
Discontinuous Optical Flow:Recent Theoretical ResultsS. S. Beaucheminyx A. Chalifoury J. L. Barronxy Universit�e du Qu�ebec �a Trois-Rivi�eres x The University of Western OntarioC.P. 500, Trois-Rivieres, Canada London, CanadaG9A 5H7 N6A 5B7AbstractWe present a theory of occlusion in the context ofoptical ow computation. In this contribution we de-rive, under models of constant and linear optical ow,several propositions describing the frequency structureof motion discontinuities arising from occlusion eventsin the spatial domain. We show that a wealth of cru-cial information is most easily obtainable from theanalysis of the structure of occlusion in Fourier space.For instance, the identi�cation of the occluding andoccluded velocities is possible. We also demonstratethe geometrical properties of degenerate cases occur-ring when signals su�er from the aperture problem.In particular, we show that the full velocity of a de-generate occluding signal is almost always obtainableat the occlusion. We conclude by showing that addi-tive translucency phenomena may be reduced to specialcases of the theory.1 IntroductionTraditionally, image motion and its approximationknown as optical ow have been treated as continuousfunctions of the image domain [4]. However, in real-istic imagery, one exceedingly rarely �nds cases ver-ifying this hypothesis. Many phenomena may causediscontinuities in the optical ow function of imagery[6]. Among them, occlusion and translucency are fre-quent causes of discontinuities in realistic imagery. Inaddition, their information content is useful to laterstages of processing [2] such as motion segmentation[1] and 3-d surface reconstruction [7].Occlusion boundaries are described as the partialocclusion of a surface by another, while translucencyis de�ned as occlusion of a surface by translucent ma-terial. In realistic imagery, one �nds occlusion to bethe most frequent cause of discontinuous motion.In this contribution, we investigate the structureof occlusion and transparency in the Fourier domain.Our motivation comes from the fact that the very pres-ence of occlusions or surface translucence renders theusage of usual methods such as di�erentiation and re-gion matching very di�cult. Further, we postulatethat spatial information constitutes an obstacle to de-termining discontinuous optical ow caused by occlu-sion. We derive, under models of constant and linearoptical ow, several propositions describing the struc-

ture of motion discontinuities in Fourier space, arisingfrom occlusion events in the spatial domain. We showthat a wealth of crucial information is most easily ob-tainable from the analysis of the structure of occlusionin Fourier space. For instance, the identi�cation of theoccluding and occluded velocities is possible. We alsodemonstrate the geometrical properties of degeneratecases occurring when signals su�er from the apertureproblem. In particular, we show that the full veloc-ity of an occluding signal su�ering from the apertureproblem is almost always obtainable. We conclude byshowing that additive translucency phenomena maybe reduced to special cases of the theory.2 Multiple MotionsGiven an arbitrary environment and a moving vi-sual sensor, the motion �eld generated onto the imag-ing plane by a 3-d scene within the visual �eld isrepresented as a function of the motion parametersof the visual sensor, usually expressed as instanta-neous translation T = (Tx; Ty; Tz)T and rotation 
 =(
x;
y;
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z � ; (1)where x = (x; y)T is the perspective projection of apoint PT = (X;Y; Z) in the visual �eld. Assumingthat the motion of the visual sensor is continuous (thatis to say: 
 and T are di�erentiable with respect totime), discontinuities in image motion are then intro-duced in (1) whenever the depth function Z(x) is otherthan single-valued and di�erentiable. The occurrenceof occlusion causes the depth function to exhibit a dis-continuity, whereas translucency leads to a multiple-valued depth function.Towards a useful generalization of this analysis, weshow the structure of occlusion in Fourier space forone and two-dimensional signals and various modelsof optical ow. For instance, we consider constantand linear models of the optical ow function in both1 and 2D. We also explore degenerate cases in which



either one or both the occluding and occluded signalssu�er from the aperture problem1.2.1 Models of Optical FlowThe optical ow function may be expressed as anorder n function of the image coordinates. Generally,we may write the Taylor series expansion for a ithvelocity as:v(n)i (x; t) = pXj=0 qXk=0 @j+kvi(x)j!k!@xj@yk xjyk � ait p+ q � n(2)where ait is the translational component. For in-stance, expansions of order n = 0,1 and 2 may bewritten out in full as:v(0)i (x; t) = x� ait (3)v(1)i (x; t) = Jix� ait (4)v(2)i (x; t) = Jix+ � xTHi(u)xxTHi(v)x �� ait (5)where Ji is the Jacobi matrix and Hi(u) and Hi(v)are Hessian matrices:ai = � ai6bi6 � Ji = � ai1 ai2bi1 bi2 �Hi(u) = � ai3 ai5ai5 ai4 � Hi(v) = � bi3 bi5bi5 bi4 � :These three models of optical ow comprise most ofthe inherent structure of image motion. For instance,the image motion of a planar surface is given by a2nd-Order model in which we observe the followingrelationship among derivatives:ai3 = 2bi5 bi3 = 0 ai4 = 0 bi4 = 2ai5: (6)2.2 Occlusion in the Frequency DomainConsider a signal Ii(x; t) translating at a constant(or 0th-Order) velocity v(0)i (x; t). For this signal, theFourier transform of the optical ow constraint equa-tion is obtained with the di�erentiation property as:F �rIi(x; t)Tai + Iit� = iÎi(k; !)�(kT ai + !); (7)where i is the imaginary number, Îi(k; !) is theFourier transform of Ii(x; t) and �(kTai+!) is a Diracdelta function. Expression (7) yields kT ai + ! = 0 as1The aperture problem arises when the Fourier spectrum ofIi(x) is concentrated on a line rather than on a plane [2, 5].Spatiotemporally, this depicts the situation in which Ii(x; t)exhibits a single spatial orientation. In this case, one only ob-tains the speed and direction of motion normal to the orienta-tion, noted as v?i(x; t). If many normal velocities are foundin a single neighbourhood, their respective lines �t the planekT ai + ! = 0 from which full velocity may be obtained.

a constraint on velocity. Similarly, the Fourier trans-form of a translating intensity pro�le Ii(x; t) is ob-tained with the shift property as:Î(k; !) = Z Z Ii(v(0)i (x; t))e�i(kTx+!t)dxdt= Z �Z Ii(v(0)i (x; t))e�ikTxdx� e�i!tdt= Îi(k)�(kT ai + !); (8)which also yields the constraint kTai+ ! = 0. Hence,(7) and (8) demonstrate that the frequency analy-sis of image motion is in accordance with the mo-tion constraint equation [2]. It is also observed thatkTai + ! = 0 represents, in the frequency domain, anoriented plane passing through the origin, with nor-mal vector ai representing full velocity, onto whichthe Fourier spectrum of Ii(x) lies.Following Fleet and Jepson [2], the discontinuitiesin optical ow arising from occlusion may be writtenby considering two translating intensity pro�les, onepartially occluding the other. Let I1(x) and I2(x) bethe intensity pro�les of an object and a backgroundscene. An object indicator function such asU(x) = � 1 if I1(x) 6= 00 otherwisemay be de�ned to specify the actual location of theobject on the image plane. The resulting intensitypattern is then written as a function of the intensitypro�les of the object, the background and the objectindicator:I(x; t) = I1(v(0)1 (x; t))+ h1�U(v(0)1 (x; t))i I2(v(0)2 (x; t)): (9)By using the shift property of Fourier transforms, (9)is rewritten in spatiotemporal frequency space as:Î(k; !) =Î1(k)�(aT1 k + !) + Î2(k)�(aT2 k+ !)� hÛ(k)�(aT1 k+ !)i � hÎ2(k)�(aT2 k + !)i :(10)The �rst two terms of (10) are the signals associatedwith the object and the background. The frequencyspectra of I1 and I2 are located on the planes de�nedby the equations kTa1 + ! = 0 and kTa2 + ! = 0 re-spectively. In addition, the respective orientations ofthese planes fully determine a1 and a2. The last termof (10) describes the distortion created by the occlu-sion boundary. In the following sections, this form ofdistortion is analized for various optical ow modelsin one and two dimensions and its usefulness in deter-mining image events giving rise to multiple motions isshown.



Figure 1: Examples of constant and linear optical ow �elds. a) (left): constant, b) (middle): dilational andc) (right): rotational.3 Occlusion with 0th-Order ModelsIn this section, we consider three cases of occlusionwith velocities described as 0th-Order Taylor series ex-pansions. The analysis begins with the considerationof a simple case consisting of two 1-d sinusoidal in-tensity pro�les translating at constant velocities. Theresult is then generalized to arbitrary signals in oneand two dimensions.3.1 One Dimensional Sinusoidal SignalsThe case in which two 1-d sinusoidals play the roleof the object and the background is �rst considered.The 1-d version of the 0th-Order optical ow func-tion (3) is written as v(0)i (x; t) = x � ai6t. Let Ii(x)be a 1-d intensity function translating with velocityv(0)i (x; t) such that Ii(x; t) = Ii(v(0)i (x; t)). Its Fouriertransform is Îi(k; !) = Îi(k)�(kai6 + !). Let I1(x)be occluding another 1-d intensity pattern I2(x), withrespective velocities v(0)1 (x; t) and v(0)2 (x; t). The re-sulting intensity pro�le can then be expressed as:I(x; t) = u(v(0)1 (x; t))I1(v(0)1 (x; t))+ (1� u(v(0)1 (x; t)))� I2(v(0)2 (x; t))(11)where u(x) is Heaviside's function representing the oc-cluding point:u(x) = � 1 if x � 00 otherwise.The Fourier transform of the intensity pro�le (11) is:Î(k; !) = [û(k)�(ka16 + !)] � [Î1(k)�(ka16 + !)]� [û(k)�(ka16 + !)] � [Î2(k)�(ka26 + !)]+ Î2(k)�(ka26 + !); (12)

where û(k) is the Fourier transform of Heaviside'sfunction u(x) written as û(k) = ��(k) + (ik)�1.THEOREM 1 Let I1(x) and I2(x) be cosine func-tions with respective angular frequencies k1 = 2�f1 >0 and k2 = 2�f2 > 0 and let I1(v(0)1 (k1x; t)) =c1 cos(k1x � a16t) and I2(v(0)2 (k2x; t)) = c2 cos(k2x �a26t).The frequency spectrum of the occlusion is:Î(k; !) = �2 c1�(k � k1; ! � k1a16)+ (1� �)2 c2�(k � k2; ! � k2a26)+ i2 �c2�(ka16 + ! � k2�a6)(k � k2)� c1�(ka16 + !)(k � k1) � (13)where �a6 = a16 � a26.A number of conclusions can be drawn from The-orem 1: Since the signals are cosines, all their powercontent is real. In addition, the power content of thedistortion term is entirely imaginary, and form linesof decreasing power about the frequencies of both theoccluding and occluded signals. Their orientation isproportional to the velocity of the occluding signal, as�a16 is the slope of the constraint lines. Hence, thedistortion terms form lines parallel to the constraintline of the occluding signal.3.2 One Dimensional Arbitrary SignalsIn general, the occluding and occluded signals can-not be represented as simple sinusoidal functions. Togain generality, I1(x) and I2(x) may be expanded ascomplex exponential expansions, assuming that func-tions I1(x) and I2(x) satisfy Dirichlet conditions [3].



THEOREM 2 Let I1(x) and I2(x) be functions sat-isfying Dirichlet conditions such that they may be ex-pressed as complex exponential series expansions:I1(x) = 1Xn=�1 c1neink1xI2(x) = 1Xn=�1 c2neink2x; (14)where n is integer, c1n and c2n are complex coe�cientsand k1 and k2 are the fundamental frequencies of bothsignals.Let I1(x; t) = I1(v(0)1 (x; t)) and I2(x; t) =I2(v(0)2 (x; t)). The frequency spectrum of the occlusionis:Î(k; !) = � 1Xn=1 c1n�(k � nk1; ! + nk1a16)+ (1� �) 1Xn=�1 c2n�(k � nk2; ! + nk2a26)+ i 1Xn=�1�c2n�(ka16 + ! � nk2�a6)(k � nk2)� c1n�(ka16 + !)(k � nk1) � : (15)Theorem 2 is an important generalization of the�rst one: Any signal which represents a physical quan-tity satis�es Dirichlet conditions and therefore may beexpressed as an expansion of complex exponentials.Since c1n and c2n are complex coe�cients, the powercontents of the signals are both real and imaginary.3.3 Two Dimensional Arbitrary SignalsImagery is the result of the projection of light re-ected by environmental features onto the imagingplane of the visual sensor. Hence, such signals areinherently two dimensional. Towards a generalizationof (15), (14) is expanded as series of 2-d complex ex-ponentials.THEOREM 3 Let I1(x) and I2(x) be 2-d functionssatisfying Dirichlet conditions such that they may beexpressed as complex exponential series expansions:I1(x) = ~1Xn=� ~1 c1neixTNk1I2(x) = ~1Xn=� ~1 c2neixTNk2 ; (16)where n = (nx; ny)T and N = nT I are integers, xare spatial coordinates, k1 = (k1x; k1y)T and k2 =(k2x; k2y)T are fundamental frequencies and c1n andc2n are complex coe�cients.

Let I1(x; t) = I1(v(0)1 (x; t)), I2(x; t) = I2(v(0)2 (x; t))and the occluding boundary be locally represented by:U(x) = � 1 if xT~� � 00 otherwise, (17)where ~� is a vector normal to the instantaneous slopeof the occluding boundary at x. The frequency spec-trum of the occlusion is:Î(k; !) =� ~1Xn=� ~1 c1n�(k � Nk1; ! + aT1Nk1)+ (1� �) ~1Xn=� ~1 c2n�(k �Nk2; ! + aT2Nk2)+ i ~1Xn=� ~1 c2n�(kT a1 + ! ��aT6Nk2)(k� Nk2)T~�� c1n�(kT a1 + !)(k� Nk1)T~� ! : (18)where �a6 = a1 � a2.Theorem 3 is a direct extension of Theorem 2 intwo spatial dimensions. For this case, the constraintlines of previous Theorems 1 and 2 generated by boththe occluding and occluded signals and the distortionterms become constraint planes. The frequency struc-ture of each signal is preserved to within a scalingfactor.4 Occlusion with 1st-Order ModelsThe de�nition of optical ow as a constant modelis limited. To gain generality, we develop propositionswhich express the structure of occlusion in the Fourierdomain using linear models of optical ow. We use the1st-Order expansion of (2), expressed as v(1)i (x; t) =xTJi�ait. This linear model accounts for translation,rotation and dilation of the optical ow �eld.4.1 One Dimensional Arbitrary SignalsIn the case of one-dimensional signals, the opti-cal ow function (4) reduces to the form v(1)i (x; t) =ai1x� ai6t. Thus, in one dimension, only dilation andtranslation exist.THEOREM 4 Let I1(a11x) and I2(a21x) be func-tions staisfying Dirichlet conditions such that theymay be expressed as complex exponential series expan-sions: I1(a11x) = 1Xn=�1 c1neink1a11xI2(a21x) = 1Xn=�1 c2neink2a21x; (19)



where n is integer, c1n and c2n are complex coe�cientsand k1 and k2 are fundamental frequencies of both sig-nals.Let I1(x; t) = I1(v(1)1 (x; t)) and I2(x; t) =I2(v(1)2 (x; t)). The frequency spectrum of occlusion is:Î(k; !) =� 1Xn=�1 c1n�(k � nk1a11; ! + nk1a16)+ (1� �) 1Xn=�1 c2n�(k � nk2a21; ! + nk2a26)+ sgn(a11) i 1Xn=�1�c2n�( 1k + ! � nk2�12)(k � nk2a21)� c1n�( 1k + !)(k � nk1a11) � (20)where  i = ai6ai1 and �ij = aj1ai6 � ai1aj6ai14.2 Two Dimensional Arbitrary SignalsThe generalization of Theorem 4 to two dimensionsde�nes the structure of occlusion under linear defor-mation. Therefore, the optical ow may exhibit trans-lation, rotation, and dilation.THEOREM 5 Let I1(J1x) and I2(J2x) be 2-d func-tions satisfying Dirichlet conditions such that theymay be expressed as complex exponential series expan-sions: I1(J1x) = n= ~1Xn=� ~1 c1neikTNJ1xI2(J2x) = n= ~1Xn=� ~1 c1neikTNJ2x (21)Let I1(x; t) = I1(v(1)1 (x; t)), I2(x; t) = I2(v(1)2 (x; t))and the occluding boundary be locally represented by:U(J1x) = � 1 if ~�TJ1x � 00 otherwise, (22)where ~� is a vector normal to the instantaneous slopeof the occluding boundary at J1x. The frequency spec-trum of the occlusion is:Î(~�; !) =� ~1Xn=� ~1 c1n�(~�1 � 1N ~�01; ! + aT1 N ~�01)+ (1� �) ~1Xn=� ~1 c2n�(~�2 � 2N ~�02; ! + aT2N ~�02)

+ sgn(1) i ~1Xn=� ~10@c2n � �~�T11 a1 + ! ��aT6N~�02�(~�1 � 2N ~�02)T~�� c1n � �~�T11 a1 + !�(~�1 � 1N ~�01)T~�1A (23)where ~�0i = (�0i; �0i)T are fundamental frequencies, i =ai1bi2 � ai2bi1 and~�i = � �i�i � = � kxbi2 � kybi1kyai1 � kxai2 �Theorems 1 through 5 show the structure of oc-clusion in the Fourier domain for constant and linearmodels of optical ow in both 1 and 2D. These struc-tures have interesting properties which we have infor-mally outlined. We formally state them in form ofgeometrical theorems and corollaries.COROLLARY 1 Phenomena of additive translu-cency are special cases for which the distortion termsvanish in structural Theorems 1 through 5.In the case of an additive translucency phe-nomenon, there is no occlusion boundary associatedwith one of the signals and therefore no distortionterms in the Fourier structure are present. Hence, thespectrum of the translucency only exhibits the con-straint planes of both signals, without distortion.COROLLARY 2 The structure of occlusion is in-variant under 0th and 1st-Order models of optical ow.In both 1D and 2D cases, we �nd that the struc-tural aspect of the Fourier spectrum is identical. Thepower generated by the distortion �ts lines (or planesin 2D) that are parallel to the constraint line (or plane)of the occluding signal. Although the orientation ofthese structures depict ratios of the linear parameters,a collection of those in a neighbourhood yield theseparameters in the least-squares sense. This result alsoindicates that we can use this structural invariance toaccurately detect regions of occlusion under constantor linear optical ow with the same mechanism.COROLLARY 3 Under an occlusion phenomenon,the velocities of the occluding and occluded signals canalways be identi�ed as such.Under occlusion, the orientations of the distortionterms are essentially parallel to the constraint planeof the occluding signal. Hence, the orientation of theconstraint plane containing the origin and parallel tothe distortion terms yields the velocity of the occlud-ing signal, thus associating the second velocity withthe occluded signal.



5 The Aperture Problem: DegenerateCasesThe usual optical ow constraint equation, for aconstant model of velocity, expressed asrIi(v(0)i (x; t)) + Iit = 0 (24)de�nes a single constraint on image motion. In Figure2, normal velocity is de�ned as the vector from theorigin perpendicular to the constraint line.
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Figure 2: The optical ow constraint equation de�nesa line in velocity space. The normal velocity v? isde�ned as the vector perpendicular to the constraintline, i.e. the velocity with the smallest magnitude onthe optical ow constraint line.Equation (24) is not su�cient to solve for both com-ponents of velocity. Only the velocity component inthe direction of the local intensity gradient may becomputed. This phenomenon is known as the apertureproblem [8] and occurs when a given signal exhibits aunidimensional texture or, in other words, a unique lo-cal intensity gradient, which we term as a degeneracy(see Figure 3).In the Fourier domain, the power spectrum of adegenerate signal is concentrated along a line ratherthan a plane. To see this, consider a 1D signal movingwith a constant model of velocity in a 2D space, withvelocity si along gradient normal ni:I(x; t) = Ii(xTni � sit) (25)The Fourier transform of this signal is given byÎ(k; !) = Îi(kTni)�(kTn?i )�(sikTni + !); (26)where n?i is the negative reciprocal of ni [2]. TheDirac delta functions are both planar spectra and theintersection of these two planes form a 3D line ontowhich the spectrum of the degenerate signal resides.Therefore, the planar orientation describing full ve-locity is undetermined. However, the presence of anocclusion boundary disambiguates the measurementfor the occluding signal in most cases.
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Figure 3: Through apertures 1 and 3, only normal mo-tions of the edges forming the square can be estimated,due to a lack of local structure. Inside aperture 2,at the corner point, the motion can be fully measuredsince there is su�cient local structure; both normalmotions are visible.THEOREM 6 The full velocity of a degenerate oc-cluding signal in 2D is obtainable from the structureof the Fourier spectrum if and only if its normal isdi�erent from the normal of the occlusion boundary.An occlusion boundary, modeled as a locallystraight ramp function, provides one constraint oncomponent velocity. The degenerate signal also pro-vides a second similar constraint. Since they are mov-ing at the same full velocity, it is possible to solve thefollowing system of equations11 �aT1 n1 � s1� = 011 �aT1 n2 � s2� = 0 (27)leading to full velocity, as long as it is well conditioned,that is to say, that both normals and speeds are notidentical. In the Fourier domain, the spectra of the de-generate signal and the occlusion boundary are bothconcentrated along lines with possibly di�erent orien-tations, containing the origin. The orientation of theplane containing these two constraint lines yields a fullvelocity measurement.THEOREM 7 The case in which both the occludingand occluded signals are degenerate and the normalsof the occluding signal and boundary are identical canbe reduced to a 1D case of occlusion from which onlynormal velocities are obtainable.In this case, the constraint lines of the occludingsignal and the occluding boundary are indistinguish-able and form a single oriented line. The occluded



signal also provides such a line and, on the plane �t-ting these, the structure of the occlusion collapses toa 1D case.6 Geometric InterpretationWe examine the geometrical properties of theFourier spectra of constant and linear models of opti-cal ow for both 1 and 2D signals.6.1 0th-Order ModelsIn the simplest case involving sinusoidal signals,Theorem 1 shows that the frequency spectra of bothsignals are preserved to within scaling factors. In ad-dition, the imaginary terms represent the frequencyspectrum of the occlusion boundary. Figure 4 showsthree cases of occlusion with 1D, Gaussian-windowedsinusoidal signals. The 1D velocities of the occlud-ing signals are a16 = �1:0, �0:5 and 0:5 respectively.The velocities of the occluded signals are a26 = �1:0.The spatial frequency of the occluding and occludedsignals are k1 = �8 and k2 = �16 respectively. The ver-tical axis represents temporal frequency ! while thehorizontal axis is spatial frequency k. The spectralpeaks located at �(k1;�k1a16) and �(k2;�k2a26) de-pict the spatiotemporal frequencies of both signals and�t the constraint lines ka16+! = 0 and ka26+! = 0.The oblique spectra intesecting the peaks representthe spectrum generated by the occlusion boundaryand �t the constraint lines k1a16 + ! � k2a26 = 0and k1a16 + ! = 0. These lines are parallel to theconstraint line of the occluding signal. It also is inter-esting to observe from Theorem 2 that every non-zerofrequency of an occluded signal shows such a parallelline due to occlusion.Theorem 3 is the generalization of Theorem 2 in 2Dand its geometric interpretation is similar. That is tosay, the constraint lines of the signals and the occlu-sion boundary become constraint planes. For instance,the frequencies (Nk1;�aT1Nk1) and (Nk2;�aT2Nk2)�t the constraint planes of the occluding and occludedsignals, de�ned as kT1 a1 + ! = 0 and kT a2 = 0.In the distortion term, the arguments of the Dirac� functions kTa1 + ! ��aT6Nk2 and kTa1 + ! rep-resent a set of planes parallel to the constraint planeof the occluding signal kTa1 + ! = 0. That is to say,for every discrete frequency Nk1 and Nk2 exhibitedby both signals, there is a frequency spectrum �ttingthe planes given by kTa1 + ! � �aT6Nk2 = 0 andkTa1+! = 0. The magnitudes of these planar spectraare determined by their corresponding scaling func-tions c1n[(k�Nk1)T~� ]�1 and c2n[(k�Nk2)T~� ]�1.Hence, Theorem 3 reveals useful constraint planes, asthe power spectra of both signals peak within planeskTa1 + ! = 0 and kT a2 + ! = 0 and the constraintplanes arising from the distortion are parallel to thespectrum of the occluding signal I1(x; t).6.2 1st-Order ModelsAs a consequence of Corollary 2, the geometric in-terpretation of 1st-Order models of optical ow underocclusion is essentially similar to 0th-Order models.

The di�erence lies in the interpretation of the quanti-ties depicted by the orientations of the planar spectrarepresenting the occluding and occluded signals. Forinstance, in Theorem 4, the orientations of these pla-nar spectra represent ratios of the linear velocity pa-rameters. These ratios are a16a11 and a26a21 for the occlud-ing and occluded signals respectively. Such quantitiesare interpreted as the translation-to-scaling ratios ofboth signals. In the case of 2-d signals, as in Theorem5, we �nd that the orientations of the planar spectraare proportional to the ratios ~�T1 a11 and ~�T2 a22 where1 and 2 are the Jacobians of linear velocity matricesJ1 and J2.7 ConclusionWe have shown the Fourier structure of occlusionand translucency phenomena for constant and linearmodels of velocity in both 1 and 2D and shown variousinteresting geometrical properties. For instance, theconstraint lines or planes cast by the occlusion bound-ary have been characterized. In a multiple motionsituation, their presence indicates an occlusion whiletheir absence indicates a translucency phenomenon.When a multiple motion situation is caused by anocclusion, the parallelism between the the distortioncast by the occluding boundary and the Fourier spec-trum of the occluding signal di�erentiates the velocityof the occluding signal from the velocity of the oc-cluded signal. Further, this result holds for constantand linear models of optical ow.The structural invariance of the Fourier structureof occlusion under constant and linear models of opti-cal ow renders the accurate detection of regions ex-hibiting occlusion possible, whether the motions of theoccluding or occluded surfaces are constant or linear.In addition, the full velocity of a degenerate oc-cluding signal is almost always obtainable. This re-sult indicates that the information contained in theocclusion may be put to use to disambiguate velocitymeasurements.Recovering the orientation of the Fourier structuresdoes not lead to the recovery of the linear parametersof optical ow. However, a collection of these orienta-tions from a neighbourhood yields the linear parame-ters in the least-squares sense.Our current research following this analysis is the�nding of the Fourier structure of 2nd-Order signals.Of particular importance is the Fourier structure ofoccluding planar surfaces in motion, which consti-tute a special case of 2nd-Order signals. In addition,a number of algorithms for detecting occlusion andtransparency phenomena, identifying occluding andoccluded velocities, and recovering occlusion bound-aries are currently being developed.AcknowledgementsWe would like to thank P. K. Bose for meaningfuldiscussions and comments. This research is supportedby NSERC (National Science and Egineering ResearchCouncil of Canada).



Figure 4: Fourier spectra of occluding and occluded 1D sinusoids translating with various velocities, generatedwith Theorem 2.References[1] G. Adiv. Determining three-dimensional motion andstructure from optical ow generated by several mov-ing objects. IEEE PAMI, 7(4):384{401, 1985.[2] D. J. Fleet and A. D. Jepson. Computation of com-ponent image velocity from local phase information.IJCV, 5(1):77{104, 1990.[3] J. D. Gaskill. Linear Systems, Fourier Transforms andOptics. Wiley & Sons, Inc., 1978.[4] B. K. P. Horn and B. G. Schunck. Determining opticalow. Arti�cial Intelligence, 17:185{204, 1981.[5] D. Marr and S. Ullman. Directional selectivity andits use in early visual processing. Proceedings of RoyalSociety London, B 211:151{180, 1981.[6] M. Shizawa and K. Mase. Principle of superposition:A common computational framework for analysis ofmultiple motion. In IEEE Proceedings of Workshop onVisual Motion, pages 164{172, Princeton, New Jersey,October 1991.[7] P. Toh and A. K. Forrest. Occlusion detection in earlyvision. In ICCV, pages 126{132. IEEE, 1990.[8] S. Ullman. The interpretation of visual motion. MITPress, Cambridge, London, 1979.


