
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Workflow Nets for Multiagent Cooperation

Y. T. Kotb, S. S. Beauchemin, and J. L. Barron

Abstract—We present a formal framework for robotic cooperation in
which we use an extension to Petri nets, known as workflow nets, to estab-
lish a protocol among mobile agents based on the task coverage they main-
tain. Our choice is motivated by the fact that Petri nets handle concurrency
and that goal reachability, or soundness, can be theoretically established.
In particular, we define a mathematical cooperation operator which turns
cooperation problems expressed as workflow nets into algebraic represen-
tations. While we do not address the problem of efficiency, we formally
demonstrate that this framework guarantees soundness, or goal reacha-
bility, using workflow nets.

Note to Practitioners—Cooperative behavior is a key issue in process au-
tomation as it enhances the execution time of a process. This contribution
proposes a framework which guarantees the completion of a plan given
that it is achievable within the set capabilities exhibited by the cooperative
agents.

The proposed algorithm turns a cooperative plan expressed with logic
predicates and operators into a workflow net that is guaranteed to com-
plete. If the cooperative plan is static during its execution, then it is achieved
at a minimal cost (whether that be time, or any other measures of effi-
ciency). Otherwise, if the cooperative agents possess sufficient perceptual
or communication capabilities to assess (partially or fully) the state of the
cooperation, then they are free to replan at will. This framework is appli-
cable to any automation scenario that can be expressed in the form of pred-
icate logic.

Index Terms—Linear algebra, linear programming, multirobot systems,
Petri nets, robotics and automation.

I. INTRODUCTION

R OBOTIC navigation problems often benefit from the advan-
tages provided by multiple, cooperating mobile agents [1]. Such

gains include improved performance and simplicity of robot design.
In addition, there are common multiagent tasks that cannot be carried
out by a single robot, such as soccer playing and follow-the-leader
swarms [2]. Conversely, predator-prey and terrain exploration prob-
lems are examples of tasks that can be performed by a single agent
yet may be more efficiently addressed with multiple robots [3]. Coop-
eration among a group of robots is defined as the process of merging
and managing available capabilities to reach a common goal. Typically,
these resources include time, actions, knowledge, sensor readings, and
computations.

We briefly survey the relevant literature in Section II, while
Section III illustrates the methodology and our proposed framework.
Section IV presents a cooperative operator and its properties. Section V
elaborates on the rudiments of a cooperation algebra founded on the
cooperative operator. Section VI outlines the general cooperation al-
gorithm, while Section VII includes a demonstration of the scalability
of the framework. Section VIII offers experimental simulations in
support of the framework. Section X offers a conclusion and potential
future work.

Manuscript received April 06, 2011; revised June 06, 2011; accepted July 16,
2011. This paper was recommended for publication by Associate Editor Z. Li
and Editor M. Zhou upon evaluation of the reviewers’ comments.

The authors are with the Department of Computer Science, University of
Western Ontario, London, ON N6A-5B7, Canada (e-mail: beau@csd.uwo.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASE.2011.2163510

II. RELATED LITERATURE

Aalst et al. introduced the modeling of workflow systems with an
extension to Petri-nets, known as workflow nets [4], [5]. Aalst also in-
troduced constructs for token routing known as AND split and join,
and OR split and join [6], [7]. Workflow nets are used in various ap-
plied areas of research. For instance, workflow compositions [8], and
in areas of synchronization and cooperation1 [10], [11].

III. THE WORKFLOW FRAMEWORK

In order to design a framework that is capable of supporting coop-
eration among a set of agents, the tasks to be performed by the system
must be taken into consideration. The diversity of task types and con-
straints yield different designs. An example of this is agent polymor-
phism, which exists when two or more agents with different capabil-
ities are able to complete the same task. A group of agents is said to
be homogeneous if the capabilities of the individual agents are identical
and heterogeneous otherwise. Heterogeneity introduces complexity be-
cause task allocation becomes more involved and agents need to model
other individuals in the group.

A. Contribution

We aim to define a cooperative framework for robotic agents with the
use of workflow nets as defined by Aalst [4], [5]. Our main contribu-
tions consist of the application of workflow nets to problems of coop-
eration among robotic agents. In this context, we define a cooperation
operator (Sections IV and V) which is used to compose agent capabili-
ties expressed as workflow nets into a cooperative, composed workflow
net. We demonstrate that this cooperation operator preserves the prop-
erty of soundness, and that the framework is scalable to any number
of agents with any number of capabilities. We also propose an algo-
rithm which finds the minimal cost of the agent cooperation. While it
can be argued that the difference between synchronization and cooper-
ation may be essentially semantic, we however provide an algorithmic
means by which agent capabilities are translated into sound, inductively
constructed workflow nets, depicting optimal execution costs, provided
certain conditions are met [9], [11]. A detailed description of the algo-
rithm and proofs of our claims are available in a recently published
technical report [9].

We use workflow constructs to perform workflow net compositions
that are similar to those of Aalst [6], [7]. Our proposed cooperation
operator results in performing common place and transition composi-
tions. That our compositions be as such is essential for the incident
matrix representation used by our algorithm.

We are interested in cooperating agents sharing their capabilities in
the aim of achieving a cooperative plan. In that sense, unlike web ser-
vice composition approaches [12], [13], we assume that compatibility
is assured in the context of agents sharing their capabilities. In web
service composition, the issue is one of composed and compatible ser-
vice at design time, while our approach for cooperating agents must
determine the optimal fashion in which to share capabilities for the ex-
ecution of a cooperative plan at a minimal cost.

Finally, Aalst states that for a composed workflow to be sound, every
sub-workflow must end with a token in its output place [7]. Kindler ar-
gues that sub-workflows for which it is known that no token will reach
their output places should not have undue influence on the soundness of
the composed workflow [13]. In our framework, the composed, coop-
erative workflow is sound as per Aalst’s criterion, while the sub-work-
flows composing it are sound as per Kindler’s criterion.

1A detailed bibliographical survey of these application areas has been com-
piled by Kotb et al. [9].

1545-5955/$26.00 © 2011 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

B. Preliminaries

Workflow nets constitute an extension to Perti nets in that they must
contain exactly one place with no incoming transitions and exactly one
place with no outgoing transitions. In addition, the notion of soundness
with workflow nets implies that the model is both structurally and be-
haviorally well-formed.

We hypothesize that there is a set � � ���� ��� � � � � ��� of primi-
tive agent capabilities that cannot be fragmented into simpler capabil-
ities. Any action � from a robot at a given time is constructed from a
list of primitive action types.

If a robot �� from the set of cooperating robots� � ���� ��� � � � � ���
has plan �� from the set of plans � � ���� ��� � � � � ���, then the robot
can perform its plan on its own if and only if the following equation
holds:

� � � �� � � � ����� (1)

where � is an action and

����� � ��������������� � � � �������� (2)

is the action capability set of robot ��, where ������ are workflow
nets, and �� � ��������

��, where �� �� � is a starting action and
����

� is a set of following actions (which might be the empty set �).
Two robots �� and �� can cooperate to perform a desired plan �� if

they satisfy the task coverage property as follows:

� � � �� � � � ������ �����	 (3)

Robot �� is a candidate for cooperation with robot �� if and only if

� � � 	� � 	� � �� � ������ � � ����� (4)

where	� is the difference between the capabilities required to achieve
plan �� and the capabilities of robot ��.

In our proposed framework, we use workflow nets to model robots
involved in cooperation and derive benefits from their structural and be-
havioral characteristics to build a protocol for cooperation. Conditions
for an action to be taken are given by the input places to a transition and
the results of performing the action are given by the output places from
that same transition. Tasks, which can be thought of as sets of actions
performed by robots, are represented as tokens in workflow nets.

C. Choice Dependency and Unit Similarity

We address the notions of choice-dependency and unit similarity as
they are crucial concepts that affect the design of our framework. For
instance, if two or more units among a set of workflow nets are deemed
similar, then they can be interchanged in order to accomplish the same
task or part thereof. It is thus imperative to identify similar units in
order to exploit parallelism and minimize the costs of cooperation.

Choice dependency occurs when two or more units share one or more
input places. In such cases, soundness may not be ensured, as one or
more of the choice-dependent units may not result in the presence of a
token in the output place of the composed, cooperative workflow net.

We ensure that our framework avoids these problems by enforcing
that the output place of the cooperative framework is reachable by all
units. Additionally, we provide a technique to identify similar units in
what follows.2

Given a group of robots, their behavioral characteristics must be
taken into consideration if the cooperation is to be successful. With that
intent in mind, we divide a workflow net into units
�, where
 	 � 	 �

and � is the number of units composing the net. A unit is a transition

2We inductively define units with the initial set of agent capabilities � as a
basis.

comprised of sets of input and output places which model an action, the
conditions that must be satisfied prior to its execution, and the results
of achieving the action, respectively. We proceed with the mathemat-
ical definition of a unit.

Definition 1: A unit is a tuple

� � �
�� �� �
� (5)

where � is a transition,
� the set of input places to �, and �
 the
set of output places to �.

The notion of choice dependence among units is relevant as it di-
rectly affects levels of cooperation. Units
� and
� are said to be
choice-dependent if and only if their transitions share one or more input
places. For instance, if unit
� and
� are choice-dependent, but unit

� is choice-independent, then unit
� cannot replace unit
� in its ac-
tions (and vice versa).

Definition 2: A unit
 is choice-independent if and only if the fol-
lowing condition holds:

� �
� � �� � � (6)

where is the set of transitions in a Petri net, and � � . If the unit
is choice-dependent, then the set of choice-dependency is defined as

�� �� � � � �� ��
 � �
� �� �� (7)

and can be determined by satisfying the following condition:

�
���� � ����

���� � �� � �

� �
����� �
� �
� �� �

�
���� � (8)

where� is the number of places �� �
�, � the number of transitions
� � , and �� the input incident matrix of the Petri net. Two units
are identical if and only if they satisfy similarities in transition, pre-
condition and postcondition. A transition similarity is defined by the
action it belongs to. Two transitions � and � are similar if and only
if � � � implies that � � �, where � is an action belonging to �.
Precondition similarities are determined by satisfying

����� ���� � � (9)

and postconditions similarities, by satisfying

����� ���� � � (10)

where ���� and ���� are column vectors representing the input and
output places to and from transition �, respectively.

Definition 3: A unit
� is similar to unit
� (denoted
�
�) if and
only if � � �
� and � � �
� � ���� � ���� and
� �
�.

Definition 4: A unit
� is identical to unit
� (denoted
� �
�)
if and only if � � �
� and � � �
� � ���� � ���� and

� �
� and �
 � �
.

D. Correctness of Framework

Since we assume that agent capabilities can be expressed with
workflow nets �������, then reachability for these is assured [5],
[14]. However, we must guarantee that the proposed framework has
the property of soundness [15], [16], as workflow nets representing
initially primitive capabilities are inductively composed to form a
cooperation plan, which is also a workflow net. Hence, there is a need
to demonstrate that the way by which the plan is constructed preserves
soundness.

Consider a cooperative framework among robots

� �� �� ��������� �� � � (11)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KOTB et al.: WORKFLOW NETS FOR MULTIAGENT COOPERATION 3

where � is the set of primitive action types, � the set of cooperating
robots

���� � ������� ������ � � � � ������ (12)

the set of all robot capabilities, and � the set of plans to be performed
by the set of robots. The set of all similarities between robot capabilities
is defined as

� � ���� ��� � � � � �������� (13)

where

�� � ������ ������� (14)

������� � ����� and ������� � �����. � � ���� ��� � � � � ��� is
the set of workflows that bind two or more different workflows from
two or more robots.

A framework is sound if any valid input plan can be carried out suc-
cessfully, under the hypothesis that the set of robot capabilities satisfies
the task coverage requirement. For mathematical convenience, we add
a single input place �� and a single output place ��.

A cooperation framework 	 is sound if and only if the following
conditions are satisfied:

1) � ����� � ����, ����� is sound;
2) � 	 � �, 	 � ����;
3) �
 � �, ������ ������ �
 is executable;
4) � �� � �, �� is a sound workflow net;

where����� and����� are workflow nets representing capabilities
from agents � and �, and � is the cooperation operator, as described in
Section IV. Kotb et al. provide a proof of this claim [9], which follows
the lines of that provided by Aalst [6].

IV. THE COOPERATIVE OPERATOR

The cooperative operator embodies the cooperation framework, as
it joins (or composes) two cooperative frameworks into one. This joint
framework must be sound for it to represent a valid cooperation frame-
work. In light of this, the cooperative operator�must satisfy a number
of conditions. For instance, if����� � ����� ������ , then the
following properties must apply:

1) ����� and ����� are sound;
2) ����� is a workflow net with two special places �� and �;
3) � � � ����� ������ , � is sound;
4) 	�� �
, �	 �
.

The cooperative operator preserves soundness, is associative, noncom-
mutative, and nondistributive. Kotb et al. provide the necessary justifi-
cations in [9].

V. COOPERATION ALGEBRA

In this section we show how a logical description of a plan is con-
verted into our chosen representation of workflow nets using the co-
operative operator �, as applied to create the incident matrices corre-
sponding to logical operators. These are the and ���, the or ���, and
the then ��3.

A. Predicates

In this framework, every predicate is transformed into a unit with a
single input and a single output place. For instance, given predicate �,
the incidence matrix of its ����� is formed as

�� �

�

� (15)

3The not operator or any higher level operator based on it (such as xor) are
not used within this framework due to their lack of meaning in the workflow.

Initially, all predicates within the logical description of a cooperative
plan are given such incident matrices. Given an incident matrix � , we
adopt the following definitions: ���� is the number of rows in � equiva-
lent to the number of places, ���� is the number of columns in � equiva-
lent to the number of transitions, ����� is the row number of the output
place in � , and ����� is the row number of the input place in � . These
definitions are used in the construction of incident matrices resulting
from applying the cooperation operator �.

B. The � Operator

The and operator � joins the incident matrices of its predicates,
yielding a new incident matrix describing the workflow net resulting
from applying the operator. In other words, � �� is equivalent to the
following:

�� � �� �

�

�

�

� ���� (16)

where ���� is the incident matrix. It is the � operator that gives rise
to parallelism in the resulting workflow net. For example, � � � sig-
nifies that � and � can be accomplished in parallel, given that enough
resources with the required task coverage are available.

With � from 0 to ������������
 and � from 0 to ������������
,
the incident matrix ������� �� becomes:

• ����� �� if � � ����� and � � �����;
• ���� � ������ � � ������ if ����� � � � ����� � ����� and

����� � � � ����� � �����;
• 1 if � � ������ and � � ����� � �����;
• �
 if � � ������ and � � ����� � ����� �
;
• 1 if � � ������ and � � ����� � �����;
• �
 if � � ������ and � � ����� � ����� �
;
• 1 if � � ����� � ����� and � � ����� � �����;
• �
 if � � ����� � ����� and � � ����� � ����� �
;
• 0 otherwise.

C. The � Operator

The or operator �, not unlike the � operator, joins the incident ma-
trices of two predicates to form a new incident matrix describing the
resulting workflow net. This operator allows one part or another of the
cooperative plan to be executed, depending on the results of prior exe-
cution. � � � is equivalent to the following:

�� � �� �

�

�

�

� ���� � (17)

With � from 0 to ������������
 and � from 0 to �������������,
the incident matrix ������� �� becomes:

• ����� �� if � � ����� and � � �����;
• ���� � ������ � � ������ if ����� � � � ����� � ����� and

����� � � � ����� � �����;
• 1 if � � ������ and � � ����� � �����;
• �
 if � � ������ and � � ����� � ����� � ;
• 1 if � � ������ and � � ����� � ����� �
;
• �
 if � � ������ and � � ����� � ����� � �;
• �
 if � � ����� � ����� and � � ����� � ����� or � �

�����	���� �
;
• 1 if � � ����� � ����� and � � ����� � ����� � ;
• 0 otherwise.

D. The Operator

The then operator creates the sequential sections of cooperative
plans between predicates. For instance, the plan� � ensures that�
is performed before �. The operator joins the incident matrices of
its predicates creating a new incident matrix describing the workflow

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

net resulting from applying the operator. Hence, �� � is equivalent
to the following:

�� � �� �
�

��
�

�

��
� ���� � (18)

With � from 0 to ����� � ������ � and � from 0 to ����� � ������,
the incident matrix ������	 �� becomes:

• ����	 �� if �
 ����� and �
 �����;
• ���� � �����	 � � ������ if ����� � �
 ����� � ����� and
����� � �
 ����� � �����;

• �� if � � ������ and � � ����� � �����;
• 1 if � � ������ and � � ����� � �����;
• 0 otherwise.

VI. ALGORITHM

We defined an algorithm to derive a cooperative workflow net from a
plan expressed with the notation used in Section V. It is of note to con-
sider that this algorithm generates a cooperative, composed workflow
which contains all the possible cooperative scenarios. Consequently,
the algorithm implements a backtracking scheme allowing it to deter-
mine the minimal cost cooperative path from the workflow net (the
complete description of this algorithm is provided by Kotb et al. [9]).

VII. FRAMEWORK SCALABILITY

Scalability refers to the efficiency with which the system operates
when the number of agents increases. Scalability is an important issue
and constitutes a measure of the quality of the design of the multiagent
system. Our approach guarantees scalability (Kotb et al. provide an
inductive proof for this claim [9]).

While the framework is scalable, it is not guaranteed to yield the best
performance in the case of � heterogeneous robots, where � � �, since
the selection of a cooperation robot pair among a set of candidate robots
highly affects future plans. However, an optimal solution is obtained in
the precise case when plans remain static during their execution since
a linear programming technique is applied with respect to the costs of
the transitions in the workflow net.

VIII. EXPERIMENTAL SIMULATIONS

We built a simulator for the cooperation framework, in which the
algorithm described in [9] is implemented. Our goal is to empirically
demonstrate that our definition of cooperation is correct and that plans
can be adequately established and carried out.

A. Experimental Setup

The input to the simulator consists of a plan in the form of a linear
logic expression with operators as described in Section V. Other input
parameters consist of a set of agents, each with a set of capabilities,
expressed as workflow nets. Each capability corresponds to one action
defined in the plan, along with the cost associated with performing that
action. Actions that are not part of an agent’s set of capabilities have
their cost set to infinity. The simulator assigns costs in the following
manner: first, a uniformly distributed random variable is used to de-
termine the initial set of capabilities for each agent. When an agent is
assigned a capability, the cost for its execution is randomly determined
with a normally distributed variable.

Once the agent capabilities are set, the simulation evaluates the task
coverage. If the generated agent capabilities are insufficient to provide
a complete task coverage, the simulator terminates with� as a cost for
execution. Otherwise, the cooperative plan is constructed and executed.

Fig. 1. Plan execution times versus probabilistic agent task coverage for a
group of 50 robots.

The execution time is computed simply as the total execution cost in
the cooperative workflow net.

B. Experiments

The first experiment was designed to demonstrate the way by which
the framework exploits parallelism in plan execution. The plan to exe-
cute is expressed as

�������� �� � ���� �� � ��� � �� (19)

where each predicate represents a unique robot capability. For this plan,
seven different capabilities corresponding to the predicates �, �, � ,
�, , � , and � are required for its execution. We used 50 agents in
100 simulations, where we controlled the probability of an agent to
possess each capability. For instance, for a task coverage probability
of 50%, each one of the 50 agents had a 50% chance of possessing
each of the seven capabilities. This experiment was performed for task
coverage probabilities from 1% to 100%. As expected, with a 100%
task coverage probability, each agent possesses all the seven capabili-
ties, resulting in full parallelism of execution, while respecting the flow
constraints of the plan. The time units are expressed in terms of tran-
sition costs in the workflow nets. Note that these could express other
measures. Fig. 1 shows plan execution times for this set of simulations.
As expected, times for low task coverage probabilities are high, and
sometimes infinite in cases when the probabilistic attribution of agent
capabilities is insufficient to complete the plan. It is also observed that,
as the probabilistic task coverage increases for each agent, the execu-
tion time decreases in what seems to be a negative exponential function.
This is, in part, due to the logical structure of the plan, expressed with
(19), which allows for parallelism. Conversely, execution times for a
plan such as

�� � � � � � � (20)

would turn out as constant, or infinity when the sum of probabilistic
task coverages of agents is insufficient.

Our second set of experiments explores the effects of varying num-
bers of agents on plan execution times. As expected, execution times
are shortened by increasing numbers of agents. Fig. 2(a) depicts this
situation where a growing number of agents significantly reduces ex-
ecution times. Fig. 2(b), showing the cases in which probabilistic task
coverages are insufficient to complete the plan, and Fig. 2(c), showing

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KOTB et al.: WORKFLOW NETS FOR MULTIAGENT COOPERATION 5

Fig. 2. (a) Plan execution times versus number of agents and probabilistic task coverage. (b) Insufficient task coverage cases. (c) Sufficient task coverage cases.

the converse, demonstrate that in the particular case of this plan, ex-
tended agent capabilities reduce execution times more drastically than
the number of robots. In this particular case, the framework favors
agents with better task coverage than number of robots for plan exe-
cution time reduction.

IX. LIMITATIONS

Our proposed framework for cooperation has a number of limita-
tions, which we proceed to describe.

1) The input plan must be expressed with linear logic. Cooperative
situations that cannot be expressed as such, cannot be dealt with.

2) The framework implicitly assumes that agent capabilities are suf-
ficient to provide task coverage. In cases where agent capabilities
do not provide an adequate task coverage, the cooperative plan
will not terminate.

3) The framework poses the hypothesis that every agent action will
be successful. In practice, when this is not the case, no mechanism
is provided to remedy the situation and the cooperative plan may
fail.

4) Any change in agent status cannot be considered while the coop-
erative plan is being determined. For instance, such changes may
be modifications to agent capabilities. When capabilities change,
the algorithm (from Section VI) must be executed again.

X. CONCLUSION AND FUTURE WORK

We proposed a workflow net-based cooperative framework for mul-
tirobot systems. The framework provides an algorithm to verify sim-
ilarities among robot capabilities in order to determine the possibility
of cooperation with respect to a desired task. Similarities are examined
from what we have defined as compositions. The dynamic behavior
of the framework is also studied by investigating the reachability cri-
teria and ensuring that the framework is sound, provided that the design
obeys the specified constraints, while the scalability issue is dealt with
in full. To conclude, cooperation is achievable by the proposed frame-
work provided that the task coverage criteria are met by the robots and
the design follows the soundness constraints specified in [9].

REFERENCES

[1] J. Haddad and S. Haddad, “Self-stabilizing scheduling algorithm for
cooperating robots,” in Proc. ACS/IEEE Int. Conf. Comput. Syst. Appl.,
2003, pp. 128–135.

[2] T. Arai, E. Pagello, and L. Parker, “Editorial: Advances in multi-robot
systems,” IEEE Trans. Robot. Autom., vol. 18, no. 5, pp. 655–661, Oct.
2002.

[3] T. Balch and L. Parker, Robot Teams: From Diversity to Polymor-
phism. Natick, MA: A. K. Peters, Ltd., 2002.

[4] W. van der Aalst, V. Hee, and G. Houben, “Modelling and analysing
workflow using a Petri-net based approach,” in Proc. 2nd Workflow
on Comput. Support Cooperative Work, Petri Nets and Related For-
malisms, Jun. 1994, pp. 31–50.

[5] W. van der Aals, “Verification of workflow nets,” in Proc. 18th Int.
Conf. Appl. Theory of Petri Nets, 1997, pp. 407–426.

[6] W. van der Aals, “The application of Petri nets to work-flow manage-
ment,” J. Circuits Syst. Comput., vol. 8, no. 1, pp. 21–66, 1998.

[7] W. van der Aals, “Interorganizational workflows: An approach based
on message sequence charts and Petri nets,” Syst. Sci., vol. 34, no. 3,
pp. 335–367, 1999.

[8] W. Tan, Y. Fan, M. Zhou, and Z. Tian, “Data-driven service composi-
tion in enterprise SOA solutions: A Petri net approach,” IEEE Trans.
Autom. Sci. Eng., vol. 7, no. 3, pp. 686–694, Jul. 2010.

[9] Y. Kotb, S. Beauchemin, and J. Barron, Work-flow nets for multi-agent
cooperation: Theory and simulation Dept. Comput. Sci., Univ. Western
Ontario, London, ON, Canada, Tech. Rep. TR-742, 2011.

[10] A. Borkowski, M. Gnatowski, and J. Malec, “Mobile robot cooperation
in simple environments,” in Proc. 2nd Int. Workshop on Robot Motion
and Control, Oct. 2001, pp. 109–114.

[11] K. Barkaoui and R. B. Ayed, “Uniform verification of workflow sound-
ness,” Trans. Inst. Meas. Control, vol. 33, no. 1, pp. 133–148, 2011.

[12] W. Tian, Y. Fan, and M. Zhou, “A Petri net-based method for com-
patibility analysis and composition of web services in business process
execution language,” IEEE Trans. Autom. Sci. Eng., vol. 6, no. 1, pp.
94–106, Jan. 2009.

[13] E. Kindler, A. Martens, and W. Reisig, “Inter-operability of work-
flow applications: Local criteria for global soundness,” Lecture Notes
in Computer Science, Business Process Management, vol. 1806, pp.
235–253, 2000.

[14] W. van der Aalst, M. Weske, and G. Wirtz, “Advanced topics in
work-flow management: Issues, requirements and solutions,” J. Integr.
Design and Process Science, vol. 7, no. 3, pp. 49–77, 2003.

[15] Y. Kotb and E. Baderdin, “Synchronization among activities in a
work-flow using extended work-flow Petri nets,” in Proc. 7th IEEE
Int. Conf. E-Commerce Technol., 2005, pp. 548–551.

[16] M. Purvis, M. Purvis, and S. Lemalu, “An adaptive distributed
work-flow system framework,” in Proc. 7th Asia-Pacific Software Eng.
Conf., Los Alamitos, CA, 2000, pp. 311–318.

