
A Uni�ed Procedure for Calibrating Intrinsic Parameters ofSpherical LensesS. S. Beauchemin, R. Bajcsy and G. GivatyGRASP LaboratoryDepartment of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphia PA 19104-6228 USAAbstractSpherical cameras are variable-resolution imaging sys-tems that have been recognized as promising devicesfor autonomous navigation purposes, mainly becauseof their wide viewing angle which increases the capa-bilities of vision-based obstacle avoidance schemes. Inaddition, spherical lenses resemble the primate eye intheir projective models and are biologically relevant. Wepresent a novel method for spherical-lens camera cali-bration which models the lens radial and tangential dis-tortions and determines the optical center and the angu-lar deviations of the CCD sensor array within a uni�ednumerical procedure. Contrary to other methods, thereis no need for special equipment such as low-power laserbeams or non-standard numerical procedures for �ndingthe optical center. Numerical experiments and analysesare presented.1 IntroductionSpherical cameras are variable-resolution imaging sys-tems that are recognized as promising devices for au-tonomous navigation purposes, mainly because of theirwide viewing angle which increases the capabilities ofvision-based obstacle avoidance schemes [11]. In addi-tion, spherical lenses resemble the primate eye in theirprojective models and are biologically relevant [4]. Inspite of this, the calibration of spherical lenses is notwell understood [10] and contributions to this topichave only recently begun to appear in the literature.Current standard procedures for pinhole camera cal-ibration are inadequate for spherical lenses as such de-vices introduce signi�cant amounts of image distortion.Calibration methods such as Tsai's [13] only considerthe �rst term of radial distortion which is insu�cient toaccount for the distortion typically induced by sphericallenses. Other calibration procedures for high distortionand spherical lenses such as Shah and Aggarwal's [9]

and Basu and Licradie's [3] have been de�ned. How-ever, these methods use special equipment such as low-power laser beams or ad-hoc numerical procedures fordetermining the optical center of spherical lenses. Wepropose a novel method which only requires an ade-quate calibration plane and a uni�ed numerical proce-dure for determining the optical center, among otherintrinsic parameters.1.1 Types of DistortionThe calibration of optical sensors in computer vision isan important issue in autonomous navigation, stereovision and numerous other applications where accu-rate positional observations are required. Various tech-niques have been developed for the calibration of sen-sors based on the traditional pinhole camera model.Typically, the following types of geometrical distortionhave been recognized and dealt with [14]:� Radial Distortion: This type of distortion ispoint-symmetric at the optical center of the lensand causes an inward or outward shift of imagepoints from their initial perspective projection.About the optical center, radial distortion is ex-pressed asr̂ = r + �1r3 + �2r5 + �3r7 + � � � ; (1.1)where �i are radial distortion coe�cients, r is theobserved radial component of a projected pointand r̂, its predicted perspective projection [7].� Decentering Distortion: The misalignment ofthe optical centers of various lens elements in thesensor induces a decentering distortion which hasboth a radial and a tangential component. Theyare expressed asr̂ = r + 3(�1r2 + �2r4 + �3r6 + � � �) sin(� � �0)�̂ = � + (�1r2 + �2r4 + �3r6 + � � �) cos(� � �0);1



where �i are the decentering distortion coe�cients,� is the observed angular component of a projectedpoint, �̂ is its predicted perspective projection and�0 is the angle between the positive y-axis and theaxis of maximum tangential distortion due to de-centering [7].� Thin Prism: Manufacturing imperfections of lenselements and misalignment of CCD sensor arraysfrom their ideal, perpendicular orientation to theoptical axis introduce additional radial and tan-gential distortions which are given byr̂ = r + (�1r2 + �2r4 + �3r6 + � � �) sin(� � �1)�̂ = � + (�1r2 + �2r4 + �3r6 + � � �) cos(� � �1);where �i are the thin prism distortion coe�cientsand �1 is the angle between the positive y-axis andthe axis of maximum tangential distortion due tothin prism [7].1.2 Related LiteratureThe need for foveated visual �elds in active vision ap-plications has motivated the design of special purposespherical lenses [4] and catadioptric sensors [2]. Theseimaging systems introduce signi�cant amounts of ra-dial and possibly tangential distortions (see Figure 2.1)and traditional methods that only calibrate for the per-spective projection matrix and neglect to compensatefor these distortions are inadequate [12].The calibration methods designed for high-distor-tion lenses typically model the radial and tangential dis-tortion components with polynomial curve-�tting. Ex-amples of such methods are Shah and Aggarwal's [10]and Basu and Licardie's [3]. Both of these methodscalibrate the optical center by using procedures thatare not elegantly integrated into the curve-�tting pro-cedure which recovers distortion coe�cients. For in-stance, Basu and Licaride's method consists of a mini-mization of vertical and horizontal calibration-line cur-vatures whereas Shah and Aggarwal's requires the useof a low-power laser beam based on a partial re
ectionbeam-alignment technique.Other, similar methods perform minimizations offunctionals representing measures of the the accuracyof the image transformation with respect to calibra-tion parameters [6, 14]. These methods rely on thepoint-symmetry of radial distortion at the location ofthe optical center onto the image plane to reduce the di-mensionality of the parameter space [6] or to iterativelyre�ne calibration parameters initially obtained with adistortion-free pinhole camera model [14].In addition to these calibration techniques, Miya-moto [5] de�ned mappings relating the world plane an-

gle �1 to the image plane angle �2. One such mappingis given by �2 = tan �1. Alternatively, Anderson etal. [1] de�ned a similar mapping, this time based onSnell's law of di�raction. Unfortunately, the accuracyof these models is limited to the neighborood of theoptical center [10]. Basu and Licardie also proposed al-ternative models for �sh-eye lenses [3] but they demon-strate that the small number of calibration parametersinvolved does not allow to accurately model a sphericallens.2 Standard Procedure for Fish-Eye Lens CalibrationThe number of free intrinsic parameters for a typicalhigh distortion lens is large, especially when one con-siders sources or radial distortions, decentering and thinprism, manufacturing misalignments such as tilt, yawand roll angles of the CCD sensor array with respectto its ideal position, image center versus optical center,etc. We encompass radial and tangential distortionsin two polynomials for which the coe�cients are to bedetermined with respect to the sources of distortion em-anating from the location of the optical center and thepitch and yaw angles of the CCD sensor. We proceedby describing the least-squares method chosen to per-form the polynomial �ts for both radial and tangentialdistortions.2.1 Radial and Tangential PolynomialsGiven a set of calibration points and their image loca-tions, the equations describing the transformation from�sh-eye to pinhole are�̂ij = LXk=0 ak�kij and r̂ij = LXk=0 bkrkij (2.2)where L is the order of the polynomials and �̂ij andr̂ij are the corrected polar coordinates of the calibra-tion points. We use a calibration pattern for whichthe points align into horizontal, diagonal and verticallines. These n2 calibration points may be arranged inmatrix form consistent with their geometric locationon the calibration plane. We use the notation Pij =(Xij ; Yij ; Zij) for the 3D calibration points expressedin the coordinate system of the camera, p̂ij = (r̂ij ; �̂ij)for the 2D projection of Pij onto the pinhole cameraand pij = (rij ; �ij) for the projection of Pij as imagedby the spherical lens.Various minimization methods may be applied tothe polynomials in order to determine their coe�-cients. For instance, Lagrangian minimization and
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Figure 2.1: Radial and tangential distortions. The orig-inal point, expressed as (r; �) is the expected observa-tion. The distorted point as observed, is expressed as(r + �r; � + ��), where �r and �� are the radial andtangential distortions, respectively.least-squares have been used. For our purposes, weadopt a least-squares approach to �nd the polynomialcoe�cients and perform the correction. This least-squares �t for the radial and tangential distortion poly-nomial can be expressed asnXi=1 nXj=1 �̂ij � LXk=0 ak�kij!2 nXi=1 nXj=1 r̂ij � LXk=0 bkrkij!2 :(2.3)Deriving the polynomials with respect to coe�cientsyields the following systems of linear equationsaT� = �ij�ij and bTRij = r̂ijrij (2.4)where a = (a0; : : : ; aL)T , b = (b0; : : : ; bL)T , rij =(r0ij ; : : : ; rLij)T , �ij = (�0ij ; : : : ; �Lij)T , Rij = rijrTij and�ij = �ij�Tij . We write the least-squares matrices Arand A� as0BBBBBBBBBB@
r011 � � � rL11r012 � � � rL12... ... ...r01n � � � rL1nr021 � � � rL2n... ... ...r0nn � � � rLnn

1CCCCCCCCCCA
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�011 � � � �L11�012 � � � �L12... ... ...�01n � � � �L1n�021 � � � �L2n... ... ...�0nn � � � �Lnn
1CCCCCCCCCCA (2.5)

and we form the least-squares systems of equations asR�a = � and Rrb = r, where R� = AT�A�, Rr =ATrAr, r = ATr cr, � = AT� c�, c� = (�̂11; �̂12; : : : ; �̂nn)and cr = (r̂11; r̂12; : : : ; r̂nn). The coe�cients a and bare such that they should minimze �2� = jA�a � c�j2and �2r = jArb� crj2. We use Singular Value Decom-

position (SVD) to perform the least-squares �tsa = V�diag(W�)(UT� c�) (2.6)b = Vrdiag(Wr)(UTr cr) (2.7)where A� = U�W�VT� and Ar = UrWrVTr , and tocompute �2� and �2r. We use the notation a(xc;xp),b(xc;xp; �u; �v), �2�(xc;xp) and �2r(xc;xp; �u; �v) to in-dicate that the least-squares solutions for tangential dis-tortion coe�cients a and the residual �2� depend on xc,the location of the optical center with respect to thecoordinate system in which the �t is performed and xp,the translation parallel to the calibration surface, andthat the radial distortion coe�cients b and the resid-ual �2r depend on the optical center xc, the cameratranslation xp and �u and �v, the pitch and yaw anglesof the CCD sensor array with respect to a plane per-pendicular to the optical axis. We further explain andexperimentally demonstrate these dependencies in thenext sections.2.2 Polynomial OrderThe over�t of data, or polynomial orders that exceedthe intrinsic order of the data, constitutes our primarymotivation for using SVD in the least-squares solutionsof the polynomial coe�cients. For instance, if any ofthe singular values is less than a tolerance level of 10�5,we set its reciprocal to zero, rather than letting it goto some arbitrarily high value. We thus avoid over�tsof the calibration data when solving for a(xc;xp) andb(xc;xp; �u; �v) in (2.6) and (2.7). Because of this ca-pability and considering that the computational cost ofcalibration is usually not critical, we use polynomialsof order L = 12.2.3 The Optical CenterThe optical center of a lens is de�ned as the point wherethe optical axis passing through the lens intersects theimage plane of the camera. Alternatively, the opticalcenter is the image point where no distortions appear,radial or tangential. That is to say, where r̂ij = rijand �̂ij = �ij . In addition, radial distortion is point-symmetric at the optical center and, consequently, theone-dimensional polynomial in r is accurate only whenaligned with the optical center. Figure 2.2 shows plotsof (r̂ij ; rij) and (�̂ij ; �ij) at and away from the opti-cal center, in which the point-scattering e�ect becomesapparent as the polynomial �t is gradually decenteredfrom the optical center. This e�ect is re
ected in thevalues of �2r(xc;xp; �u; �v) and �2�(xc;xp) around theoptical center, as illustrated by Figure 2.3.
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Figure 2.2: Plots of (r̂ij ; rij) and (�̂ij ; �ij). a) (top, from left to right): r̂ij and rij at the optical center,(2:5; 2:5) and (5:0; 5:0) image units away from it. b) (bottom, from left to right): �̂ij and �ij at the opticalcenter, (25:0; 25:0) and (50:0; 50:0) image units away from it. The increasing scattering of the plots as the distancefrom the optical center increases prevents accurate modeling of the lens. The e�ect is most apparent for the rij 's,yet it is also observed with the �ij 's.2.4 CCD Sensor Array MisalignmentsCCD sensor misalignments are due to imperfectionsat the time of assembly. Such imperfections, howeverminute, introduce additional noise as some types of mis-alignments in
uence the value of the �2r(xc;xp; �u; �v)function. We have studied the e�ect of these misalign-ments by rotating the image plane of the syntheticcamera model about its origin. Figure 2.4 shows the�2r(xc;xp; �u; �v) and �2�(xc;xp) functions for rotations�u, �v and �n about the u, v and n axes of the syntheticcamera. The e�ects have been studied in isolation toone another and, in these experiments, the optical cen-ter projected onto the origin of the synthetic camera.As expected, rotations about the line of sight axis nhave no e�ect on the �2r(xc;xp; �u; �v) function, as theydo not break the point-symmetry of radial distortion.However, rotations about the axes of the image planeu and v introduce errors re
ected in �2r(xc;xp; �u; �v)(see Figure 2.4a). As expected, this type of rotationbreaks the point-symmetry of radial distortion.In all three types of rotations, the �2�(xc;xp) func-tion remains undisturbed, as shown in Figure 2.4b.Since the rotations are such that the position of the

optical center is not shifted, no violation of the line-symmetry of the tangential distortion is introduced. Ifsuch rotations were to be centered away from the im-age position of the optical center, then errors would beintroduced because of the breaking of line-symmetry.This is also illustrated by Figure 2.5 where, for thethree types of rotation, the plots of (�̂ij ; �ij) describea bijection and do not introduce approximation errorsin the �t, contrary to the plots of (r̂ij ; rij) in Figure2.2a.Another phenomenon a�ecting the value of theresidual is the alignment of the synthetic pinhole cal-ibration dots with the spherical points as imaged bythe lens. Given an ideal situation in which the cen-tral calibration point is imaged at the image center andthat this location coincides with the optical center, thenthe residual is at a minimum. However, any deviationfrom this situation substantially increases the value ofthe residual, and for certain is by no means related tothe calibration parameters of the camera. Addition-ally, we cannot require that the central calibration dotbe imaged at the optical center, since it is one of theparameters to be estimated.In light of this, we also model translation of the
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x yFigure 2.3: E�ect of translation from the optical center on �2r(xc;xp; �u; �v) and �2�(xc;xp). a) (left): Plot ofthe �2r(x � xc;xp; �u; �v) function. b) (center): Plot of the �2�(x � xc;xp) function. c) (right): Plot of the�2r(x� xc;xp; �u; �v) + �2�(x� xc;xp) function.camera parallel to the calibration plane as translationof the synthetic pinhole calibration points p̂ij . Con-sequently, the calibrtation method must minimize theresidual with respect to the following parameters:� xc: The amount of translation of imaged sphericalpoints pij , which models translation of the CCDsensor array in the (u;v) plane. In other words,xc is the translation from the image center to theoptical center.� xp: The amount of translation of the synthetic pin-hole calibration points p̂ij , which models the trans-lation of the camera in the (X,Y) plane, parallel tothe calibration surface.� �u, �v: The pitch and yaw angles of the CCD sen-sor array.3 Synthetic Camera ModelWe calibrate against a standard, synthetic pinhole cam-era described by linear transformation matrices con-taining the intrinsic parameters to be calibrated. The�rst transformation is from the world coordinate sys-tem to that of the synthetic camera, expressed by thecamera position r in world coordinates and orthogonalunit vectors u = (ux; uy; uz)T , v = (vx; vy; vz)T andn = (nx; ny; nz)T . In addition, since the vector joiningthe image plane at the optical center and the focal pointmay not be perpendicular to the image plane, we modelthe focal length in the coordinate system of the cam-era as a vector f = (fu; fv; fn)T . The translation fromoptical center to image center xc = (xc; yc)T and thescaling factors sx and sy from synthetic camera imageto real image also are parameters forming the syntheticcamera model. Combining these into a homogeneous

linear transformation yields a matrix C with which pla-nar points Pij are projected onto the imaging plane ofthe pinhole camera as CTPij = p̂ij . To obtain thepoints pij as imaged by a hypothetical spherical lens,we use the �sh-eye transform due to Basu and Licardieto distort the p̂ij 's. The �sh-eye transformation is givenby pij = s log(1 + �kp̂ijk2)�ij (3.8)where pij = (xij ; yij)T , p̂ij = (x̂ij ; ŷij)T , �ij =(cos �; sin �)T , and � = arctan ŷijx̂ij . The symbols s and� are scaling and radial distortion factors, respectively.4 Description of AlgorithmAs a �rst step, we generate calibration points usingthe synthetic pinhole camera. The analytic calibrationplane is conveniently located in the (X;Y ) plane of theworld coordinate system and the line of sight of thepinhole camera coincides with its Z axis.The synthetic image plane is at 340 mm from thecalibration plane and the focal length is set to 100mm.The pinhole calibration points are then projected ontothe image plane of the synthetic camera as CTPij = p̂ijand transformed to polar coordinates as (r̂ij ; �̂ij).Using the spherical camera, oriented perpendicu-larly from the real calibration plane, a frame of thecalibration points is grabbed. The lens of the sphericalcamera is at 280 mm from the calibration plane. Fig-ures 5.6a and d show such frames. We perform pointdetection on this image by computing the centroids ofthe calibration points and obtain spherical image points(rij ; �ij). Both sets of points (r̂ij ; �̂ij) and (rij ; �ij) arescaled to the canonical space [(�1;��); (1; �)] wherethe minimization procedure is to begin.We use a conjugate gradient minimization proceduredue to Polak-Ribiere [8] which we apply on the function
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Figure 2.4: E�ect of CCD array rotation on �2r(xc;xp; �u; �v) and �2�(xc;xp) functions. a) (top, from left toright): The �2r(xc;xp; �u; �v) resudual function against rotations around the u, v and n axes. b) (bottom,from left to right): The �2�(xc;xp) residual function against rotations around the u, v and n axes.�2 = �2r(xc;xp; �u; �v)+�2�(xc;xp). In order to performthe minimization, the partial derivatives @�2@xc , @�2@yc , @�2@xp ,@�2@yp , @�2@�u and @�2@�v need to be evaluated for various val-ues of (xc;xp; �u; �v).To evaluate the partial derivatives with respect toxc, we perform translations of the detected sphericalcalibration points pij = (rij ; �ij) onto the image planeand perform least-squares �ts to obtain the �2 val-ues then used for computing 5-point central di�erences.Evaluation of partial derivatives with respect to CCDarray angles is more involved. The �rst step is to re-project the pinhole calibration points p̂ij back onto thecalibration plane using C�1, the inverse of the pin-hole camera transformation. Rotations of these repro-jected points in 3D and reprojection onto the imageplane of the pinhole camera provide the �2 values forcomputing 5-point central di�erences. The minimiza-tion is performed with the shifted and rotated calibra-tion points and is guided by the 6D gradient vector(@�2@xc ; @�2@yc ; @�2@xp ; @�2@yp ; @�2@�u ; @�2@�v ). The output of the algo-rithm is the optical center xc, represented as the shiftfrom the image center, the camera translation xp par-allel to the calibration surface with respect to the cen-tral calibration point, the CCD sensor array pitch andyaw angles �u and �v and the polynomials in r and �for image transformation from spherical to pinhole. In

essence, the procedure is to �nd the calibration param-eters that best explain the detected calibration pointsas imaged by the spherical lens.5 Numerical ResultsWe study the convergence rate of the calibration proce-dure and the results obtained with the calibration im-ages of Figures 5.6a and d, corresponding to sphericalcameras A and B, respectively. The calibration planehas a width and height of 8 feet and the 529 calibrationdots are spaced by 4 inches both horizontally and ver-tically. In order to capture the calibration images, thespherical cameras are mounted on a tripod and alignedin turn with the central calibration dot.The convergence study is performed with a simu-lated spherical lens. We use equation (3.8) to computethe spherical points pij from the synthetic pinhole cal-ibration dots p̂ij . To model CCD sensor array mis-alignments, we perform 3D rotations of the syntheticpinhole camera and reproject the synthetic calibrationpoints onto the so rotated image plane prior to using(3.8). In addition, we translate the spherical calibrationpoints pij to model the distance of the optical centerfrom the center of the image and also translate the syn-thetic pinhole calibration points p̂ij to model the cam-era translation parallel to the calibration surface.
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Figure 2.5: Plots of (�̂ij ; �ij) under rotations of 0.8 radians around a) (left): the u axis, b) (center) the v axisand c) (right): the n axis.5.1 Convergence AnalysisIn order to study the convergence rate of the calibrationmethod, we monitored the values of the error function�2 with respect to the number of iterations performedin the minimization procedure using the Polak-Ribiereconjugate gradient technique. As expected, the num-ber of required iterations to converge to the solution isproportional to the distance of the calibration parame-ters to the initial search values. We used a tolerance of1� 10�8 on convergence and we computed the variousderivatives of the error function �2 with 5-point di�er-ences with intervals of 0.2 image units for translationand intervals of 0.0002 radians for rotations. Our ex-periments demonstrate that convergence rates are steepand, in general, 40 to 60 iterations are su�cient to ob-tain adequate calibration parameters.5.2 Calibration of Spherical ImagesWe have applied our calibration procedure to both ofour spherical cameras and determined their calibrationparameters. Figure 5.6 shows the calibration images,the spherical points detected from them, and the poly-nomial reconstruction of those detected points.As �gure 5.6c demonstrates, our spherical camera Ahas a serious assembly misalignment. The yaw angle isin excess of 0.16 radians. However, spherical camera Bdoes not su�er from such misalignments and Figure 5.6fshows a quasi fronto-parallel polynomial reconstructionof the detected spherical calibration points. In the caseof camera A, the misalignment of the CCD array is vis-ible by careful visual examination of the device. How-ever, these misalignments can be easily corrected byappropriate rotations of the points to compensate forthe pitch and yaw angles of the CCD sensor array.

6 ConclusionSpherical cameras are variable-resolution imaging sys-tems that have been recognized as promising devicesfor autonomous navigation purposes, mainly becauseof their wide viewing angle which increases the capa-bilities of vision-based obstacle avoidance schemes. Inaddition, spherical lenses resemble the primate eye intheir projective models and are biologically relevant.We presented a novel method for spherical-lens cameracalibration which models radial and tangential distor-tions of the lens and determines the optical center andthe angular deviations of the CCD sensor array withina uni�ed numerical procedure. Contrary to other meth-ods, there is no need for special equipment such as low-power laser beams or non-standard numerical proce-dures for �nding the optical center. Numerical exper-iments are presented and the results have shown ade-quate convergence rates. The method was successfullyapplied to our pair of spherical cameras and allowed usto diagnose a severe CCD array misalignment of cameraA.References[1] R. L. Anderson, N. Alvertos, and E. L. Hall. Omni-directional real time imaging using digital restora-tion. SPIE High Speed Photograph, 348, 1982.[2] S. Baker and S. K. Nayar. A theory of catadioptricimage formation. In Proceedings of ICCV, pages35{42, Bombay, India, January 1998.[3] A. Basu and S. Licardie. Alternative modelsfor �sh-eye lenses. Pattern Recognition Letters,16(4):433{441, 1995.
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