
Computing Multiple Image MotionsS. S. Beauchemin, K. Daniilidis and R. BajcsyGRASP LaboratoryDepartment of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphia PA 19104-6228 USAAbstractThe computation of image motion for the purposes ofdetermining egomotion is a challenging task as im-age motion includes discontinuities and multiple valuesmostly due to scene geometry, surface translucency andvarious photometric e�ects such as surface re
ectance.We present algorithms for computing multiple imagemotions arising from occlusion and translucency whichare capable of extracting the information-content of oc-clusion boundaries and distinguish between those andadditive translucency phenomena. Sets of experimen-tal results obtained on synthetic images are presented.These algorithms are based on recent theoretical resultson occlusion and translucency in Fourier space.1 IntroductionThe importance of motion in image processing cannotbe understated: in particular, approximations to imagemotion may be used to estimate 3D scene propertiesand motion parameters from a moving visual sensor,to perform motion segmentation, to compute the focusof expansion and time-to-collision, to perform motion-compensated image encoding, to compute stereo dis-parity and to measure biological parameters in medicalimagery [1]Based on recent theoretical developments in discon-tinuous motion, we devise multiple motion algorithms.We consider 1D and 2D signals, adopt a constant modelof velocity and use a robust statistical procedure toextract multiple motions from local frequency spectra.The motion information provided by the algorithms in-cludes single velocity, multiple (2) velocities, assessmentof transparency versus occlusion, and upon occlusionevents, the orientation of the occlusion boundary andthe identi�cation of the occluding signal.

1.1 Literature SurveyMany phenomena may cause multiple image motions.Occlusions, translucencies and various photometric ef-fects such as specularities are among probable causes.In addition, occlusions contain valuable informationconcerning the geometry of the scene and may be usedto decouple optical 
ow �elds into their rotational andtranslational components, identify depth discontinu-ities, segment the scene with respect to motion and soon.Computing multiple motions is a complex and rarelyundertaken task. Indeed, most of the existing optical
ow methods that have appeared in the literature makean explicit use of the optical 
ow constraint equationrITv � It = 0; (1.1)where rI = (Ix; Iy)T is the spatial intensity gradientand v = (u; v)T is the image velocity. At motion dis-continuities, where the information content of a signalmostly resides, the use of (1.1) becomes problematic asthe single motion hypothesis is violated. Area-basedand feature-based correlation techniques are equallysensitive to occlusion as local image structures andfeatures appear and disappear from one image to thenext. To further complicate matters, regularizationtechniques which impose a degree of continuity to op-tical 
ow are also clearly inadequate over occlusionboundaries. However, in the more recent research inoptical 
ow, the non-linear, discontinuous and multiple-valued nature of image motion in the coordinates of theimage plane has been recognized [1].In order to allow multiple motion events in optical
ow estimation processes, a number of strategies havebeen devised, such as strong intensity gradients actingas inhibitors of 
ow coherence [8] and robust estimatorsdesigned to capture dominant motions [3]. Other tech-niques such as clustering [9], superposed motion lay-ers and distributions [10], parametric models of motionwith discontinuous functions [4] and mixtures of prob-ability densities [7] have appeared.1



Our approach emanates from recent theoretical re-sults [2] describing the Fourier structure of occlusionand translucency phenomena for constant and linearmodels of optical 
ow.1.2 Models of Optical FlowThe optical 
ow function may be expressed as an ordern function of the image coordinates. Generally, we maywrite the Taylor series expansion for a ith velocity as:vi(x; t) = pXj=0 qXk=0 rXl=0 @j+k+lvij!k!l!@xj@yk@tlxjyktl; (1.2)where p + q + r � n. For instance, the �rst-order ex-pansion is written as v(1)i (x; t) = Jix+ ait, whereJi = � ai1 ai2bi1 bi2 �is the Jacobi matrix and aTi = �(ai3; bi3) is transla-tion1. We adopt in what follows a constant model ofoptical 
ow2.2 Structure of OcclusionWe proceed to describe the structure of occlusion eventsin the frequency domain for 1D and 2D signals com-posed of an arbitrary number of distinct frequencies.Let I1(x) and I2(x) be 1D functions satisfyingDirichlet conditions such that they may be expressedas complex exponential series expansions:I1(x) = 1Xn=�1 c1neink1xI2(x) = 1Xn=�1 c2neink2x; (2.3)where n is integer, c1n and c2n are complex coe�cientsand k1 and k2 are the fundamental frequencies of bothsignals.Let I1(x; t) = I1(v(0)1 (x; t)) and I2(x; t) =I2(v(0)2 (x; t)). The frequency spectrum of the occlusionis:̂I(k; !) = � 1Xn=i�1 c1n�(k � nk1; ! + nk1a1)+ (1� �) 1Xn=�1 c2n�(k � nk2; ! + nk2a2)1We use a negative translational rate without loss of generalityand for mere mathematical convenience.2The constant model may be simply de�ned as a linear modelwith Ji = I, yielding v(0)i (x; t) = x� ait.

+ i 1Xn=�1�c2n�(ka1 + ! � nk2�a)(k � nk2)� c1n�(ka1 + !)(k � nk1) � ; (2.4)where �a = a1 � a2.In the 1D case, equation (2.4) reveals that the fre-quency spectra of both signals are preserved to withinscaling factors. In addition, the Dirac delta functions�(ka1+!) and �(ka1+!�k2�a) constitute linear spec-tra, intersecting the frequencies of both the occludingand occluded signals, and are oriented in the directionof the constraint line pertaining to the occluding signal.Figure 2.1 shows a typical example with 1D translatingsinusoids in an occlusion scene.In the 2D case, equation (2.7) shows similarities with(2.4). The frequency spectra are planar and preservedto within scaling factors under occlusion and the distor-tions cast by the occlusion boundary �t oriented planesparallel to the plane containing the spectrum of the oc-cluding signal.Let I1(x) and I2(x) be 2D functions satisfyingDirichlet conditions such that they may be expressedas complex exponential series expansions:I1(x) = ~1Xn=� ~1 c1neixTNk1I2(x) = ~1Xn=� ~1 c2neixTNk2 ; (2.5)where n = (nx; ny)T and N = nT I are integers, xare spatial coordinates, k1 = (k1x; k1y)T and k2 =(k2x; k2y)T are fundamental frequencies and c1n and c2nare complex coe�cients. Let I1(x; t) = I1(v(0)1 (x; t)),I2(x; t) = I2(v(0)2 (x; t)) and the occluding boundary belocally represented by:U(x) = � 1 if xTn1 � 00 otherwise, (2.6)where n1 is a vector normal to the occluding boundaryat x. The frequency spectrum of the occlusion is:Î(k; !) =� ~1Xn=� ~1 c1n�(k�Nk1; ! + aT1Nk1)+(1� �) ~1Xn=� ~1 c2n�(k�Nk2; ! + aT2Nk2)�i ~1;Xn=�~1�c1n�((k�Nk1)Tn?1 ;kT a1 + !)(k�Nk1)Tn1



+ c2n�((k�Nk2)Tn?1 ;kT a1 + ! ��aTNk2)(k�Nk2)Tn1 �(2.7)where �a = a1 � a2. Equation (2.7) is a generaliza-tion of equation (2.4) from 1D to 2D signals and itsgeometric interpretation is similar. For instance, fre-quencies (Nk1;�aT1Nk1) and (Nk2;�aT2Nk2) �t theconstraint planes of the occluding and occluded signals,de�ned as kT1 a1 + ! = 0 and kTa2 + ! = 0. In thedistortion term, the Dirac � function with arguments(k � Nk2)Tn?1 and kT a1 + ! � �aTNk2 represent aset of lines parallel to the constraint plane of the oc-cluding signal kTa1+! = 0 and, for every discrete fre-quency Nk1 and Nk2 exhibited by both signals, thereis a frequency spectrum �tting the lines given by theintersection of planes kT a1 + ! � �aTNk2 = 0 and(k �Nk1)Tn?1 = 0. The magnitudes of these spectraare determined by their corresponding scaling functionsc1n[(k�Nk1)Tn1 ]�1 and c2n[(k�Nk2)Tn1 ]�1.3 Estimation of Multiple ImageMotionEquations (2.4) and (2.7) provide a model of the Fourierspectrum at an occlusion boundary. We devise sev-eral algorithms operating on local Fourier transformswhich are capable of extracting multiple velocity mea-surements along with the information-content of occlu-sion boundaries.3.1 1D AlgorithmGiven a frequency measurement (k̂j ; !̂j), its cor-responding velocity estimate is given by v̂i =(�!̂j=k̂j ; 1)T . In optimal conditions, the non-zero spec-trum of a purely translating image signal should be en-tirely consistent with its velocity. That is to say, everyfrequency measurement (k̂j ; !̂j) should be consistentwith vi, the true signal velocity. However, owing tomultiple factors such as acquisition noise, signal defor-mations and deviations from the locally constant veloc-ity model, it may be that some variablility in the degreeof agreement between measurements and the true ve-locity exists.In light of this, an error metric, corresponding tothe angular deviation between a measurement m̂j =(k̂j ; !̂j) and an estimate of the ith velocity v̂i may bede�ned as [7]�(m̂j ; v̂i) = sin�1 m̂Tj v̂ikm̂jk2kv̂ik2! : (3.8)
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θFigure 3.2: The geometry of the angular error measure.The line de�ned by k̂j = (k̂j ; !̂j)T should be perpendicu-lar to the line parallel to vi = (�!j=kj ; 1)T , as depictedby vector k̂j = (kj ; !j)T .In addition, it is mathematically convenient to simplifythe error metric and use the sine of the angle as theamount of deviation:�(m̂j ; v̂i) = m̂Tj v̂ikm̂jk2kv̂ik2 : (3.9)Under the assumption that the angular error is nor-mally distributed, we de�ne a mixture model of normaldistributions to account for multiple motions. ConsiderG to be the set of measurements m̂j, j = 1; : : : ; n. Theprobability density function for m̂j 2 G is representedby the mixture of g normal distributions:f(m̂j;  ) = gXi=1 �ifi(m̂j ; �); (3.10)where fi(m̂j ; �) is a normal probability density func-tion,  = (�1; : : : ; �g ;v1; : : : ;vg)T is the vector of themixture parameters and � = (v1; : : : ;vg)T is the vectorof normal distribution parameters. �i is the is the prob-ability of m̂j to be from normal distribution fi. The �iare mixture probabilities and thus must satisfygXi=1 �i = 1 (3.11)In addition, the mixture parameters � must satisfy thelikelihood equationgXi=1 nXj=1 �ij@ ln fi(m̂j ;�)@� = 0 (3.12)which yields the constraints�i =Pnj=1 �ijn and vi =Pnj=1 �ijm̂?jn�i ; (3.13)where �ij is the posterior probability that m̂j belongs tofi and m̂?j = (�!̂j=k̂j ; 1)T [7]. In this mixture model,



Figure 2.1: (from left to right): a) Gaussian-windowed 1D signal with sinusoidals acting as occluding andoccluded surfaces. The occluding signal has spatial frequency k1 = 2�16 and velocity v1 = (1; 1). The occluded signalhas frequency k2 = 2�8 and velocity v2 = (�1; 1). b) Fourier spectrum of a). c) Gaussian-windowed 2D signal withsinusoidals acting as occluding and occluded surfaces. The occluding signal has spatial frequency k1 = ( 2�16 ; 2�16 )and velocity v1 = (1; 1; 1). The occluded signal has frequency k2 = ( 2�8 ; 2�8 ) and velocity v2 = (�1;�1; 1). d)Fourier spectrum of c).we hypothesize homoscedasticity, that is to say, the nor-mal distributions within the mixture share the samestandard deviation, which we consider as a constant.We also use an outlier detection mechanism based onJepson and Black's model. We �rst pose the hypothesisthat outlying measurements are uniformly distributedover the parameter space of the mixture, and thus weuse a constant measure for the outlier probability ofa measurement. We only update a mixture propor-tion for those. Constraints m̂j at a predetermined dis-tance from other distributions should be considered asnoisy measurements and not enter the velocity estima-tion process. The constant probability of observing anoisy measurement can be expressed as1p2��v e��22�2n ; (3.14)from which we note that measurements at � standarddeviations from the means of the normal distributionsare considered as corrupted by noise.Further, the magnitude of measurements m̂j are rel-evant as the frequencies composing the distortion termsare typically smaller in magnitude than the frequenciesof the signals from which they originate. In light of this,we incorporate the magnitude as the strength of mea-surements by replacing n, the number of measurementsbyPnj=0 �(m̂j), where � is a measure of the magnitudeof the local Fourier transform at m̂j.With the hypothesis of homoscedasticity, constantstandard deviation and uniform distribution of noisymeasurements, we establish the iterative equations forthe Expectation-Maximization algorithm. The expec-tation step is the computation of posterior probabilities

for the normal distributions, which we write as�̂ (k)ij = �̂(k)i e �12�2v �2(m̂j;v̂i)Pgt=1 �̂(k)t e �12�2v �2(m̂j;v̂t) + �̂(k)0 e��22�2n (3.15)for i = 1; : : : ; g and j = 1; : : : ; n and, for the uniformdistribution of noisy measurements, we write�̂ (k)0j = �̂(k)0 e��22�2vPgt=1 �̂(k)t e �12�2v �2(m̂j;v̂t) + �̂(k)0 e��22�2n (3.16)for j = 1; : : : ; n. The equations for the maximizationstep, in which the parameters of the distributions areupdated, are written as follows for the meansv̂(k+1)i = Pnj=1 �̂ (k)ij �(m̂j)m̂?j�̂(k)i Pnj=1 �(m̂j) (3.17)for i = 1; : : : ; g, and the mixture proportions are up-dated as �̂(k+1)i = Pnj=1 �(m̂j)�̂ (k)ijPnj=1 �(m̂j) (3.18)for i = 0; : : : ; g.Figure 3.3a shows an example of observations ran-domly chosen from a superpopulation composed of 2angular normals and a uniform distribution. The mix-ture parameters are  = (�1 = 0:4; �2 = 0:4; v1 =1; v2 = �1)T for the normals and  = (�0 = 0:2) forthe uniform distribution. An EM algorithm with an-gular error measure (3.9) was applied to this set of ob-servations. After 15 iterations the algorithm convergedto �0 = 0:182, �1 = 0:411, �2 = 0:406, v1 = 1:017 andv2 = �1:022. Figures 3.3b and c show observations forwhich the �nal posterior probabilities �ij are above 0.95
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Figure 3.3: a (left): Mixture of two angular normals randomly generated with �0 = 0:20, �1 = 0:40, �2 = 0:40,v1 = (1; 1), v2 = (�1; 1) and �v = 0:075 radians. b) (center): EM results for observations with �1j > 0:95and c) (left): with �2j > 0:95. The algorithm converged to �0 = 0:182, �1 = 0:411, �2 = 0:406, v1 = (1:017; 1)and v2 = (�1:022; 1) in 15 iterations. Measurements at a distance � = 2:5 standard deviations are considered asoutliers.for i = 1; 2. Thresholding on the posterior probabilitiesallows to associate the observations with the variousprobability density functions composing the mixture.In order to identify the spectra associated with oc-cluding boundaries, we �rst �nd peak frequency mea-surements for both signals. That is to say, we �ndfor signal t, the frequency m̂t such that �tk > �ik fort 6= i and �(m̂t) is maximal and determine the strengthof measurements m̂j along the direction perpendicularto the hypothesized occluding velocity at the peak fre-quency of the hypothesized occluded signal. Therefore,two tests are performed in order to verify which of bothhypotheses is the correct one.To test for the signal corresponding to velocity vi asoccluding, the procedure is to �rst consider only thosemeasurements m̂j belonging to the uniform distributionof the mixture: �0j > �ij , for i = 1; 2 and j = 1 : : : n,as determined by the EM algorithm and the peak fre-quency of the signal corresponding to velocity vt, wheret 6= i. We then proceed with the computation of thestrengths of measurements con�rming this hypothesis.Among measurements belonging to the uniformnoise distribution, we compute their posterior proba-bility of being part of the distortion spectra cast by thehypothesized occlusion as:�̂ij(m̂t; v̂i) = e �12�2v �2((m̂j�m̂t);v̂i)e �12�2v �2((m̂j�m̂t);v̂i) + e��22�2n : (3.19)We also determine the posterior probabilities of themeasurements to be from the uniform noise distribu-

tion to the exclusion of the spectra of the occlusion as:�̂0j(m̂t; v̂i) = e��22�2ne �12�2v �2((m̂j�m̂t);v̂i) + e��22�2n : (3.20)Mixture proportions may be obtained from these poste-rior probabilities that assess the hypothesis under test.These proportions are computed as:�̂i(v̂i) = Pnj=1 �(m̂j)�̂ij(m̂t;vi)Pnj=1 �(m̂j) (3.21)for i = 0; 1. Thus, if velocity v̂i is occluding, then thestrengths of measurements con�rming this hypothesisoutnumber those pertaining to its contrary and thus�i(v̂i)�0(v̂i) > �i(v̂t)�0(v̂t) : (3.22)Hence, various hypothesis-testing methods may be ap-plied to determine the image events giving rise to mul-tiple velocities.3.2 2D AlgorithmThe algorithm for 2D signals is essentially similar to the1D algorithm we described. The measurements m̂j =(kxj ; kyj ; !j)T and velocity estimates v̂i = (vx; vy; vt)Tare used in the error metric (3.9) to deterimine theposterior probabilities �ij , as is the case with the 1Dalgorithms. However, the choice of velocity estimatesdi�ers substantially. In the case of 2D signals, the ve-locity estimates at each EM iteration must maximize



the numerator exponential of (3.15). In this case, wefollow the approach adopted by Jepson and Black [7],and consider the square of the error metric (3.9) asthe equation for which the solutions yield velocity esti-mates. We observe that �2(m̂j ; v̂i) may be written inmatrix form as (mTj vi)2 = vTi Mjvi (3.23)where Mj = m̂jm̂Tj . By selecting the eigenvector cor-responding to the minimum eigenvalue ofMj for vi, weminimize (3.23). Since Mj is real and symmetric, itseigenvalues are real and non-degenerate and the eigen-vectors form an orthogonal basis in the space of mea-surements. In light of these observations, we de�ne�(k+1)i = Pnj=1 � (k)ij �(m̂j)MjPnj=1 �(m̂j) (3.24)as the matrix from which the velocity estimate v(k+1)iis to be obtained in the form of the eigenvector e(k+1)icorresponding to the minimum eigenvalue e(k+1)i of �i.The minimum eigenvalue holds information about thevelocity estimate obtained from its corresponding eigen-vector. A zero value for ei indicates that the velocitymeasurement is normal, whereas a non zero value in-dicates a full velocity measurement [5]. To see this,consider a set of observations consisting of collinearmeasurements, consistent with a normal velocity. Itis observed that in such circumstances, the lines of ma-trix �i are linearly dependent, leading to a minimumeigenvalue of value zero. Thus, the �nal eigenvaluesei contain information on the nature of the measuredvelocities that is very relevant in most uses of imagevelocity.Under the hypothesis of a straight-edged occlusionboundary, its normal may be estimated from the fre-quency structure of the occlusion. To perform this es-timation, the algorithm must recover the orientation ofthe spectrum cast by the occlusion about the maximumfrequency of the occluded signal, within a plane parallelto that of the occluding signal. To perform this estima-tion, it is necessary to include an EM iteration whichconverges to this linear orientation within the speci�edconstraint plane.We consider only those measurements which areconsistent with the plane containing the peak frequencym̂t of the occluded signal and perpendicular to the oc-cluding velocity vi, that is to say, we �nd m̂j�m̂t suchthat �ik > �tk, for t 6= k. We proceed with the computa-tion of posterior probabilities given an initial estimaten̂(0) of the orientation of the linear spectra cast by the

occlusion:�̂ (k)ij = �̂(k)i e �12�2v �2((m̂j�m̂t);n̂)Pgt=1 �̂(k)t e �12�2v �2((m̂j�m̂t);n̂) + �̂(k)0 e��22�2n :(3.25)�̂ (k)0j = �̂(k)0 e��22�2vPgt=1 �̂(k)t e �12�2v �2((m̂j�m̂t);n̂) + �̂(k)0 e��22�2n (3.26)where � is the error measure (3.8). The estimate of thespectral orientation and the mixture proportions areupdated as:n̂(k+1) = Pnj=1 �̂ (k)ij �(m̂j)(m̂j � m̂t)�̂(k)i Pnj=1 �(m̂j) (3.27)�̂(k+1)i = Pnj=1 �̂ (k)ij �(m̂j)Pnj=1 �(m̂j) (3.28)4 ExperimentsWe performed numerical experiments on synthetic si-nusoidal imagery composed of four 1D occlusion scenesand one 2D occlusion sequence, as described by Figure4.4. The images used in these experiments are virtuallyfree from noise. Local frequency measurements are ob-tained for an image location by computing a local FastFourier Transform within a region of side size 32. Weobserved that 30 iterations were su�cient for the EM al-gorithm to converge. The initial estimates for velocitiesand mixture proportions may be chosen randomly, butwe prefer to have initial velocity estimates set as apartas possible to avoid convergence of both estimates toa single peak. When the EM iterations begin, we set�v to 0.2618 radians, or 15 degrees. At each step, wedecrease �v to obtain a �nal value of 0.01745, or 1 de-gree. It is observed that a larger value for the standarddeviation during the �rst iterations brings the initialvelocity estimates in the neighborhood of the true pa-rameters while a smaller value for the last iterationsimproves the accuracy of the �nal estimates. A valueof 2.5 for � and 1.0 for �n are chosen for the uniformdistributions. It was experimentally determined thatin order to assess the presence of multiple motions, themixture probabilities must satisfy�i�0 > �1; (4.29)where �1 = 0:3. In addition, to assess velocity v̂i asoccluding, we required that���� �i(v̂i)�0(v̂i) � �i(v̂t)�0(v̂t) ���� > �2; (4.30)



Figure 4.4: Synthetic imagery and results with k1 and v1 occluding. (top to bottom): 1D imagery a) k1 = 2�16 ,k2 = 2�8 , v1 = (1; 1) and v2 = (�1; 1). b) k1 = 2�16 , k2 = 2�8 , v1 = (1; 1) and v2 = (0; 1). c) k1 = k2 = 2�16 ,v1 = (0:5; 1) and v2 = (�1; 1). d) k1 = k2 = 2�16 , v1 = (0:5; 1) and v2 = (�0:75; 1). e) 2D imagery k1 = ( 2�16 ; 2�16 ),k2 = ( 2�8 ; 2�8 ) v1 = (1; 1; 1) and v2 = (�1;�1; 1). (left to right): a) Synthetic image. b) Optical 
ow. c)Multiple velocities. d) Occluding velocities. e) Occluded velocities.where �2 = 1:0 � 10�3. Figure 4.4 shows the resultsobtained on the occlusion scenes. These optical 
ow�elds are virtually free from error, due to the perfect nature of the synthetic imagery. However, we have ob-served that the degree to which these algorithms arecapable of identifying multiple velocities that are rela-



tively similar in their orientation is not very satisfying.The velocities must be at least 15 to 20 degrees apart inorientation for the algorithms to yield a positive assess-ment of multiple velocities. Issues such as the valuesof the various standard deviations for the mixture andthe orientations of the initial estimates have a de�nitein
uence on this phenomenon. One potential solutionto obtain better orientational resolution would be toperform several EM iterations in parallel with di�erentvalues for their initial estimates and then proceed withan analysis of the �nal convergence values.5 ConclusionThe nature of discontinuous image motions in Fourierspace has long been unclear. The algorithms pro-posed in this contribution are based on a �rm theoret-ical framework which describes the coherent behaviorof occlusion events in Fourier space. However, openquestions abound: Theoretically, the structure of pla-nar motion, quadratic in the imaging plane, remainsto be established in Fourier space. In addition, thealgorithms proposed herein may serve as a �rst stageinto the perceptual grouping of velocities, allowing toidentify the occluding and occluded signals not onlyat occluding boundaries but within regions exhibitingcoherent motions, and therefore leading to performingmotion-based image segmentation. Further, Occlusiondetection operators could also be developed within thecontext of this theoretical framework and unreportedexperiments conducted with occlusion-tuned Gabor �l-ters on a 1D pair of translating signals show this pos-sibility.Experimentally, the limiting conditions under whichthe current techniques fail must be established. For in-stance, the degree of multiple velocity resolution andthe factors in
uencing it must be identi�ed. In its cur-rent state, the experimental evaluation only con�rmsthat noise-free imagery under optimal conditions yieldnoise-free results. However, it has been clear for sometime that a number of vision algorithms fail to meetthis fundamental criterion [1].To conclude, we have demonstrated the feasibility ofcomputing discontinuous motions and other measure-ments such as the local identi�cation of occluding ve-locities and occlusion boundary normals, translucencyphenomena and the disambiguation of occluding signalssu�ering from the aperture problem. The theoreticalframework under which these algorithms have been de-vised constitutes a foundation for further research inmotion analysis. Indeed, we strongly believe that fur-ther developments in the �eld of optical 
ow and motionanalysis ought to be based on �rmly established theo-
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