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Abstract: With the emergence of intelligent Advanced Driving Assistance Systems (i-ADAS), the need for effective

detection of vehicular surroundings is considered a necessity. The effectiveness of such systems directly

depends on their performance in various environments such as rural and urban roads, and highways. Most of

the current lane detection techniques are not suitable for urban roads with complex lane shapes and frequent

occlusions. We propose a map-based lane detection approach which can robustly detect the lanes in urban and

rural environments, and highways. We also present an algorithm for detecting obstacle-free areas in detected

lanes based on the stereo depth maps of driving scenes. Experiments show that our approach reliably detects

lanes and obstacle free areas within them, even in case of partially occluded or worn-off lane markers.

1 INTRODUCTION

Today, almost every new vehicle has some form

of Advanced Driving Assistance System (ADAS).

From adaptive cruise control, collision avoidance, and

lane crossing warning systems to parking assistance,

ADAS has made driving a safer and more enjoyable

task. While a simple driving assistance system still

requires a wealth of information on the state of the

vehicle and its relationship to the immediate environ-

ment, intelligent ADAS requires even more, including

information on the state of the driver. Furthermore,

the relative position and speed of other vehicles (and

obstacles) constitute essential informational elements

in the determination of lane-based safe and driveable

areas directly located in front of the vehicle. In this

contribution, we present an innovative lane detection

system which combines GPS information and a global

lane map with a forward facing vehicular stereo sys-

tem to achieve robust lane detection. In addition, the

stereo depth map enables the detection of lane-based,

obstacle-free areas.

Lane detection may appear trivial, at least in its

basic setting. For instance, a relatively simple Hough

transform-based algorithm can be used to detect the

host lane for a short distance ahead without any track-

ing. This method proves effective in roughly 90%

of the highway cases (Borkar et al., 2009). How-

ever, lane detection is considered a very challenging

task when lanes other than the host one, obstacles

of all kinds, and sharp turns are taken into account.

The absence of lane markers (or worn-off ones), var-

ious lane shapes and sizes, occlusion, illumination

changes, and weather conditions are among the rea-

sons why lane detection is not as simple as it seems.

A recent lane and road boundary detection survey

(Hillel et al., 2012) explored a large body of research

on lane detection, including methods using gradient-

based feature detection (Samadzadegan et al., 2006;

Nieto et al., 2008; Sawano and Okada, 2006), steer-

able filters (McCall and Trivedi, 2006), box filters

(Huang et al., 2009; Wu et al., 2008), and learning-

based lane pattern recognition (Cheng et al., 2006).

Lane models, such as straight lines (Kim, 2008;

Pomerleau, 1995; Rasmussen and Korah, 2005),

parabolic curves (Huang et al., 2009; McCall and

Trivedi, 2006), semi-parametric formulations such as

splines (Kim, 2008), or active contours (Sawano and

Okada, 2006) are found in the literature. Differ-

ent model-fitting methods have been adopted includ-

ing RANSAC (Sawano and Okada, 2006), particle

swarms (Zhou et al., 2005), energy-based optimiza-

tion (Sawano and Okada, 2006), genetic algorithms

(Samadzadegan et al., 2006), and more. Despite this

vast body of research, there are problems which yet

remain to be satisfactorily addressed:

• Lane markings cannot be detected with range

finders or other types of sensing that do not pro-

vide visible spectrum images. Even when sen-

sors are adapted to lane marking detection, exter-

nal problems arise, such as adverse weather, weak

illumination, and worn-off markings, among oth-
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ers. Only a few authors in the literature have used

specialized sensors such as line sensors (Narita

et al., 2003) or GPS (Jiang et al., 2010) to as-

sist the detection process. In this contribution we

demonstrate how GPS and vehicle speed obtained

from the internal network of the vehicle (CAN-

bus) may be used in the design of a robust lane

detection algorithm.

• Except in a few instances (Kim, 2008; Huang

et al., 2009), in almost the entire lane detection

literature, lane models are not taking splitting and

merging lanes (such as left turn lanes or open-

ing and closing lanes) into account. Models often

consist of parallel lanes without any distortion or

starts and end to them. We have used a very sim-

ple yet flexible way of representing lanes such that

all types of lanes can be represented and detected

in most situations.

• Current lane detection algorithms are usually de-

signed and tested either on highways or rural

roads where sharp changes in lane position and

orientation are not often observed. Our ap-

proach was tested successfully in dense urban

areas where sharp turns, vehicle clutters, lane

marker coverage, buildings, or other urban ar-

tifacts distract conventional lane detection algo-

rithms.

• Most times, the most important lane from the

point of view of the detection process is the host

lane. However, in some cases we are interested

in being able to describe a more complex environ-

ment such as the sum of lines adjacent to the host

one.

We first provide a map-based framework which

uses the GPS, vehicular speed, and a pre-loaded digi-

tal lane map as inputs to the lane detection algorithm.

We then present the lane feature detection mechanism

together with a particle swarm based tracking algo-

rithm which fits the map with the lanes in the images.

Subsequently, we use a simple yet effective stereo

depth-based obstacle detection by which we find the

obstacle-free lane areas in front of the vehicle.

This contribution is organized as follows: Sec-

tion 2 introduces the global lane map and lane mod-

eling, Section 3 provides lane features and the Parti-

cle Swarm Optimization (PSO) algorithm, Section 4

describes the obstacle detection mechanism and the

method to compute the obstacle-free lane areas, Sec-

tion 5 presents the experimental results, and Section 6

offers a conclusion.

2 LANE MODEL

We present a global lane model for lane detection.

While this type of model is not very common in the

literature, we believe that it provides key advantages

to the development of robust lane detection mecha-

nisms. Using a lane map containing all lane paths

and vehicle location on that map (with GPS or other

methods for localization) facilitates the lane detection

process and results in a more robust approach to the

problem. To form the required lane maps, we anno-

tated lanes in images provided by Google Earth satel-

lite imagery.

In most of the methods found in the existing lit-

erature, it is generally assumed that the lane markers

on the ground plane are approximately parallel. How-

ever, in reality, lane markers do not conform to this as-

sumption. Even on roads where there is no splitting or

merging of lanes, there are frequent lane shape distor-

tions. In addition, most methods are concerned with

the detection of the host lane only. We propose that

modeling multiple lanes can significantly contribute

to the robustness of lane detection algorithms, as any

detectable part of a lane assists in preserving stabil-

ity, especially in the absence of other cues. In light of

this, it is believed that a robust model should have the

following properties:

• The model should address the observed shapes of

lanes.

• In addition to the detection of the host lane, the

model should be able to detect visible adjacent

lanes.

• The model should include splitting and merging

lanes (for instance, left turn lane parts in the center

of the road at intersections or highway merging

lanes)

The model contains a number of splines which

model the entire map of the region of interest. Each

spline is a lane marker and consists of points whose

absolute positions on the map are their GPS latitude

and longitude. In addition, these splines are binned

into grid buckets representing non-overlapping con-

tiguous regions each 500m2 in size. The sum of these

buckets cover the entire lane map.

Each time the vehicle records data (it does so at

30Hz), a search for spline buckets that are most prob-

ably visible occurs, given the vehicle’s position and

orientation, and the front stereo system viewing angle.

The lane marking splines from the selected buckets

are subsequently sorted in space with respect to the

perpendicular of the direction of the vehicle, which

amounts to a sorting from left to right in terms of vis-

ibility from the point of view of the stereo system.
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Figure 1: Images from the map building application a)
(left): Splitting lanes b) (right): Several neighboring lanes

With t sorted lane marking splines hypothetically

forming t − 1 lanes and two out-of-road areas, and

the position (latitude and longitude) and orientation

(obtained with the vector formed from the last two

GPS coordinates) of the vehicle, the positions of the

splines are converted into the reference frame of the

front stereo system (with its origin at the optical cen-

ter of the left camera) in meter units. Each lane

Li ∈ {L0, . . . ,Lt−1} is composed of two lane marking

splines.

In order to specify the modalities of splitting and

merging lanes, the model requires the opening and

closing distances of the lanes from the vehicle. To ad-

dress this, at each time interval, we assign t− 1 vari-

ables LaneCloses(i) for the closing distance of each

lane and another t − 1 variables LaneOpens(i) with

the same size for the opening distance of each lane.

The opening distances for the lanes which are already

open are set to 0, while the closing distances for the

lanes that are not yet closed are set to ∞.

Since we require our model to detect obstacle-free

areas in the lanes, we considered another t + 1 vari-

ables LaneBlocks(i) which contain either ∞ to sig-

nify not blocked or a distance in meters indicating that

there is an obstacle in this lane at that distance.

2.1 Spline Lane Marker Model

We adopted the Catmull-Rom spline formalism for

the lane-marking splines (Catmull and Rom, 1974)

since it interpolates the control points. For each spline

segment between control points Pi and Pi+1, the spline

is obtained with control points Pi−1 to Pi+2 as (Watt

and Watt, 1991):

S(t) =
[

1 t t2 t3
]

M







Pi−1

Pi

Pi+1

Pi+2






(1)

where S(t) is either the x or y element of the coordi-

nates of the curve points, t ∈ [0, . . . ,1] and

M =
1

2









0 2 0 0

−1 0 1
2

0

2 −5 4 −1

−1 3 −3 1









2.2 Generating the Lane Map

Google Earth satellite images are used to build the

lane maps. Satellite images adequately fit our pur-

poses as lane markers are not occluded by vehicles

or other urban structures. These images can also be

addressed directly by longitude and latitude which is

desirable since we use GPS coordinates to locate the

vehicle on the map and extract hypothetically visible

lanes from the stereo images. We created an applica-

tion which uses Google static API to obtain and dis-

play bird’s eye images of the region of interest at re-

quested positions. (see Figure 1). This application

also allows a user to draw and edit splines as lane

markers. The user is also able to navigate through the

map and follow the road while drawing lanes. The re-

sulting data is saved as a set of lane-marking splines,

each of them containing a set of control points. In our

experiments, we extracted a path that was traveled by

the experimental vehicle within the city of London,

Ontario. This path consists of 94 lanes and lane seg-

ments, including right and left turn lanes.

3 MODEL FITTING USING A

PARTICLE FILTER

With the knowledge of the position and orienta-

tion of the vehicle within the lane map, we proceed to

fit our lane model onto the detected lane features in

the left stereo image.

Since the GPS data frequency (1Hz) is signif-

icantly slower than that of the front stereo system

(30Hz), the most recent speed data of the vehicle ob-

tained from the CANBus is used to extrapolate the

most recent available GPS data to coincide with the

most recent image frame from the front stereo sys-

tem. This can be thought as a form of synchroniza-

tion of the GPS device and the front stereo system. In

addition, the GPS data has a relatively large error (we

observed a±5m error), and can be used only as a seed

for the lane fitting process.

With the approximate position and orientation of

the vehicle, the visible parts of the lane map in the

image can be identified. The lane-marking splines

are projected onto the stereo left image and an opti-

mization algorithm attempts to find the best relative
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change in the position and orientation of the vehicle

which best fits the projection with the lane features in

the image. This optimization yields two parameters

δX and δθ which correct the current vehicle position

and orientation obtained form the GPS at each frame.

In order to project the lane markers onto the image

we need to know the ground plane equation parame-

ters in the camera coordinate system. Even though the

ground plane parameters are very stable, we noticed

that including a correction parameter δλ representing

the difference between the ground plane and the x,z
plane of the stereo camera system improves the accu-

racy of the projection process by compensating for the

unexpected tilt variations due to vehicle suspension.

3.1 Ground Plane Estimation

The ground parameters needed for projecting the

lanes on the image can be computed from the depth

map obtained from the stereo system. With rec-

tified stereo images, finding disparities and hence

depth map merely consists of a 1-D search with a

block matching algorithm (our implementation uses

the stereo routines from Version 2.4 of OpenCV) As-

suming that the ground plane equation is of the form

ax+ by+ cz= d (2)

where ~n = (a,b,c) is the unit normal vector to the

plane, we pose

d =
1√

a′2 + b′2 + c′2
(3)





a

b

c



= d





a′

b′

c′



 (4)

With the coordinates of 3D points in the reference sys-

tem of the left camera

(Xi,Yi,Zi) (5)

we can write

Ax = B (6)

and solve for x in the least-squares sense as

x = (AT A)−1AT B (7)

where

A =









X1 Y1 Z1

X2 Y2 Z2

...
...

...

Xn Yn Zn









B =









1

1
...

1









x =





a′

b′

c′





Often times the ground surface leads to inordinate

amounts of outliers, due in part to a lack of tex-

ture from the pavement or other driveable surfaces.

With the sensitivity of least-squares to outliers being

known, we resort to the use of RANSAC in select-

ing the inliers and obtain a robust estimation of the

ground plane coefficients, in the following way:

1. randomly select three points from the 3D points

believed to be representative of the ground plane

2. compute the coefficients of the plane defined by

the randomly selected points using (6)

3. count the points whose distance to the plane is less

than a threshold ε

4. repeat these steps n times where n is sufficiently

large1

5. among the n fits choose the largest inlier set which

respect to ε and compute the coefficients of the

ground plane this time using least-squares as in

(7)

The plane parameters are averaged over a short period

of time in order to stabilize them further. The coeffi-

cients of the plane are recomputed at each new stereo

frame arrival. However, in cases when the number of

depth values is low (poor texture, etc.) or other vision

modules indicate the presence of a near obstacle, the

coefficients of the ground plane are not recomputed,

the previous parameters are used instead.

Introducing the tilt parameter δλ, the ground plane

equation becomes:

ax+ by+(c+ δλ)z= d (8)

3.2 Likelihood Function

The estimation of the best fit parameters between pro-

jected lane-marking splines and the detected lane fea-

tures in the left stereo image is performed by defining

a likelihood function

L(z|x) (9)

where z is a particular parameter fit, and x =
(δx,δθ,δλ). Estimating this likelihood function re-

quires first the detection of lane boundary features

from the stereo imagery. Image features must satisfy

a number of constraints before they can be consid-

ered as lane boundary features, such as being located

on the ground plane, featuring a lighter gray level

than that of the ground plane, and be contained within

two significant gradient values of a predefined width

(which depends on the observed depth).

The algorithm to detect lane boundary features is

formally described in 1 and uses the left camera stereo

image I and its depth map Id as inputs to produce a

1Choosing n > 20 does not significantly improve the
number of inliers with respect to ε.
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Figure 2: a) (left): Raw image b) (center): Low-level lane feature detection c) (right): Features depicted on the image

Gaussian smoothed lane boundary feature image F ,

such as that displayed in Figure 2b. Constants found

in the algorithm are α and β, used for computing the

width expectation of the lane markings Lmax, fac-

tored by their distance from the vehicle. Constants

NL and LD indicate the state of the lane edge search.

NL represents the state in which no lanes are detected,

while LD is its complement. Threshold τh represents

the minimum gradient value required for a transition

from NL to LD. Constant Oh is the minimum varia-

tion in height from the ground plane for a pixel to be

considered part of an obstacle. Oh and τh depend on

imagery and are experimentally determined.

The likelihood function (9) may be estimated us-

ing the extracted lane marking features F and the

sorted (from left to right) lane marking splines con-

tained in the visible spline buckets. The lane-marking

splines from the map are aligned with the direction of

the vehicle by a rotation and then projected on the im-

age plane so as to find a best fit with the detected lane

marking features. Assuming that the Z axis of the 3D

reference frame of the front stereo system of the vehi-

cle makes an angle θ with the Y axis of the 2D refer-

ence frame of the lane map, a spline point Q = (X ,Y )
in the coordinates of the lane map is rotated according

to:
[

Xr

Zr

]

=

[

cos(θ) sin(θ)
cos(θ) −sin(θ)

][

X

Y

]

(10)

With the ground plane equation, we estimate the tilt-

corrected height coordinate in the reference frame of

the stereo system as:

Yr =
d− aXr−Zr(c+ δλ)

b
(11)

where Qr = (Xr,Yr,Zr) is the 3D spline point ex-

pressed in the reference frame of the stereo system.

The projection of Qr onto the stereo imaging plane

is performed by applying the classical projection ma-

trix P obtained for the calibration process of the stereo

system:

Algorithm 1 Lane Feature Detection Algorithm

G← 1D Gaussian row smoothing of I with σ = 0.5
G← horizontal gradient of G using 3-point central

differences

Remove the values corresponding to obstacles from

G using threshold Oh

State← NL

F initialized to 0

for all rows i in I starting from the image bottom

do

Lmax← β− iα
Count← 0

for all column j in I do

if (Gi, j > τh∧ (State = NL∨Count > Lmax))
then

State← LD

end if

if (State = LD)∧ (Gi, j <−τh) then

for k = j−Count→ j do

Fi,k← 1

end for

State←NL

Count← 0

end if

end for

end for

F← 1D Gaussian row smoothing of I with σ = 0.5

w





u

v

1



= P







Xr

Yr

Zr

1






(12)

where w is a scaling factor due to the use of homoge-

neous coordinates.

With the lane feature image F and the projected,

visible lane-marking splines, the likelihood function
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becomes

L(z|x) = ∑
(i, j)∈S

F(i, j) (13)

where S is the set of all projected points of the lane-

marking splines.

3.3 Particle Filtering

With the likelihood function, we need to estimate the

parameters x of the fit as:

x = argmaxL(z|x)x (14)

Solving this optimization problem is not easily

achievable by regular hill-climbing methods due to

the non-concavity of the function. Since the search

space is large, an exhaustive search is prohibitively

expensive while the probability of finding the global

maximum remains low (Talbi and Muntean, 1993).

A particle swarm method may be more appro-

priate. The particle swarm lane detection algorithm

by Zhou (Zhou et al., 2005) is a single image frame

method, which we adapt here as a particle filter work-

ing on a sequence of frames2. Our approach consists

of generating a set of uniformly distributed particles,

each representing a set of possible values for parame-

ters x = δx,δθ,δλ. The likelihood of each particle is

estimated with (14).

At each iteration, each particle is replaced with

a number of newly generated, Gaussian position-

disturbed particles. The number of generated particles

is proportional to the likelihood of the particle they re-

place. Their likelihood are estimated again with (14)

and normalized. This ensures that the stronger parti-

cles generate more particles in their vicinity than the

weaker ones. Particles with normalized likelihoods

lower than a certain threshold are removed and, if the

number of particles becomes less than a threshold, the

process repeats.

These iterations eventually lead to groups of par-

ticles concentrated at the most likely answers in the

search space and the particle with the maximum like-

lihood is chosen as the solution. In addition, keeping

the particles over time makes the particle filter to act

as a tracker for the lane detection mechanism.

4 OBSTACLE DETECTION

With a set of detected lanes represented by pro-

jected splines, the stereo depth map can be used to

2PSO is a population-based stochastic optimization
method first proposed by Eberhart and Kennedy (Kennedy
and Eberhart, 1995).

Figure 3: a)(top-left): Color-coded stereo depth map b)
(top-right): Accumulated projected obstacle points c) (bot-
tom): Obstacle-free area detection

locate obstacles within each detected lane. The in-

puts to the obstacle-free detection algorithm are the

stereo disparity map Id , the classical projection and

re-projection matrices P and D, the ground plane pa-

rameters a, b, c, d, and δλ, and the projected lane-

marking splines. The output consists of the distance

from the vehicle to first obstacle (if present) for each

lane. The algorithm uses constant Oh as previously

defined, and threshold Ot which is the minimum ratio

of obstacle pixels to all pixels across a lane, for each

row in the image.

The first stage of the algorithm consists of detect-

ing pixels whose 3D positions computed as:

W







X

Y

Z

1






= D







u

v

d

1






(15)

are not lying on the ground plane. The distance of the

3D point from the ground plane is obtained as:

Dist = aX + bY +(c+ δλ)Z− d (16)

The algorithm keeps an obstacle map O the size of

the original image. The 3D coordinates of each pixel

whose height from the ground plane qualifies it as an

obstacle is projected onto the ground plane by setting

its Y coordinate according to (11), and then projected
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onto the obstacle map O, using

w





u′

v′

1



= P







X

Yg

Z

1






(17)

where the corresponding image location in O is incre-

mented by one.

The last stage of the algorithm consists of scan-

ning all rows of image O from the bottom. In each

row, between the boundaries of each lane which is not

yet blocked, the values of O at the positions across the

lane are summed up and divided by the total number

of pixels in that lane, forming a lane ratio γ. If this

ratio exceeds threshold Ot , the lane is assumed to be

blocked by an obstacle at that row and the distance

of the obstacle is recorded for that lane. The formal

description of this algorithm is given in 2.

Algorithm 2 Obstacle-Free Zone Detection Algorithm

O initialized to 0

for all O(u,v) do

Compute 3D coordinates of the point in the

stereo reference frame using Id and (15)

Dist← aX + bY +(c+ δλ)Z− d

if Dist > Ot then

Yg← (d− aX− (c+ δλ)Z)/b

Compute (u′,v′) using (17)

O(u′,v′)← O(u′,v′)+ 1

end if

end for

for all rows i in O do

for all lanes do

if lane ratio γ > Ot and lane still open then

Output the lane as a blocked lane at corre-

sponding distance

end if

end for

end for

5 EXPERIMENTAL RESULTS

We applied this approach to a set of sequences

recorded form an instrumented experimental vehicle

(Beauchemin et al., 2010). The implementation of

the technique executes at 15Hz, including the stereo

depth computation, ground plane detection, particle

filtering for lane detection, and obstacle-free area es-

timation. Thirty initial particles for the particle swarm

were used, and the stereo image size was 320 by 240

pixels.

Figure 4: Examples of obstacle-free area detection re-
sults a) (left): Ongoing traffic within the detected lanes b)
(right): Incoming traffic outside of detected lanes

The experiments subjectively demonstrate that the

algorithm is robust to occlusion and partially worn-off

or occluded lane markers and various urban artifacts.

As observed, our technique remains stable, even for

some frames without any evidence of lane markers,

which is very difficult for most of the existing lane

detection approaches. Even in the presence of signif-

icant lane marker occlusions, our approach still prop-

erly detects lanes.

To our knowledge, vehicular imagery with anno-

tated lanes and precise GPS data for the recording ve-

hicle do not exist at this time, preventing an empirical

evaluation of our algorithms. Among our short-term

objectives is to produce such annotated sequences for

comparative purposes. However, problems such as

precisely determining the GPS position of the experi-

mental vehicle for such sequences remain elusive and

need to be surmounted.

One may argue that the requirement for GPS-

addressable, lane-annotated maps limits the areas in

which this approach may be used, which is correct.

However, we believe this approach can be used in

most driving situations, so long as lane-annotated

maps are automatically generated and made avail-

able to instrumented vehicles. Additionally, the con-

fidence measure obtained from thresholding the like-

lihood function may be used to assess the reliability

of detected lanes.

6 CONCLUSION

We proposed a map-based lane detection and

obstacle-free area detection using lane-annotated

maps, particle filtering, and stereo depth maps. Our

main contribution consists of our lane model obtained

from lane-annotated maps, allowing us to represent

irregular, opening, and closing lanes that are often ig-

nored in the current literature. Ironically, these types

of lanes are crucially important for iADAS as they

occur in critical areas such as intersections and merg-
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ing and turning areas which constitute perilous zones.

Our approach uses a robust model that does not en-

tirely depend on an on-board imaging system which

may at times lead astray by the presence of occluding

obstacles and worn-off lane markers.
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