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Abstract

A fundamental problem in processing sequences of
images is the computation of optic flow, an approx-
imation of the motion field which is the projection
of velocities of 3-d surface points onto the imaging
plane of a visual sensor. A wide variety of algo-
rithms for computing optical flow has been reported
in the literature. However, it is not until recently
that multiple motion paradigms were seriously stud-
ied. Such approaches are necessary to encompass 2-
d image events such as occlusion and translucency
which violate the classical single motion hypothesis.
While current approaches to this problem constitute
valuable contributions, they often lack the ability to
determine the nature of the image events giving rise
to multiple motions: Occlusion may not be differen-
tiated from translucency and it remains difficult to
explicitly identify the motions associated with both
the occluding and occluded surfaces. We demon-
strate, under a set of reasonable assumptions, that
such distinctions can be made through a Fourier
analysis of these image events. We also show that
translucency may be handled as a special case of
occlusion.

1 Introduction

Many phenomena can cause multiple image motions
[20]. Among them, occlusion and translucency are
important in terms of their occurrence and signifi-
cance in realistic imagery. In addition, their infor-
mation content is useful to later stages of processing
[9] such as motion segmentation [1] and 3-d surface
reconstruction [21]. Occlusion boundaries are de-
scribed by the partial occlusion of a surface by an-
other, while translucency is defined as occlusion of
a surface by translucent material. In realistic im-
agery, one finds occlusion to be the most frequent
cause of discontinuous motion.

Recently, a number of algorithms have been de-
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signed to handle multiple motions [4]: Schunck’s
constraint-line clustering algorithm [19] uses clus-
ter analysis to determine the dominant motion of
a given image region. Black and Anandan [7] use
robust estimators for the same purpose. How-
ever, approaches focusing on dominant motion do
not explicitly form a multiple motion model as
they only provide single estimates where many mo-
tions may prevail. Alternatively, a number of
authors have studied inhibitory smoothness con-
straints [2, 15, 16, 17] which relax smoothness re-
quirements at image regions exhibiting high spa-
tial gradients. Nonetheless, intensity discontinu-
ities may not necessarily represent motion discon-
tinuities. Other approaches consist of refining the
boundaries of closed curves delimiting regions ex-
hibiting coherent motion [18]. Again, such schemes
are limited by an explicit single motion model.

Schemes for estimating optical flow at regions of
partial translucency have also appeared: Bergen et
al. [6] use a multiple motion model which itera-
tively refines sequences of difference images, each
one containing a single motion. In the case of spa-
tiotemporal frequency models, such as Fleet’s [9],
translucency could be handled with an appropriate
constraint-integration algorithm. Schemes capable
of handling both occlusion and translucency have
also been published: Irani et al. [12] use a sequen-
tial tracking and registration algorithm to indepen-
dently compute the velocity of possibly translucent
objects undergoing different motions. Multilayer
and superposition models also provide paradigms
for the estimation of multiple motions. Shizawa and
Mase [20] propose a computational framework to
perform multiple motion analysis by formulating a
superposition model from which constraints inher-
ent to multiple motions can be derived. Wang and
Adelson [22] use a clustering algorithm to group ve-
locities into layers, each consistent with an affine
model of motion. Darrell and Pentland’s algorithm
[8] perform analysis of multiple motions by comput-



ing a minimal set of layers, each describing a coher-
ent motion from the scene, which yield a complete
description of motion when superposed. Jepson and
Black [13] propose mixture models to segment mul-
tiple motions with the use of an EM algorithm.

While these approaches constitute important con-
tributions, they often lack the ability to determine
the nature of the image events giving rise to mul-
tiple motions: Occlusion may not be differentiated
from translucency and it is difficult to identify the
motions of both the occluding and occluded sur-
faces. In this paper, we demonstrate, under a set, of
reasonable assumptions, that such distinctions can
be made through a Fourier analysis of these image
events and that translucency may be handled as a
special case of occlusion.

2 Multiple Motions

Given an arbitrary environment and a moving visual
sensor, the motion field generated onto the imag-
ing plane by a 3-d scene within the visual field is
represented as a function of the motion parameters
of the visual sensor, usually expressed as instanta-
neous 3-d translation T = (T, Ty, T;) and rotation
Q=(Q,,9,,0,):
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where xT = (z,y) is the perspective projection of a
point P = (X,Y, Z) in the visual field. Assuming
that the motion of the visual sensor is continuous
(that is to say: €2 and T are differentiable with
respect to time), discontinuities in image motion
are then introduced in (1) when the depth function
Z(x) is other than single-valued and differentiable.
The occurrence of occlusion causes the depth func-
tion to exhibit a discontinuity, whereas translucency
leads to a multiple-valued depth function. Our mo-
tivation for studying these phenomena in the fre-
quency domain arises from a number of observa-
tions:

e The structure of the frequency distortion gen-
erated by occlusion in the frequency domain is
unknown [9] and needs to be investigated!;

e Frequency-based optical flow methods possess
the advantage of providing several constraints

INon-Fourier motions have been studied by Fleet and
Langley [10].

for image regions of interest, thus allowing the
detection of multiple motions, given adequate
constraint-grouping methods [9, 13];

e High accuracy in the estimation of image mo-
tion may be obtained with phase-based filtering
methods operating in the frequency domain [3];

e The study of phenomena such as occlusion and
translucency is simplified in the frequency do-
main.

In addition, the hypotheses posed towards study-
ing occlusion and translucency are that velocities
are locally constant and individual signals satisfy
Dirichlet conditions.

2.1 Occlusion in the Frequency Do-
main

The Fourier transform of the optical flow constraint
equation is

FIVIxH)'v+1L] =ilk,w)dk’v+w), (2)
where ¢ is the imaginary number, i(k7 w) is the
Fourier transform of I(x, ) and §(k” v+w) is a Dirac
delta function. Expression (2) yields kIv +w = 0
as a constraint on velocity. Similarly, the Fourier
transform of a translating intensity profile I(x,?) is
obtained with the shift property as:

// (x — vit)e —i(kTxtwt) g gy

I(k)o(kTv +w), (3)

Ikw) =

which also yields the constraint k” v+w = 0. Hence,
(2) and (3) demonstrate that the frequency analy-
sis of image motion is in accordance with the mo-
tion constraint equation [9]. It is also observed that
k”v+w = 0 represents, in the frequency domain, an
oriented plane passing through the origin, with nor-
mal vector v representing full velocity, onto which
the Fourier spectrum of I(x) lies?.

Following Fleet [9], the discontinuities in optical
flow arising from occlusion may be written by con-
sidering two translating intensity profiles, one par-
tially occluding the other. Let I;(x) and I5(x) be

2The aperture problem arises when the Fourier spectrum
of I(x) is concentrated on a line rather than on a plane [9, 14].
Spatiotemporally, this depicts the situation in which I(x) ex-
hibits a single orientation. In this case, one may only obtain
the speed and direction of motion normal to the orienta-
tion, noted as v . If many normal velocities are found in
a single neighbourhood, their respective lines fit the plane
k”v 4+ w = 0 from which full velocity may be obtained.



the intensity profiles of an object and a background
scene. An object indicator function such as

[ 1 ifIi(x)#0
Ulx) = { 0 otherwise
may be defined to specify the actual location of the
object on the image plane. The resulting intensity
pattern is then written as a function of the intensity
profiles of the object, the background and the object
indicator:

I(x,t) = ILi(x—vit)
+ [1-Ux—wvit)]Ia(x — vat). (4)

By using the shift property of Fourier transforms,
(4) is rewritten in spatiotemporal frequency space
as:

I(k,w) =

« [I(k)d(w + vT )} . (5)

The first two terms of (5) are the signals associated
with the object and the background. The frequency
spectra of I; and I, are located on the planes defined
by the equations kT v; + w = 0 and k'vy +w =0
respectively. In addition, the respective orientations
of these planes fully determine vy and vy. The last
term of (5) describes the distortion created by the
occlusion boundary. In the following sections, this
form of distortion is analized and its usefulness in
determining the image events giving rise to multiple
motions is shown.

3 Frequency Analysis of Oc-
clusion

The analysis begins with the consideration of a sim-
ple case consisting of two 1-d sinusoidal intensity
profiles. The results are then generalized to arbi-
trary 1-d and 2-d intensity profiles.

3.1 One Dimensional Sinusoidal Sig-
nals

The case in which two 1-d sinusoidals play the role
of the object and the background is first consid-
ered. Let I(z,t) be a 1-d intensity function I, (z)
translating with velocity vi: I(z,t) = Ii(x — v1t).

Its Fourier transform is I(k,w) = I;(k)6(kvy + w).
Let I;(z) be occluding another 1-d intensity pat-
tern Iy(x) moving with velocity vo. The resulting
intensity profile can then be expressed as:
I(z,t) = u(x—vt)li(z — v1t)

+ (I —u(z —wnt)l(z—wvst), (6)
where u(z) is Heaviside’s function representing the
occluding point:

(z) = 1 ifz>0
W= 0 otherwise.

The Fourier transform of the intensity profile (6) is:
(k)8(kvy + w)] * [T; (k)0 (kvy + w)]

(k)d(kvy + w)] * [T (k)d(kvs + w)]

(k)6 (kvs + w), (7)

I(k,w) = [0
— [d
+ I

where (k) is the Fourier transform of Heaviside’s

function u(z), written as (k) = wé(k) + (ik)~'.

Proposition 1 Let I;(x) and Io(z) be cosine func-
tions with respective angular frequencies ki = 27 f;
and ky = 27 fy and let I (x—v1t) = aq cos(kiz—wt)
and Iy(x — vat) = ay cos(kax — vat). Then the fre-
quency spectrum of the occlusion obtained by substi-
tuting I (z) and Is(z) into (6) is:

Tay

I(k,w) = 5Ok £ k1w F kavn)
1— .
+ %5(1{}:‘:]{}27&}:':]{721)2)
i (a20(kvi + w £ ko Av)
+ —
2 (k£ k)
a1 (kv + w)
(k£ k1) ®)

A number of conclusions can be drawn from propo-
sition 1: Since the signals are cosines, all their power
content is real. In addition, the power content of the
distortion term is entirely imaginary, and form lines
of decreasing power about the frequencies of both
the occluding and occluded signals. Their orienta-
tion is proportional to the velocity of the occluding
signal, as —w; is the slope of the constraint lines.

3.2 One Dimensional Arbitrary Sig-
nals

In general, the occluding and occluded signals can-
not be represented as sinusoidal functions. To gain
generality, I;(z) and I,(xz) may be expanded as a
series of complex exponentials, assuming that func-
tions Iy (z) and I,(z) satisfy Dirichlet conditions
[11].



Proposition 2 Let I;(z) and Io(z) be functions
satisfying Dirichlet conditions such that they may be
expressed as complex exponential series expansions:

oo
E Clnemklz

Il (ZE) ==
12 (’I‘) = Z C2neinkzz (9)

where n is integer, c1, and copn are complex coeffi-
cients and ki and ko are fundamental frequencies of
the signals. Then the frequency spectrum of the oc-
clusion obtained by substituting the frequency spec-

tra of (9) into (6) is:

i(k,w) = Z c1nd(k — nky,w + nkjvy)
+ (1 —71') Z 02n6(k—nk27w+nk2v2)
o~ cond (kv + w — nkoAv)
" ZEL( (k= nka)
c1nd (kv + w)
_ anolFn T W) 1
(k — k1) (10

Proposition 2 is an important generalization of
the first one: Any signal which represents a physi-
cal quantity satisfies Dirichlet conditions and there-
fore may be expressed as an expansion of complex
exponentials. Since ¢1, and ¢y, are complex coef-
ficients, the power contents of the signals are both
real and imaginary. However, the distortion terms
are entirely imaginary.

3.3 Two Dimensional Arbitrary Sig-
nals

Imagery is the result of the projection of light re-
flected by environmental features onto the imaging
plane of the visual sensor. Hence, such signals are
inherently two dimensional. Towards a generaliza-
tion of (10), (9) is expanded as series of 2-d complex
exponentials.

Proposition 3 Let I;(x) and I,(x) be 2-d func-
tions satisfying Dirichlet conditions such that they
may be expressed as complex exponential series ex-
pansions:

(00,50)
Li(x) = Z clneilex
n=—(c0,00)
(00,50)
Lx) = Y cme™®X, (11)

n=—(00,00)

where n = (ng,n,) are integers, x = (x,y) are
spatial coordinates, ki = (ngky1,nyky1) and ko =
(ngky2, nyky2) are spatial frequencies and cin and
con are complex coefficients. Also let the occluding
boundary be locally represented by:

1 ifxTiE>0
Ux) = { 0 otherwise

where 1] is a wvector normal to the instantaneous
slope of the occluding boundary at x. Then the fre-
quency spectrum of the occlusion obtained by substi-
tuting the frequency spectra of (11) and (12) into a
2-d version of (6) is:

(12)

I(k,w) =
(00,00)
T Z cind(k — ki, w+ kipvl)
n=—(00,00)
(00,00)
+ (1=m) > cond(k — ko, w+Kkj vy)

n=—(00,00)

4 (Oio) cand(kTvy +w — kI'Av)
’ (k k)77

n=—(00,00)

B c1nd(k" vy + w)) (13)
CELTAA

where v = (uy,v1), vi = (uz,v2) and Av = v; —

Vo.

Proposition 3 is a direct extension of proposition
2 in two spatial dimensions. For this general case,
the constraint lines of propositions 1 and 2 gener-
ated by both the occluding and occluded signals and
the distortion terms become constraint planes. The
frequency structures of individual signals are pre-
served to within scaling factors and the distortion
terms are contained in the imaginary part of the

Fourier spectrum?.

3.4 Relation to Translucency

Transmission of light through translucent material
may cause multiple motions to arise in the same
image region. Generally, this effect is depicted on
the image plane as

I(x,t) = f(p1)(x — vit)I(x — vat), (14)

where f(p1) is a function of the density of the
translucent material [9]. Under the local assump-
tion of spatially constant f(p1), with translucency

3For details concerning the proofs of these propositions,
the interested reader is referred to [5].



factor ¢, (14) is reformulated as a weighted super-
position of intensity profiles, written as

I(x,t) = I (x — vit) + (1 — @)Ia(x — vat), (15)

where I; (x,t) is the intensity profile of the translu-
cent material and I»(x,t) is the intensity profile of
the background. With I (x) and I»(x) satisfying
Dirichlet conditions, the frequency spectrum of (15)
is written as:

I(k,w) =
(00,00)
® Z cind(k — ki, w+kivy)
n=—(00,00)
(00,00)
+ (1—-y¢) Z cond(k — ko, w + kgVQ).
n=—(0,00)

(16)

With the exception of the imaginary distortion
term, and to within scaling factors, (16) is iden-
tical to (13). Hence, with respect to its frequency
structure, translucency may be reduced to a special
case of occlusion for which the imaginary distortion
terms vanish.

3.5 Geometric Interpretation

In the simplest case involving sinusoidal signals,
(8) shows that the frequency spectra of the pro-
files I () and Iy(z) are preserved to within scaling
factors under occlusion. In addition, the imaginary
term of (8) represents the distortion created by the
occluding boundary. Figure la shows a Gaussian-
smoothed, continuous frequency spectrum of (8) for
an occluding 1-d cosine function with spatial fre-

quency k; = % and velocity v; = 1. The occluded
cosine function has spatial frequency ks = %’T and
velocity vo = —1. The horizontal axis represents

spatial frequency while the vertical axis is temporal
frequency. The peaks located at +(ki, —kiv1) and
+(ko, —kovs) depict the spatiotemporal frequencies
of the signals and fit the constraint lines kv; +w =0
and kvy + w = 0. The oblique spectra inter-
secting the peaks represent the distortion due to
the occlusion boundary and fit the constraint lines
kv +w £ kove = 0 and kvy +w = 0. Geometrically,
these lines are parallel to the constraint line of the
occluding signal.

Figure 1b shows the frequency spectrum for the
case of an occluded signal exhibiting many spatial
frequencies. The structure of the spectrum is a gen-
eralization of the simplest case: For every frequency
nky and nk,, an oblique spectrum originating from

the occlusion boundary intersects (ka, —nkovs) and
(k1 — nkyv1). These spectra fit the constraint lines
kv, + w — nksAv = 0 and kv, + w = 0 associ-
ated with both signals. The occluding 1-d sinu-
soidal has spatial frequency k; = % and veloc-
ity v1 = 1, while the occluded signal has spatial
frequencies nky = 27(g),n = 1,2,3 and velocity
v9 = —1. This continuous spectrum was generated
with a Gaussian-smoothed version of (10).

The 2-d generalization (13) of (10) is also sim-
ilar in terms of its geometric interpretation: The
constraint lines kv + w = 0, kve + w = 0 and
kvi +w—nkeAv = 0 from (10), in which the Fourier
spectra of both the occluding and occluded signals
fit, become constraint planes in (13). The sets
of discrete frequency locations {(ki, —k7vi)} and
{(ks, —k2vs)} respectively fit the planes k”v; +
w=0and kTv, + w = 0. In the imaginary distor-
tion term, the Dirac § functions §(k” v, +w—kJ Av)
and 6(k”v; + w) represent a set of planes paral-
lel to the constraint plane of the occluding signal
kv, + w = 0. That is to say, for every dis-
crete frequency k; and ks exhibited by both sig-
nals, a frequency spectrum fitting the planes given
by kTvi+w—kI'Av = 0 and kv, +w = 0 is found.
The magnitudes of these planar Fourier spectra
are determined by their corresponding scaling func-
tions con[(k — k2)777 7! and cinf(k — ki)77 ]
Hence, (13) provides a number of useful constraint
planes: The power spectra of both signals peak
within planes kTvi + w = 0 and kTvo +w = 0
and the constraint planes arising from the distor-
tion are parallel to the spectrum of the occluding
signal I, (x,t).

4 Numerical Experiments

Several experiments were performed in order to ver-
ify the accuracy of the propositions. The Fourier
spectra obtained with both a standard FFT algo-
rithm and those predicted by the theory were com-
pared. In addition, the effects of various levels of
zero-mean Gaussian noise on these spectra were vi-
sually examined.

4.1 Verification

In order to verify the propositions against numeri-

cal experiments, two 1-d sinusoidals which respec-

tively act as occluding and occluded surfaces were

used. Expression (6) is used with I (z — vit) =

ay cos(k1x—wt) and Iy (z —wvat) = ay cos(kax —vat),

where I; and I, are the occluding and occluded
2m

surfaces with respective frequencies k1 = 75 and



Figure 1: a) (left): Gaussian-smoothed frequency spectrum produced with (8). The occluding signal has

frequency ki = % and velocity vi = 1, while the occluded signal has frequency ks = 2% and velocity vy = —1.

b) (right): Gaussian=smoothed frequency spectrum produced with (10). The occluding signal has frequency

ki = % and velocity vi = 1. The occluded signal is composed of frequencies nky = 27 (%) ,n=12,3 and
velocity vo = —1.
ky = %’T and velocities vy = 1 and vy, = —1. 2c for the same frequencies and velocities as in Fig-

Constants a; and ay correspond to signal ampli-
tudes. To limit boundary conditions when numeri-
cally computing fast Fourier transforms, the image
was windowed with a Gaussian envelope. The re-
sult, shown in Figure 2a, is analytically expressed
as

I(z,t)G(z,t;0), (17)
where
I(z,t) = wu(z—vit)a; cos(kiz — v1t)
+ (1 —u(z —vit))as cos(kex — vat)
and

G(z,t;0) =

2,.2
=ty
1 < 202 )
5 € .

mo?
A standard deviation of 40 is used for the windowing
of the signal. The discrete Fourier transform of (17)
obtained with a standard FFT algorithm is shown
in Figure 2b, where the peaks associated with both
sinusoidals and the distortion lines are clearly visi-
ble. Analytically, the continuous Fourier transform
of (17) is

I(k,w) x Gk, w;0), (18)
where I(k,w) is proposition 1 and G(k,w;o) =

12 2 2 . . . .
e~27 (F+<%) " Expression (18) is shown in Figure

ure 2b: The spectra obtained with both a standard
FFT algorithm and the theoretical results are es-
sentially identical®.

4.2 Gaussian Noise

It is important to determine the extent of disrup-
tion noise may cause to the frequency structure of
occlusion phenomena. Towards this end, the signal
of Figure 2a was corrupted with various levels of
zero-mean Gaussian noise exhibiting standard devi-
ations of 12, 25 and 40°. Figures 3a, b, and c illus-
trate the resulting fast Fourier transforms, obtained
with a standard FFT algorithm for each one of these
noise levels. Although the frequency structure re-
mains visible for all noise levels, one may observe a
progressive deterioration of the original signal.

4Note the aliasing effect in the upper-left and lower-right
corner of Figure 2b which are not found in Figure 2c.

5These standard deviations are expressed with respect to
grayvalues. They approximately correspond to 5, 10 and 15
percent of signal amplitude.



Figure 2: a) (left): Gaussian-windowed signal with sinusoidals acting as occluding and occluded surfaces.

27

Occluding signal: Frequency ki = I5

and velocity v1 = 1. Occluded signal: Frequency ko = %’r and velocity

vy = —1. b) (middle): Fourier spectrum generated with a standard FFT algorithm. b) (right): Fourier

spectrum predicted by theory.

5 Summary

Under a set of reasonable hypotheses, such as lo-
cally constant velocity and intensity profiles satis-
fying Dirichlet conditions, the structure of occlu-
sion in the frequency domain was determined and
its relation to translucency was shown. Several ad-
vantages are brought by the frequency analysis of
occlusion:

e The knowledge of the frequency structure of
the distortion arising from occlusion allows an
eventual detection mechanism to locally deter-
mine the causes of multiple motions: The pres-
ence of the distortion indicates an occlusion
while its absence signifies translucency;

e The geometric parallelism between the struc-
ture of the distortion and the frequency spec-
trum of the occluding intensity profile allow
us to locally differentiate the occluding sur-
face from the occluded, without the need of
any knowledge concerning the structure of the
scene;

e This analysis forms a basis for an adequate
constraint-grouping algorithm capable of dis-
tinguishing occlusion from translucency and
identifying occluding and occluded surfaces. In
addition, a further reduction in signal-to-noise
ratios is likely to result from including distor-
tion in models of multiple motions.

Future research in this area includes the construc-
tion of models of multiple motions which account for
the structure of image events such as occlusion and
translucency. In particular, one may reformulate
multilayer and mixture models [9, 13], in order to
obtain crucial information concerning image events
leading to multiple motions.
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