sensor
specified in Equation (1), moving along the diagonal of the terrain. The

gyroscopes will be used for relative position estimation and the determination
from the scene. Incremental movement estimation using odometers and
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Figure 1.

Figure 2. Left: mapping from the visual sensor, moving along the
diagonal of the terrain. b) Right: The optical flow of the perspective mapping in a).

terrain in the image is a square surface, as shown in Figure 1. The obvious
perspective effects resulting from projection are noted in Figure 2a. Figure
2b shows the optical flow of the perspective mapping from Figure 2a as the
visual sensor moves along a straight line on the terrain. It can be easily
seen from Figure 2b that the Focus Of Expansion (FOE) is located at the
horizon. In addition, from Equation (1) and Figure 2b, it can be understood
that perspective effects are in direct relation with, among other things, the
relative height of the visual sensor from the navigational surface.

The map of a flat terrain, where the circle represents the position of the mobile
agent.

a) Perspective
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perspective free, optical flow vector field. The transformation T is shown
in Figure 3, where P is the point which the camera looks at. Figures 4a
and 4b show the perspective mapping and optical flow respectively, after
applying the transformation T onto the sensor imagery.

Figure 3.

Since inverse-perspective optical flow is a function of depth, then differ-
ent terrain heights have different optical flow vector magnitudes. Figure 5a
shows a global map that has some spikes in the middle of the terrain. Figures
5b and 5c show the perspective mapping and the optical flow respectively.
As shown in Figure 5c, the optical flow vectors that represent the motion of
the spikes with respect to the camera are longer than those which represent
the flat part of the terrain.

2.2. INVERSE PERSPECTIVE MAPPING

Equation (2) presents the inverse perspective mapping as per Mallot’s
model. This mapping gives a point Pw which corresponds to a point Pi

in the image plane. The inverse perspective mapping involves two trans-
formations, one from the image plane coordinate system to the camera
coordinate system, and a second transform from the camera coordinate
system to the world coordinate system:(

Wx

Wy

)
= β · γ (2)

where
β =

−h

NxPIa + NyPIb
− Nzf

and

γ =
(

UxPia + UyPib − Uzf
VxPia + VyPib − Vzf

)

Applying the transform T from Mallot’s model results in the correct,

Camera transformation T .
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Figure 4.

Figure 5.

Here, (Nx, Ny, Nz), (Ux, Uy, Uz), and (Vx, Vy, Vz) are the sensor axial com-
ponents described in the world coordinate system W , (Pia , Pib) is a point
in the image plane described by the image plane coordinate system I(a, b),
and h is the height of the visual sensor from the ground. Figure 6 shows
the inverse perspective mappings corresponding to the images in Figure 5.

The result of this transformation on the optical flow field displayed in
Figure 3 is shown in Figure 5c, where the totality of optical flow vectors
are parallel to each other, as expected from the application of the inverse
perspective mapping.

3. Mallot’s Model and Uneven Terrain

Generally, applying Mallot’s model from a mobile agent moving on an un-
even terrain yields optical flow fields in which vectors may not be exhibiting
parallelism among their constituent vectors. This is exemplified by the

a) Left: Perspective mapping taken by the visual sensor, moving along the
diagonal of the terrain after applying the transformation T . b) Right: The optical flow
of the perspective mapping in a).

a) Left: Camera view from an arbitrary point for a terrain that contains a
spike. b) Center: Perspective mapping of the image perceived by the visual sensor, pic-
tured at the start of the simulation. c) Right: Optical flow obtained from the perspective
mapping in b).
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Figure 6.

Figure 7. a) Top-left: b)

following case, where Figure 7a shows a 3d surface of irregular terrain and
Figures 7b, 7c, and 7d display the perspective mapping, resulting optical
flow, and the inverse perspective mapping respectively.

Figure 8 shows the reason behind the incorrect optical flow of Figure
7c. The point P in Figure 8 is on the terrain and the dashed line represents
the path the agent must follow to keep the angle between its sensor and the
horizon constant as it travels on the surface. Because the surface is uneven,

a) Left: Inverse perspective mapping for the image in Figure 5a. b) Right:
Inverse perspective mapping for the image in Figure 5b.

Camera view from an arbitrary point for a terrain.
Top-Right: Perspective mapping of the image perceived by the visual sensor, at the start
of the simulation. c) Bottom-Left: Optical flow obtained from the perspective mapping
in b). d) Bottom-Right: Inverse Perspective mapping for the image in b).



276

this angle varies and the optical flow vectors deviate from the parallelism
they should exhibit. This demonstrates the inadequacy of Mallot’s model

Figure 8.

on irregular navigational terrains.

4. The Proposed Model

As previously stated and under the conditions created by an uneven navi-
gational surface, Equation (2) yields an incorrect optical flow, and a further
transformation T is needed to null its effects. Hence, Equation (2) may be
rewritten as: ⎛⎝ Qia

Qib
1

⎞⎠ =
−f

Pcz

⎛⎝ Pcx

Pcy

Pcz

⎞⎠ T (θ) (3)

axis of the camera and the perpendicular to the absolute horizon1. For
Mallot’s inverse perspective to be valid under the hypothesis of an uneven

1 We define the absolute horizon as the plane perpendicular to the vector describing
the direction of the gravitational field.

Mallot’s inverse perspective on rough terrain.

where T (θ) is a rotation matrix, and θ is the angle between the optical
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navigational terrain, one must find the transformation T which allows the
visual sensor’s angle relative to the absolute horizon to remain constant
regardless of the slope of the terrain over which the agent moves.

As the agent navigates, the transformation T (θ) evolves in relation to
the angle that the sensor makes with the direction of the gravitational field.
Provided that the agent is fitted with adequate gyroscopic equipment, then
the vector describing the direction of gravity is available and the plane to
which this vector is perpendicular represents the flat navigational surface
which Mallot’s model requires to perform adequately.

Assuming that the agent is so equipped as to instantaneously measure
the pitch and roll angles it makes with respect to the aforementioned plane,
then the model can be generalized in the following fashion:⎛⎝ Pia

Pib
1

⎞⎠ =

⎛⎝ Qia

Qib
1

⎞⎠ · P(α) · R(φ) (4)

where α and φ are the respective pitch and roll angles:

P(α) =

⎛⎝ 1 0 0
0 cos α sin α
0 − sin α cos α

⎞⎠

R(φ) =

⎛⎝ cos φ sin φ 0
− sin φ cos φ 0

0 0 1

⎞⎠
it navigates on an uneven terrain, the mobile agent experiences

height variations with respect to any arbitrarily determined reference point
on the terrain. This, of course, introduces unwanted perspective effects,
even while pitch and roll are being corrected in the imagery acquired by
the sensor. Therefore, a third transformation, this time requiring both
the gravimeter and the speed of the sensory agent as inputs, needs to be
formulated.

Figure 11 shows the agent moving on such a rough terrain. As the
camera moves further down, the height of the camera with respect to
a terrain point P decreases, thus creating a perspective effect. The fol-
lowing Equation shows the transformation Th′ which compensates for the
perspective:

Th′ =

⎛⎝ 1 0 0
0 1 0
0 −h′ 1

⎞⎠ (5)

where h′ is the difference in camera height with respect to a virtual plane,
normal to the direction of gravity. It is obtained in the following way:

As
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assuming that the robot is moving with velocity V , then the distance per
time interval traversed by the robot is equal to:

δS = V t (6)

Given that the angle of the terrain surface is known to be ρ by way of a
gravimeter, then the change in camera height h′ with respect to the virtual
plane is obtained as follows:

h′ = δS sin ρ (7)

The next Equation shows how this last transformation is combined with the
two previous ones:⎛⎝ Pia

Pib
1

⎞⎠ =

⎛⎝ Qia

Qib
1

⎞⎠ · Th′ · P(α) · R(φ) (8)

Figures 9a and 10a show the camera view for different terrains with different
roughness. Figures 9b and 10b are the perspective mapping; Figures 9c and
10c are the optical flow; and Figures 9d and 10d are the inverse perspective
mapping, respectively.

5. Noise Analysis and Sensitivity

The orientation and magnitude of ground-truth optical flow fields were
corrupted by two independent, zero-mean Gaussian distributions. Consider

terrain. b)Top-Right: Perspective mapping of the image perceived by the visual sensor
for the camera view in a). c)Bottom-Left: Optical flow obtained from the perspective
mapping in b). d) Bottom-Right: Inverse Perspective mapping for the image in b).

Figure 9. a) Top-left: Camera view from an arbitrary point about a moderately rough
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Figure 10. a)

εangle, a randomly generated number from a zero-mean Gaussian distribu-
tion with standard deviation σangle. We formed the disturbance angle θd

as:

θd = εangle2π. (9)

Consider εmag, a randomly generated number from a zero-mean Gaus-
sian distribution with standard deviation σmag. We formed the disturbance
value to be added to the magnitudes of optical flow vectors as:

�noisy = εmag × �orig. (10)

The output noise in the terrain reconstruction process is represented by
the Sum of Squared Errors (SSE) between a noise-free inverse perspective
mapping and the noisy one, reconstructed with the corrupted optical flow
vectors. The following Equation represents our noise metric:

SSE =
n∑

i=1

√
(xi − x̄i)2 + (yi − ȳi)2 (11)

where xi and yi are the reconstructed coordinates of a point Pi in the image,
and x̄i and ȳi are the corresponding noisy ones.

Figure 12 shows the relation between the two standard deviations σangle,
and σmag, within the range 0.0001 and 0.05 with step 0.01 and the SSE
metric. We observe that the error increases non-linearly with the progres-
sion of the standard deviation that corrupts the magnitude of the optical

Top-Left: Camera view from an arbitrary point about a very rough
terrain. b) Top-Right: Perspective mapping of the image perceived by the visual sensor
for the camera view in a). c)Bottom-Left: Optical flow obtained from the perspective
mapping in b). d) Bottom-Right: Inverse Perspective mapping for the image in b).
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Figure 11.

flow vectors. However, the output error behavior for the input optical flow
directional error appears to be linear.

It is apparent from this analysis that linear input noise generates non-
linear output noise in the terrain reconstruction process. We believe this
effect to be mainly due from expected sources, including the behavior of
perspective projection equations and the relationship between optical flow
from a bird’s eye perspective and the depth of environmental surfaces.

6. Conclusion

We proposed a mathematical model for optical flow-based autonomous
navigation on uneven terrains. We provided a detailed explanation on the
inadequacy of Mallot’s inverse perspective scheme for uneven navigational
surfaces. The model was extended to include these types of surfaces.

Our generalization of Mallot’s model relies on the knowledge of the
direction of the gravitational field and the speed of the mobile agent.
We believe that visual information must be fused with other sources of
information, such as one’s position with respect to the direction of gravity,
odometry, and inertial information. In addition, our model can be further

The camera, for the proposed model.
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Figure 12.

extended to compensate for acceleration, as long as this information is made
available to the vision system through odometry.

We are currently working towards generalizing our approach to stereo
vision systems, so as to obtain multiple channels of visual information, onto
which cue selection and integration could be performed, thus enhancing the
robustness of the approach.
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