
The Structure of Occlusion in Fourier SpaceS. S. BeaucheminDept. of Computer ScienceThe University of Western OntarioLondon, Canada N6A 5B7e-mail: beau@csd.uwo.ca J. L. BarronDept. of Computer ScienceThe University of Western OntarioLondon, Canada N6A 5B7e-mail: barron@csd.uwo.caAbstractA fundamental problem in processing sequences ofimages is the computation of optic ow, an approx-imation of the motion �eld which is the projectionof velocities of 3-d surface points onto the imagingplane of a visual sensor. A wide variety of algo-rithms for computing optical ow has been reportedin the literature. However, it is not until recentlythat multiple motion paradigms were seriously stud-ied. Such approaches are necessary to encompass 2-d image events such as occlusion and translucencywhich violate the classical single motion hypothesis.While current approaches to this problem constitutevaluable contributions, they often lack the ability todetermine the nature of the image events giving riseto multiple motions: Occlusion may not be di�eren-tiated from translucency and it remains di�cult toexplicitly identify the motions associated with boththe occluding and occluded surfaces. We demon-strate, under a set of reasonable assumptions, thatsuch distinctions can be made through a Fourieranalysis of these image events. We also show thattranslucency may be handled as a special case ofocclusion.1 IntroductionMany phenomena can cause multiple image motions[20]. Among them, occlusion and translucency areimportant in terms of their occurrence and signi�-cance in realistic imagery. In addition, their infor-mation content is useful to later stages of processing[9] such as motion segmentation [1] and 3-d surfacereconstruction [21]. Occlusion boundaries are de-scribed by the partial occlusion of a surface by an-other, while translucency is de�ned as occlusion ofa surface by translucent material. In realistic im-agery, one �nds occlusion to be the most frequentcause of discontinuous motion.Recently, a number of algorithms have been de-

signed to handle multiple motions [4]: Schunck'sconstraint-line clustering algorithm [19] uses clus-ter analysis to determine the dominant motion ofa given image region. Black and Anandan [7] userobust estimators for the same purpose. How-ever, approaches focusing on dominant motion donot explicitly form a multiple motion model asthey only provide single estimates where many mo-tions may prevail. Alternatively, a number ofauthors have studied inhibitory smoothness con-straints [2, 15, 16, 17] which relax smoothness re-quirements at image regions exhibiting high spa-tial gradients. Nonetheless, intensity discontinu-ities may not necessarily represent motion discon-tinuities. Other approaches consist of re�ning theboundaries of closed curves delimiting regions ex-hibiting coherent motion [18]. Again, such schemesare limited by an explicit single motion model.Schemes for estimating optical ow at regions ofpartial translucency have also appeared: Bergen etal. [6] use a multiple motion model which itera-tively re�nes sequences of di�erence images, eachone containing a single motion. In the case of spa-tiotemporal frequency models, such as Fleet's [9],translucency could be handled with an appropriateconstraint-integration algorithm. Schemes capableof handling both occlusion and translucency havealso been published: Irani et al. [12] use a sequen-tial tracking and registration algorithm to indepen-dently compute the velocity of possibly translucentobjects undergoing di�erent motions. Multilayerand superposition models also provide paradigmsfor the estimation of multiple motions. Shizawa andMase [20] propose a computational framework toperform multiple motion analysis by formulating asuperposition model from which constraints inher-ent to multiple motions can be derived. Wang andAdelson [22] use a clustering algorithm to group ve-locities into layers, each consistent with an a�nemodel of motion. Darrell and Pentland's algorithm[8] perform analysis of multiple motions by comput-1



ing a minimal set of layers, each describing a coher-ent motion from the scene, which yield a completedescription of motion when superposed. Jepson andBlack [13] propose mixture models to segment mul-tiple motions with the use of an EM algorithm.While these approaches constitute important con-tributions, they often lack the ability to determinethe nature of the image events giving rise to mul-tiple motions: Occlusion may not be di�erentiatedfrom translucency and it is di�cult to identify themotions of both the occluding and occluded sur-faces. In this paper, we demonstrate, under a set ofreasonable assumptions, that such distinctions canbe made through a Fourier analysis of these imageevents and that translucency may be handled as aspecial case of occlusion.2 Multiple MotionsGiven an arbitrary environment and a moving visualsensor, the motion �eld generated onto the imag-ing plane by a 3-d scene within the visual �eld isrepresented as a function of the motion parametersof the visual sensor, usually expressed as instanta-neous 3-d translation T = (Tx; Ty; Tz) and rotation
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z � ; (1)where xT = (x; y) is the perspective projection of apoint P = (X;Y; Z) in the visual �eld. Assumingthat the motion of the visual sensor is continuous(that is to say: 
 and T are di�erentiable withrespect to time), discontinuities in image motionare then introduced in (1) when the depth functionZ(x) is other than single-valued and di�erentiable.The occurrence of occlusion causes the depth func-tion to exhibit a discontinuity, whereas translucencyleads to a multiple-valued depth function. Our mo-tivation for studying these phenomena in the fre-quency domain arises from a number of observa-tions:� The structure of the frequency distortion gen-erated by occlusion in the frequency domain isunknown [9] and needs to be investigated1;� Frequency-based optical ow methods possessthe advantage of providing several constraints1Non-Fourier motions have been studied by Fleet andLangley [10].

for image regions of interest, thus allowing thedetection of multiple motions, given adequateconstraint-grouping methods [9, 13];� High accuracy in the estimation of image mo-tion may be obtained with phase-based �lteringmethods operating in the frequency domain [3];� The study of phenomena such as occlusion andtranslucency is simpli�ed in the frequency do-main.In addition, the hypotheses posed towards study-ing occlusion and translucency are that velocitiesare locally constant and individual signals satisfyDirichlet conditions.2.1 Occlusion in the Frequency Do-mainThe Fourier transform of the optical ow constraintequation isF �rI(x; t)Tv + It� = iÎ(k; !)�(kTv + !); (2)where i is the imaginary number, Î(k; !) is theFourier transform of I(x; t) and �(kTv+!) is a Diracdelta function. Expression (2) yields kTv + ! = 0as a constraint on velocity. Similarly, the Fouriertransform of a translating intensity pro�le I(x; t) isobtained with the shift property as:Î(k; !) = Z Z I(x� vt)e�i(kTx+!t)dxdt= Î(k)�(kTv + !); (3)which also yields the constraint kTv+! = 0. Hence,(2) and (3) demonstrate that the frequency analy-sis of image motion is in accordance with the mo-tion constraint equation [9]. It is also observed thatkTv+! = 0 represents, in the frequency domain, anoriented plane passing through the origin, with nor-mal vector v representing full velocity, onto whichthe Fourier spectrum of I(x) lies2.Following Fleet [9], the discontinuities in opticalow arising from occlusion may be written by con-sidering two translating intensity pro�les, one par-tially occluding the other. Let I1(x) and I2(x) be2The aperture problem arises when the Fourier spectrumof I(x) is concentrated on a line rather than on a plane [9, 14].Spatiotemporally, this depicts the situation in which I(x) ex-hibits a single orientation. In this case, one may only obtainthe speed and direction of motion normal to the orienta-tion, noted as v?. If many normal velocities are found ina single neighbourhood, their respective lines �t the planekTv + ! = 0 from which full velocity may be obtained.



the intensity pro�les of an object and a backgroundscene. An object indicator function such asU(x) = � 1 if I1(x) 6= 00 otherwisemay be de�ned to specify the actual location of theobject on the image plane. The resulting intensitypattern is then written as a function of the intensitypro�les of the object, the background and the objectindicator:I(x; t) = I1(x� v1t)+ [1�U(x � v1t)] I2(x� v2t): (4)By using the shift property of Fourier transforms,(4) is rewritten in spatiotemporal frequency spaceas: Î(k; !) =Î1(k)�(! + vT1 k)+ Î2(k)�(! + vT2 k)� hÛ(k)�(! + vT1 k)i� hÎ2(k)�(! + vT2 k)i : (5)The �rst two terms of (5) are the signals associatedwith the object and the background. The frequencyspectra of I1 and I2 are located on the planes de�nedby the equations kTv1 + ! = 0 and kTv2 + ! = 0respectively. In addition, the respective orientationsof these planes fully determine v1 and v2. The lastterm of (5) describes the distortion created by theocclusion boundary. In the following sections, thisform of distortion is analized and its usefulness indetermining the image events giving rise to multiplemotions is shown.3 Frequency Analysis of Oc-clusionThe analysis begins with the consideration of a sim-ple case consisting of two 1-d sinusoidal intensitypro�les. The results are then generalized to arbi-trary 1-d and 2-d intensity pro�les.3.1 One Dimensional Sinusoidal Sig-nalsThe case in which two 1-d sinusoidals play the roleof the object and the background is �rst consid-ered. Let I(x; t) be a 1-d intensity function I1(x)translating with velocity v1: I(x; t) = I1(x � v1t).

Its Fourier transform is Î(k; !) = Î1(k)�(kv1 + !).Let I1(x) be occluding another 1-d intensity pat-tern I2(x) moving with velocity v2. The resultingintensity pro�le can then be expressed as:I(x; t) = u(x� v1t)I1(x� v1t)+ (1� u(x � v1t))I2(x� v2t); (6)where u(x) is Heaviside's function representing theoccluding point:u(x) = � 1 if x � 00 otherwise.The Fourier transform of the intensity pro�le (6) is:Î(k; !) = [û(k)�(kv1 + !)] � [Î1(k)�(kv1 + !)]� [û(k)�(kv1 + !)] � [Î2(k)�(kv2 + !)]+ Î2(k)�(kv2 + !); (7)where û(k) is the Fourier transform of Heaviside'sfunction u(x), written as û(k) = ��(k) + (ik)�1.Proposition 1 Let I1(x) and I2(x) be cosine func-tions with respective angular frequencies k1 = 2�f1and k2 = 2�f2 and let I1(x�v1t) = a1 cos(k1x�v1t)and I2(x � v2t) = a2 cos(k2x � v2t). Then the fre-quency spectrum of the occlusion obtained by substi-tuting I1(x) and I2(x) into (6) is:Î(k; !) = �a12 �(k � k1; ! � k1v1)+ (1� �)a22 �(k � k2; ! � k2v2)+ i2 �a2�(kv1 + ! � k2�v)(k � k2)� a1�(kv1 + !)(k � k1) � : (8)A number of conclusions can be drawn from propo-sition 1: Since the signals are cosines, all their powercontent is real. In addition, the power content of thedistortion term is entirely imaginary, and form linesof decreasing power about the frequencies of boththe occluding and occluded signals. Their orienta-tion is proportional to the velocity of the occludingsignal, as �v1 is the slope of the constraint lines.3.2 One Dimensional Arbitrary Sig-nalsIn general, the occluding and occluded signals can-not be represented as sinusoidal functions. To gaingenerality, I1(x) and I2(x) may be expanded as aseries of complex exponentials, assuming that func-tions I1(x) and I2(x) satisfy Dirichlet conditions[11].



Proposition 2 Let I1(x) and I2(x) be functionssatisfying Dirichlet conditions such that they may beexpressed as complex exponential series expansions:I1(x) = 1Xn=�1 c1neink1xI2(x) = 1Xn=�1 c2neink2x (9)where n is integer, c1n and c2n are complex coe�-cients and k1 and k2 are fundamental frequencies ofthe signals. Then the frequency spectrum of the oc-clusion obtained by substituting the frequency spec-tra of (9) into (6) is:Î(k; !) = � 1Xn=�1 c1n�(k � nk1; ! + nk1v1)+ (1� �) 1Xn=�1 c2n�(k � nk2; ! + nk2v2)+ i 1Xn=�1�c2n�(kv1 + ! � nk2�v)(k � nk2)� c1n�(kv1 + !)(k � nk1) � : (10)Proposition 2 is an important generalization ofthe �rst one: Any signal which represents a physi-cal quantity satis�es Dirichlet conditions and there-fore may be expressed as an expansion of complexexponentials. Since c1n and c2n are complex coef-�cients, the power contents of the signals are bothreal and imaginary. However, the distortion termsare entirely imaginary.3.3 Two Dimensional Arbitrary Sig-nalsImagery is the result of the projection of light re-ected by environmental features onto the imagingplane of the visual sensor. Hence, such signals areinherently two dimensional. Towards a generaliza-tion of (10), (9) is expanded as series of 2-d complexexponentials.Proposition 3 Let I1(x) and I2(x) be 2-d func-tions satisfying Dirichlet conditions such that theymay be expressed as complex exponential series ex-pansions: I1(x) = (1;1)Xn=�(1;1) c1neikT1 xI2(x) = (1;1)Xn=�(1;1) c2neikT2 x; (11)

where n = (nx; ny) are integers, x = (x; y) arespatial coordinates, k1 = (nxkx1; nyky1) and k2 =(nxkx2; nyky2) are spatial frequencies and c1n andc2n are complex coe�cients. Also let the occludingboundary be locally represented by:U(x) = � 1 if xT ~� � 00 otherwise (12)where ~� is a vector normal to the instantaneousslope of the occluding boundary at x. Then the fre-quency spectrum of the occlusion obtained by substi-tuting the frequency spectra of (11) and (12) into a2-d version of (6) is:Î(k; !) =� (1;1)Xn=�(1;1)c1n�(k� k1; ! + kT1 v1)+ (1� �) (1;1)Xn=�(1;1)c2n�(k� k2; ! + kT2 v2)+ i (1;1)Xn=�(1;1)� c2n�(kTv1 + ! � kT2�v)(k� k2)T ~�� c1n�(kTv1 + !)(k� k1)T ~� � ; (13)where vT1 = (u1; v1), vT2 = (u2; v2) and �v = v1 �v2.Proposition 3 is a direct extension of proposition2 in two spatial dimensions. For this general case,the constraint lines of propositions 1 and 2 gener-ated by both the occluding and occluded signals andthe distortion terms become constraint planes. Thefrequency structures of individual signals are pre-served to within scaling factors and the distortionterms are contained in the imaginary part of theFourier spectrum3.3.4 Relation to TranslucencyTransmission of light through translucent materialmay cause multiple motions to arise in the sameimage region. Generally, this e�ect is depicted onthe image plane asI(x; t) = f(�1)(x� v1t)I2(x� v2t); (14)where f(�1) is a function of the density of thetranslucent material [9]. Under the local assump-tion of spatially constant f(�1), with translucency3For details concerning the proofs of these propositions,the interested reader is referred to [5].



factor ', (14) is reformulated as a weighted super-position of intensity pro�les, written asI(x; t) = 'I1(x� v1t) + (1� ')I2(x� v2t); (15)where I1(x; t) is the intensity pro�le of the translu-cent material and I2(x; t) is the intensity pro�le ofthe background. With I1(x) and I2(x) satisfyingDirichlet conditions, the frequency spectrum of (15)is written as:Î(k; !) =' (1;1)Xn=�(1;1)c1n�(k� k1; ! + kT1 v1)+ (1� ') (1;1)Xn=�(1;1)c2n�(k � k2; ! + kT2 v2):(16)With the exception of the imaginary distortionterm, and to within scaling factors, (16) is iden-tical to (13). Hence, with respect to its frequencystructure, translucency may be reduced to a specialcase of occlusion for which the imaginary distortionterms vanish.3.5 Geometric InterpretationIn the simplest case involving sinusoidal signals,(8) shows that the frequency spectra of the pro-�les I1(x) and I2(x) are preserved to within scalingfactors under occlusion. In addition, the imaginaryterm of (8) represents the distortion created by theoccluding boundary. Figure 1a shows a Gaussian-smoothed, continuous frequency spectrum of (8) foran occluding 1-d cosine function with spatial fre-quency k1 = 2�16 and velocity v1 = 1. The occludedcosine function has spatial frequency k2 = 2�8 andvelocity v2 = �1. The horizontal axis representsspatial frequency while the vertical axis is temporalfrequency. The peaks located at �(k1;�k1v1) and�(k2;�k2v2) depict the spatiotemporal frequenciesof the signals and �t the constraint lines kv1+! = 0and kv2 + ! = 0. The oblique spectra inter-secting the peaks represent the distortion due tothe occlusion boundary and �t the constraint lineskv1+!� k2v2 = 0 and kv1+! = 0. Geometrically,these lines are parallel to the constraint line of theoccluding signal.Figure 1b shows the frequency spectrum for thecase of an occluded signal exhibiting many spatialfrequencies. The structure of the spectrum is a gen-eralization of the simplest case: For every frequencynk1 and nk2, an oblique spectrum originating from

the occlusion boundary intersects (k2;�nk2v2) and(k1 � nk1v1). These spectra �t the constraint lineskv1 + ! � nk2�v = 0 and kv1 + ! = 0 associ-ated with both signals. The occluding 1-d sinu-soidal has spatial frequency k1 = 2�16 and veloc-ity v1 = 1, while the occluded signal has spatialfrequencies nk2 = 2�(n8 ); n = 1; 2; 3 and velocityv2 = �1. This continuous spectrum was generatedwith a Gaussian-smoothed version of (10).The 2-d generalization (13) of (10) is also sim-ilar in terms of its geometric interpretation: Theconstraint lines kv1 + ! = 0, kv2 + ! = 0 andkv1+!�nk2�v = 0 from (10), in which the Fourierspectra of both the occluding and occluded signals�t, become constraint planes in (13). The setsof discrete frequency locations f(k1;�kT1 v1)g andf(k2;�kT2 v2)g respectively �t the planes kTv1 +! = 0 and kTv2 + ! = 0. In the imaginary distor-tion term, the Dirac � functions �(kTv1+!�kT2�v)and �(kTv1 + !) represent a set of planes paral-lel to the constraint plane of the occluding signalkTv1 + ! = 0. That is to say, for every dis-crete frequency k1 and k2 exhibited by both sig-nals, a frequency spectrum �tting the planes givenby kTv1+!�kT2�v = 0 and kTv1+! = 0 is found.The magnitudes of these planar Fourier spectraare determined by their corresponding scaling func-tions c2n[(k � k2)T ~� ]�1 and c1n[(k � k1)T ~� ]�1.Hence, (13) provides a number of useful constraintplanes: The power spectra of both signals peakwithin planes kTv1 + ! = 0 and kTv2 + ! = 0and the constraint planes arising from the distor-tion are parallel to the spectrum of the occludingsignal I1(x; t).4 Numerical ExperimentsSeveral experiments were performed in order to ver-ify the accuracy of the propositions. The Fourierspectra obtained with both a standard FFT algo-rithm and those predicted by the theory were com-pared. In addition, the e�ects of various levels ofzero-mean Gaussian noise on these spectra were vi-sually examined.4.1 Veri�cationIn order to verify the propositions against numeri-cal experiments, two 1-d sinusoidals which respec-tively act as occluding and occluded surfaces wereused. Expression (6) is used with I1(x � v1t) =a1 cos(k1x�v1t) and I2(x�v2t) = a2 cos(k2x�v2t),where I1 and I2 are the occluding and occludedsurfaces with respective frequencies k1 = 2�16 and



Figure 1: a) (left): Gaussian-smoothed frequency spectrum produced with (8). The occluding signal hasfrequency k1 = 2�16 and velocity v1 = 1, while the occluded signal has frequency k2 = 2�8 and velocity v2 = �1.b) (right): Gaussian=smoothed frequency spectrum produced with (10). The occluding signal has frequencyk1 = 2�16 and velocity v1 = 1. The occluded signal is composed of frequencies nk2 = 2� �n8 � ; n = 1; 2; 3 andvelocity v2 = �1.k2 = 2�8 and velocities v1 = 1 and v2 = �1.Constants a1 and a2 correspond to signal ampli-tudes. To limit boundary conditions when numeri-cally computing fast Fourier transforms, the imagewas windowed with a Gaussian envelope. The re-sult, shown in Figure 2a, is analytically expressedas I(x; t)G(x; t;�); (17)whereI(x; t) = u(x� v1t)a1 cos(k1x� v1t)+ (1� u(x� v1t))a2 cos(k2x� v2t)and G(x; t;�) = 12��2 e��x2+y22�2 �:A standard deviation of 40 is used for the windowingof the signal. The discrete Fourier transform of (17)obtained with a standard FFT algorithm is shownin Figure 2b, where the peaks associated with bothsinusoidals and the distortion lines are clearly visi-ble. Analytically, the continuous Fourier transformof (17) is Î(k; !) � Ĝ(k; !;�); (18)where Î(k; !) is proposition 1 and Ĝ(k; !;�) =e� 12�2(k2+!2). Expression (18) is shown in Figure

2c for the same frequencies and velocities as in Fig-ure 2b: The spectra obtained with both a standardFFT algorithm and the theoretical results are es-sentially identical4.4.2 Gaussian NoiseIt is important to determine the extent of disrup-tion noise may cause to the frequency structure ofocclusion phenomena. Towards this end, the signalof Figure 2a was corrupted with various levels ofzero-mean Gaussian noise exhibiting standard devi-ations of 12, 25 and 405. Figures 3a, b, and c illus-trate the resulting fast Fourier transforms, obtainedwith a standard FFT algorithm for each one of thesenoise levels. Although the frequency structure re-mains visible for all noise levels, one may observe aprogressive deterioration of the original signal.4Note the aliasing e�ect in the upper-left and lower-rightcorner of Figure 2b which are not found in Figure 2c.5These standard deviations are expressed with respect tograyvalues. They approximately correspond to 5, 10 and 15percent of signal amplitude.



Figure 2: a) (left): Gaussian-windowed signal with sinusoidals acting as occluding and occluded surfaces.Occluding signal: Frequency k1 = 2�16 and velocity v1 = 1. Occluded signal: Frequency k2 = 2�8 and velocityv2 = �1. b) (middle): Fourier spectrum generated with a standard FFT algorithm. b) (right): Fourierspectrum predicted by theory.5 SummaryUnder a set of reasonable hypotheses, such as lo-cally constant velocity and intensity pro�les satis-fying Dirichlet conditions, the structure of occlu-sion in the frequency domain was determined andits relation to translucency was shown. Several ad-vantages are brought by the frequency analysis ofocclusion:� The knowledge of the frequency structure ofthe distortion arising from occlusion allows aneventual detection mechanism to locally deter-mine the causes of multiple motions: The pres-ence of the distortion indicates an occlusionwhile its absence signi�es translucency;� The geometric parallelism between the struc-ture of the distortion and the frequency spec-trum of the occluding intensity pro�le allowus to locally di�erentiate the occluding sur-face from the occluded, without the need ofany knowledge concerning the structure of thescene;� This analysis forms a basis for an adequateconstraint-grouping algorithm capable of dis-tinguishing occlusion from translucency andidentifying occluding and occluded surfaces. Inaddition, a further reduction in signal-to-noiseratios is likely to result from including distor-tion in models of multiple motions.

Future research in this area includes the construc-tion of models of multiple motions which account forthe structure of image events such as occlusion andtranslucency. In particular, one may reformulatemultilayer and mixture models [9, 13], in order toobtain crucial information concerning image eventsleading to multiple motions.References[1] G. Adiv. Determining three-dimensional mo-tion and structure from optical ow gener-ated by several moving objects. IEEE PAMI,7(4):384{401, 1985.[2] J. Aisbett. Optical ow with intensity-weighted smoothing. IEEE PAMI, 11(5):512{522, 1989.[3] J. L. Barron, D. J. Fleet, and S. S. Beauchemin.Performance of optical ow techniques. IJCV,12(1):43{77, 1994.[4] S. S. Beauchemin and J. L. Barron. The com-putation of optical ow. Technical Report TR-450, Dept. of Computer Science, Univ. of West-ern Ontario, March 1995.[5] S. S. Beauchemin and J. L. Barron. The struc-ture of occlusion in fourier space. In Vision In-terface, pages 112{119, Quebec City, Canada,May 1995.
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