
Cost-Sensitive Test Strategies

Victor S. Sheng, Charles X. Ling
Department of Computer Science

 The University of Western Ontario
London, Ontario N6A 5B7, Canada

{ssheng, cling}@csd.uwo.ca

Ailing Ni
School of Computer Science

Anhui University of Technology
China

Shichao Zhang
Department of Automatic Control
Beijing University of Aeronautics

and Astronautics, China

Abstract
In medical diagnosis doctors must often determine what
medical tests (e.g., X-ray, blood tests) should be ordered for
a patient to minimize the total cost of medical tests and
misdiagnosis. In this paper, we design cost-sensitive
machine learning algorithms to model this learning and
diagnosis process. Medical tests are like attributes in
machine learning whose values may be obtained at cost
(attribute cost), and misdiagnoses are like misclassifications
which may also incur a cost (misclassification cost). We
first propose an improved decision tree learning algorithm
that minimizes the sum of attribute costs and
misclassification costs. Then we design several novel “test
strategies” that may request to obtain values of unknown
attributes at cost (similar to doctors’ ordering of medical
tests at cost) in order to minimize the total cost for test
examples (new patients). We empirically evaluate and
compare these test strategies, and show that they are
effective and that they outperform previous methods. A case
study on heart disease is given.

Introduction
Inductive learning techniques have had great success in
building classifiers and classifying test examples into
classes with a high accuracy or low error rate. However, in
many real-world applications, reducing misclassification
errors is not the final objective, since different error can
cost quite differently. This type of learning is called cost-
sensitive learning. (Turney 2002) surveys a whole range of
costs in cost-sensitive learning, among which two types of
costs are most important: misclassification costs and
attribute costs. For example, in a binary classification task,
the cost of false positive (FP) and the cost of false negative
(FN) are often very different. In addition, attributes
(similar to medical tests) may have different costs, and
acquiring values of attributes may also incur costs. The
goal of learning in this paper is to minimize the sum of the
misclassification costs and the attribute costs.
 Tasks involving both misclassification and attribute
costs are abundant in real-world applications. In medical
diagnosis, medical tests are like attributes in machine
learning whose values may be obtained at cost (attribute
cost), and misdiagnoses are like misclassifications which
may also bear a cost (misclassification cost). When
building a classification model for medical diagnosis from
the training data, we must consider both the attribute costs
(medical tests such as blood tests) and misclassification

Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

costs (errors in the diagnosis). Further, when a doctor sees
a new patient (a test example), additional medical tests
may be ordered at cost to better diagnose or predict the
disease of the patient (i.e., reducing the misclassification
cost). We use the term “test strategy” to describe a process
that allows the learning algorithm to obtain attribute values
at cost when classifying test examples. The goal of the test
strategies in this paper is to minimize the sum of attribute
costs and misclassification costs, similar to doctors’ goal to
minimize the total cost to the patients (or the whole
medical system). A case study on heart disease is given in
the paper.
 In this paper, we first propose an improved decision tree
learning that minimizes the sum of misclassification costs
and attribute costs. We then describe several novel test
strategies to determine what values of unknown attributes
should be obtained, and at what order, such that the total
expected cost is minimum. Extensive experiments have
been conducted to show the effectiveness of our tree
building algorithms and the new test strategies compared
to previous methods.

Review of Previous Work
(Gorry and Barnett 1968) suggested a “myopic approach”
to request more information during decision making, but
the method focuses only on prediction accuracy; there is
no cost involved in getting the information. Cost-sensitive
learning has received extensive attentions in recent years.
Much work has been done in considering non-uniform
misclassification costs (alone), such as (Elkan 2001).
Those works can often be used to solve problem of
learning with imbalanced datasets (Blake and Merz 1998).
Some previous work, such as (Nunez, 1991, Tan 1993),
considers the attribute costs alone without incorporating
misclassification costs. As pointed out by (Turney 2000) it
is obviously an oversight. As far as we know, the only
work considering both misclassification and attribute costs
includes (Turney 1995, Zubek and Dietterich 2002,
Greiner et al. 2002, Ling et al. 2004, Chai et al. 2004). We
discuss these works in detail below.
 In (Zubek and Dieterrich 2002), the cost-sensitive
learning problem is cast as a Markov Decision Process
(MDP). They adopt an optimal search strategy, which may
incur a high computational cost. In contrast, we adopt the
local search similar to C4.5 (Quinlan 1993), which is very
efficient. (Greiner et al. 2002) studied the theoretical
aspects of active learning with attribute costs using a PAC
learning framework, which models how to use a budget to
collect the relevant information for the real-world

applications with no actual data at beginning. (Turney
1995) presents a system called ICET, which uses a genetic
algorithm to build a decision tree to minimize the cost of
tests and misclassifications. Our algorithm is expected to
be more efficient than Turney’s genetic algorithm.
 (Chai et al. 2004) proposed a naïve Bayesian based cost-
sensitive learning algorithm, called CSNB, which reduces
the total cost of attributes and misclassifications. Their test
strategies are quite simple. We propose an improved
decision tree algorithm that uses minimum total cost of
tests and misclassifications as the attribute split criterion.
We also incorporate discounts in attribute costs when tests
are performed together. Most important, we propose a
novel single batch strategy and a Multiple Batch strategy
that, as far as we know, have not been published
previously. Experiments show that our tree-based test
strategies outperform naïve Bayes strategies in terms of the
total cost in many cases (see later sections).
 Our work is also significantly different from the
previous work in attribute value acquisition. (Melville et
al., 2004; 2005) proposed attribute value acquisition
during training, instead of testing as in our paper. Their
algorithm is sequential in nature in requesting the missing
values, instead of in batches. In addition, their goal is to
reduce misclassification errors, not the total cost as in our
paper.

Minimum Cost-Sensitive Decision Trees
We assume that we are given a set of training data, the
misclassification costs, and test costs for each attribute.
(Ling et al, 2004) propose a new cost-sensitive decision
tree algorithm that uses a new splitting criterion of cost
reduction on training data, instead of minimal entropy (as
in C4.5), to build decision trees. The cost-sensitive
decision tree is similar to C4.5 (Quinlan, 1993), except that
it uses total cost reduction, instead of entropy reduction, as
the attribute split criterion. More specifically, the total cost
before and after splitting on an attribute can be calculated,
and the difference is the cost reduction “produced” by this
attribute. The total cost before split is simply the
misclassification cost of the set of examples. The total cost
after split on an attribute is the sum of misclassification
cost of subsets of examples split by the attribute values,
plus the attribute cost of these examples. The attribute
with the maximal positive cost reduction is chosen as the
root, and the procedure recursively applies to the subsets
of examples split by the attribute values.
 We improve (Ling et al, 2004)’s algorithm by
incorporating possible discounts when obtaining values of
a group of attributes with missing values in the tree
building algorithm. This is a special case of conditional
attribute costs (Turney 1995), which allows attribute costs
to vary with the choice of prior tests. Often medical tests
are not performed independently, and when certain
medical tests are performed together, it is cheaper to do
these tests in group than individually. For example, if both
tests are blood tests, it would be cheaper to do both tests
together than individually. In our case we assume that

attributes can be partitioned into groups, and each group
has a particular discount amount. When the first attribute
in a group is requested for testing, the attribute cost is its
original cost. However, if any additional attributes in the
same group are requested for their values, their costs
would be the original costs minus the discounted cost. In
implementing the cost-sensitive decision-tree building
process, if an attribute in a group is selected as a split
attribute, the costs of other attributes in the group are
simultaneously reduced by the discount amount for the
future tree-building process. As the attribute costs are
discounted, the tests in the same group would more likely
be picked as the next node in the future tree building.

A Case Study on Heart Disease
We apply our cost-sensitive decision-tree learning on a
real application example that involves the diagnosis of the
Heart Disease, where the attribute costs are obtained from
medical experts and insurance programs. The dataset was
used in the cost-sensitive genetic algorithm by (Turney
1995). The learning problem is to predict the coronary
artery disease from the 13 non-invasive tests on patients, as
listed in Table 1. The attributes on patients profile, such
age, sex, etc., are also regarded as “tests” with a very low
cost (such as $1) to obtain their values. The costs of the 13
non-invasive tests are in Canadian dollars ($), and were
obtained from the Ontario Health Insurance Program's fee
schedule (Turney 1995). These individual tests and their
costs are also listed in Table 1. Tests such as exang,
oldpeak, and slope are electrocardiography results when
the patient runs on a treadmill, and are usually performed
as a group. Tests done in a group are discounted in costs,
and Table 1 also lists these groups and the discount
amount of each group. Each patient can be classified into
two classes: the class label 0 or negative class indicates a
less than 50% of artery narrowing; and 1 indicates more
than 50%. There are a total of 294 cases in the dataset,
with 36.1% positive cases (106 positive cases).
Table 1: Attribute costs (in $) and group discounts for
Heart disease.

Tests Description Individual
Costs

Group A
discount

Group B
discount

Group C
discount

age age of the patient $1.00
sex sex $1.00
cp chest pain type $1.00
trestbps resting blood pressure $1.00
chol serum cholesterol in

mg/dl $7.27 $2.10
fbs fasting blood sugar $5.20 $2.10

restecg
resting
electrocardiography
results

$15.50

thalach maximum heart rate
achieved $102.90 $101.90

exang exercise induced angina $87.30 $86.30
oldpeak ST depression induced

by exercise $87.30 $86.30

slope slope of the peak
exercise ST segment $87.30 $86.30

Ca number of major vessels
colored by fluoroscopy $100.90

thal finishing heart rate $102.90 $101.90

(a): without group discount (b): with group discount
Figure 1: Cost-sensitive decision trees. Continuous attributes have been discretized and are represented by 1, 2, and so on.

 However, no information about misclassification costs
was given. After consulting a researcher in the Heart-
Failure Research Group in the local medical school, a
positive prediction normally entails a more expensive and
invasive test, the angiographic test, to be performed, which
more accurately measures the percentage of artery
narrowing. A negative prediction may prompt doctors to
prescribe medicines, but the angiographic test may still be
ordered if other diseases (such as diabetes) exist. An
angiographic attribute costs about $600. Thus, it seems
reasonable to assign false positive and false negative to be
$600 and $1,000 respectively.
 When applying the cost-sensitive decision tree algorithm
on the Heart dataset, we obtain the trees as shown in
Figure 1. In the tree, the branch labels (1, 2, …) are
discretized values: the numerical attributes in the dataset
are discretized into integers (1, 2, …) using the minimal
entropy method of (Fayyad and Irani 1993). Figure 1 (a) is
the tree without considering group discounts, while Figure
1 (b) is the tree considering group discounts (as in Table
1). We can easily see that the two trees are very similar,
except for one test in Figure 1 (b), thalach, which replaces
the test restecg in Figure 1 (a). Since tests thal and thalach
belong to the same group, after thal is tested at the full
cost, thalach costs only $1 and is selected after thal when
group discounts are considered. This would clearly reduce
the total cost when the tree in Figure 1 (b) classifies test
examples (see later).
 Also we can see that in general less expensive tests
(attributes) are used in the top part of the trees. The
splitting criterion selects attributes according to their
relative merit of reducing the total cost. When these trees
are presented to the Heart-Failure researcher, he thinks that
they are quite reasonable in predicting artery narrowing.
We will revisit the case study with each novel test strategy
proposed in following sections.

Three Categories of Test Strategies
A “test strategy” is a method to classify a test example
from a cost-sensitive decision tree during which it is
possible to “perform tests”, that is, to obtain values of
unknown attributes, at cost (attribute costs). It mimics the
diagnosis process of doctors in which additional medical

tests may be requested at cost to help their diagnoses
(predicting the disease of the patients).

In this paper we define and study three categories of test
strategies representing three different cases in diagnosis:
Sequential Test, Single Batch Test, and Multiple Batch
Test. For a given test example (a new patient) with
unknown attributes, the Sequential Test can request only
one test (attribute value) at a time, and wait for the test
result to decide which attribute to be tested next, or if a
final prediction is made. The Single Batch Test, on the
other hand, can request one set (batch) of one or many
tests to be done simultaneously before a final prediction is
made. The Multiple Batch Test can request a series of
batches of tests, each after the results of the previous batch
are known, before making a final prediction. Clearly, the
Multiple Batch Test is most general, as the other two are
special cases of it – Sequential Test is when each batch
only contains one test, and Single Batch is when the
number of batches can only be one.
 The three categories of test strategies correspond well to
different cases of diagnosis in the real world. In medical
diagnoses, for example, doctors normally request one set
of tests (at cost) to be done. This is the case of the Single
Batch Test. Sometimes doctors may order a second (and a
third) set of tests to be done, based on the results of the
previous set of tests. This is the case of the Multiple Batch
Test. If doctors only order one test at a time (this can
happen if tests are very expensive and/or risky), this is the
case of the Sequential Test. The goal of these test
strategies again is to minimize the total cost of tests
(attributes) requested and the misclassification costs
associated with the final prediction. In the next three
subsections the three types of test strategies will be
discussed in great detail.

Strategy 1: Sequential Test
We propose a simple Sequential Test strategy (Ling et al.
2004) that directly utilizes the decision tree built to guide
the sequence of tests to be performed in the following way:
when the test example is classified by the tree, and is
stopped by an attribute whose value is unknown, a test of
that attribute is requested and made at cost. This process
continues until the test case reaches a leaf of the tree.

1

2

2

32 1 1

1 1 1

2

2 2

1

2 3

41

2

3

1 2

thal
($102.9)

fbs
($5.2)

restecg
($15.5)

sex
($1)

chol
($7.27)

0

cp
($1)

0

slope
($87.3)

restecg
($15.5)

age
($1)

thal
($102.9)

1 0 11

1 0 0 1 1

1 10 0
21

1

2

2

3 2 11

11 1

2

2 2

1

2 3

4 1

2

3

1 2

thal
($102.9)

fbs
($5.2)

restecg
($15.5)

sex
($1)

chol
($7.27)

0

cp
($1)

0

slope
($87.3)

thalach
($1)

age
($1)

thal
($102.9)

1 0 11

1 0 01 1

1 1 0 0
2 1

According to the leaf reached, a prediction is made, which
may incur a misclassification cost if the prediction is
wrong. Clearly the time complexity of the strategy is only
linear to the depth of the tree.
 Note that Sequential Test is near “optimal” by the nature
of the decision tree built to minimize the total cost; that is,
subtrees are built because there is a cost reduction in the
training data. Thus, the tree’s suggestions for tests should
also result in near minimum total cost in the test case.
Case Study on Heart Disease Continued. We choose a
test example with most attribute values known from the
dataset, as the known values serve as the test results. We
apply Sequential Test on the tree in Figure 1(b) which
considers the group discount to the test case. Assuming all
values are unknown, Sequential Test requests the sequence
of tests as: cp, fbs, thal, and thalach, with a total attribute
cost of $110.10, while the misclassification cost is $0.
Therefore, the total cost for this test case is $110.10.

Strategy 2: Single Batch Test
In Sequential Test described earlier one must wait for the
result of each test to determine which test will be the next
one. Waiting not only agonizes patients in medical
diagnosis, it may also be life threatening if the disease is
not diagnosed and treated promptly. Thus doctors normally
order one set of tests to be done at once. This is the case of
the Single Batch Test. Note that results of the tests in the
batch can only be obtained simultaneously after the batch
is determined.
 In this section we propose a novel Single Batch strategy.
The Single Batch seeks a set of tests to be performed such
that the sum of the attribute costs and expected
misclassification cost after those tests are done is optimal
(minimal). Intuitively, it finds the expected cost reduction
for each unknown attribute (test), and adds a test to the
batch if the expected cost reduction is positive and
maximum (among other tests). This process is continued
until the maximum cost reduction is no longer greater than
0, or there is no reachable unknown attributes. The batch
of tests is then discovered. However, Single Batch is a
guess work. Often some tests requested are wasted, and the
test example may not be classified by a leaf node (in this
case it is classified by an internal node in the tree). The
pseudo-code of the Single Batch is shown here.
 In the pseudo-code, misc(.) is the expected
misclassification cost of a node, c(.) is the attribute cost,
R(.) is all reachable unknown nodes and leaves under a
node, and p(.) is the probability (estimated by ratios in the
training data) that a node is reached. Therefore, the
formula E(i) in the pseudo-code calculates the cost
difference between no test at i (so only misclassification
cost at i) and after testing i (the attribute cost plus the
weighted sum of misclassification costs of reachable nodes
under i). That is, E(i) is the expected cost reduction if i is
tested. Then the node t with the maximum cost reduction is
found, and if such reduction is positive, t should be tested
in the batch. Thus, t is removed from L and added into the
batch list B, and all reachable unknown nodes or leaves of

t, represented by the function R(t), is added into L for
further consideration. This process continues until there is
no positive cost reduction or there is no unknown nodes to
be considered (i.e., L is empty). The time complexity of the
Single Batch is linear to the size of the tree, as each node is
considered only once.

Case Study on Heart Disease Continued. We choose the
same test example to study the Single Batch with the
decision tree in Figure 1(b). The Single Batch suggests a
single batch of (cp, sex, slope, fbs, thal, age, chol, and
restecg) to be tested. The test example did not go into a
leaf, and some tests are wasted. The total attribute cost for
this case is $221.17, while the misclassification cost is 0.
Thus, the total cost for the test case is $221.17.

Strategy 3: Multiple Batch Test
The Multiple Batch Test naturally combines the Sequential
Test and the Single Batch, in that multiple batches of tests
can be requested in sequence. To make the Multiple Batch
Test meaningful, one must assume and provide a “batch
cost”, the extra cost of each additional batch test (there is
no batch cost for the first batch). When the batch cost is
set as 0, then Multiple Batch should become Sequential
Test, as it is always better to request one test at a time
before the next request. In other words, if waiting costs
nothing, one should never request multiple tests at the
same time, as some tests may be wasted (as in Single
Batch), thus increasing the total cost. If the batch cost is
infinitely large, then one can only request one batch of
tests, thus Multiple Batch becomes Single Batch.
 Here we extend Single Batch described in the last
subsection to Multiple Batch. Recall that in Single Batch,
an unknown attribute is added into the batch if the
successive cost reduction of testing it is positive and
maximum among the current reachable unknown
attributes. In Multiple Batch, we include an additional
constraint: attributes added in the current batch must
improve the accumulative ROI (return on investment),
which considers the batch cost. The ROI is defined as

∑
∑

+
=

ostAttributeCBatchCost
ionCostreduct

ROI
.

 The rationale behind this (heuristic) strategy is that
attributes that bring a larger ROI should be worth
including in the same batch test. After the current batch of
tests is determined and tested with values revealed, the test
example can be classified further down in the tree

L = empty /* list of reachable and unknown attributes */
B = empty /* the batch of tests */
u = the first unknown attribute when classifying a test case
Add u into L
Loop

For each i ∈ L, calculate E(i):
 E(i)= misc(i) – [c(i) +∑ ×))(())((iRmisciRp]

 E(t) = max E(i) /* t has the maximum cost reduction */
If E(t) > 0 then add t into B, delete t from L, add R(t) into L
 else exit Loop /* No positive cost reduction */

Until L is empty
Output B as the batch of tests

according to the test results until it is stopped by another
unknown attribute. The same process then applies, until no
more batches of tests are required. The time complexity of
this strategy is linear to the size of the tree, as each node in
the tree would be considered at most once.

The algorithm described above is heuristic but it is close
to the ideal one: if the batch cost is $0, then usually only
one test will be added in the batch, and the strategy is very
similar to the Sequential Test. On the other hand, if the
batch cost is very large, the current batch will grow until
the cost reduction of the remaining unknown attributes is
no longer greater than 0, and the strategy is similar to the
Single Batch. See experimental comparison later.
Case Study on Heart Disease Continued. We apply
Multiple Batch on the same test example with the tree in
Figure 1 (b). Assuming the batch cost is $50.00, the
strategy decides that two batches of tests are needed for the
test case. The first batch has just two tests, cp and fbs.
After the values of cp and fbs are obtained, the second
batch also contains two tests, thal and thalach. The
misclassification cost is 0, while the total attributes costs
for the test case is $161.1 (including the batch cost of
$50.00). Thus the total cost for the test case is also $161.1.
 Note that based on this single test case, we cannot
simply conclude that in general Sequential Test is best,
Multiple Batch is second and Single Batch is worst. The
experimental comparison in the following section will
answer this question.

Experimental Comparisons
To compare the overall performance of the three test
strategies, we choose 10 real-world datasets, listed in Table
2, from the UCI Machine Learning Repository (Blake and
Merz 1998). These datasets are chosen because they are
binary class, have at least some discrete attributes, and
have a good number of examples. To create datasets with
more imbalanced class distribution, two datasets (thyroid
and kr-vs-kp) are resampled to create a small percentage of
positive examples. They are called thyroid_i and kr-vs-
kp_i respectively. Each dataset is split into two parts: the
training set (60%) and the test set (40%). Unlike the case
study of heart disease, the attribute costs and
misclassification costs of these datasets are unknown. To
make the comparison possible, we simply assign certain
values for these costs. We assign random values between
$0 and $100 as attribute costs for all attributes. This is
reasonable because we compare the relative performance
of all test strategies under the same assigned costs. The
misclassification cost FP/FN is set to $2,000/$6,000
($2,000 for false positive and $6,000 for false negative) for
the more balanced datasets (the minority class is greater
than 10%) and $2,000/$30,000 for the imbalanced datasets
(the minority class is less than 10% as in thyroid_i and kr-
vs-kp_i). The group discount of attributes is not
considered. To make the comparison complete, the heart
disease dataset used in the case study (called Heart-D at
Table 2) is also added in the comparison (with its own
attribute costs). For test examples, a certain ratio of

attributes (0.2, 0.4, 0.6, 0.8, and 1) are randomly selected
and marked as unknown to simulate test cases with various
degrees of missing values.

Table 2: The features of 13 Datasets.
No. of Attributes No. of Examples Class dist. (N/P)

Ecoli 6 332 230/102
Breast 9 683 444/239
Heart 8 161 98/163
Thyroid 24 2000 1762/238
Australia 15 653 296/357
Tic-tac- 9 958 332/626
Mushroo 21 8124 4208/3916
Kr-vs-kp 36 3196 1527/1669
Voting 16 232 108/124
Cars 6 446 328/118
Thyroid i 24 1939 1762/167
Kr-vs- 36 1661 1527/134
Heart-D 13 294 188/106

Comparing the Three New Test Strategies
We compare Sequential Test, Single Batch, and Multiple
Batch with the batch cost to be $0, $100 and $200 on the
13 datasets listed in Table 2. The results are presented in
Figure 2. From the figure we can draw several interesting
conclusions. First, when the ratio of missing values
increases, the total cost of all the three strategies also
increases, as expected. This is because it costs more when
requesting more missing values in the test examples.
Second, the total cost of Sequential Test is lowest,
followed closely by Multiple Batch with 0 batch cost
(B=0). As we discussed earlier, Multiple Batch should
become Sequential Test if the batch cost is 0. The small
difference between the two is probably due to the
heuristics used in Multiple Batch. Third, Single Batch is
worse than Sequential Test (and Multiple Batch with B=0).
This is because requesting multiple tests in a batch is a
guess work. Often some tests are requested but wasted,
while other useful tests are not requested, increasing the
total cost. Fourth, Single Batch is better than Multiple
Batch with B=100 and 200. This might be a bit surprising
at first glance. As we discussed earlier, Multiple Batch
should become Single Batch as the worst case when the
batch cost is infinitely large. However, when the batch cost
is large but not infinitely large, usually more than one
batch is requested by Multiple Batch, in which case the
batch cost is added to the total cost. This batch cost is
“extra” to test examples when comparing to Single Batch
(and Sequential Test).

Figure 2: Comparing the total costs for the three new test
strategies. The smaller the total cost, the better.
 To conclude, the experiments in this section confirm our
expectations on the three new test strategies: Sequential
Test is best as it requests only one test at a time before
requesting next. Multiple Batch resembles closely to

350

400

450

500

550

600

650

0.2 0.4 0.6 0.8 1
Ratio of Unknown Attributes

To
ta

l C
os

t

Multiple Batch,B=0
Multiple Batch, B=100
Multiple Batch, B=200
Single Batch
Sequential Test

Sequential Test when the batch cost is zero, and it becomes
worse when the batch cost is large.

Comparing with CSNB Strategies
We first compare our Sequential Test with the sequential
test strategy in naïve Bayes (called NB-Seq in short),
proposed in (Chai et al. 2004), under the same
experimental setting. The average total costs (in $) for the
13 datasets are plotted in Figure 3 (a). We can clearly see
that tree-based Sequential Test outperforms NB-Seq on
average on the 13 datasets (balanced or imbalanced) under
all unknown attribute ratios. This is because Sequential
Test takes advantages of the minimum cost decision tree,
but NB-Seq does not.

 (a): Sequential Test. (b): Single Batch.
Figure 3 (a): Comparing tree-based Sequential Test with
NB-Seq. Figure 3 (b): Comparing tree-based Single Batch
with NB-SinB. The smaller the total cost, the better.
 Next we compare our Single Batch with the naïve Bayes
single batch (called NB-SinB in short) proposed in (Chai et
al. 2004). The average total costs (in $) for the 13 datasets
are plotted in Figure 3(b). From the figure we can see
again that our tree-based Single Batch outperforms naïve
Bayes NB-SinB. The reason is again that the minimum
cost decision tree is utilized when deciding the single
batch, while naïve Bayes has no such structure to rely on.
Last, our tree-based test strategies are about 60 to 300
times faster than naïve Bayes strategies (details not shown
here).

Conclusions and Future Work
In this paper, we present an improved decision tree
learning algorithm with cost reduction as the attribute split
criterion to minimize the sum of misclassification costs and
attribute costs. We then design three categories of test
strategies: Sequential Test, Single Batch, and Multiple
Batch, to determine which unknown attributes should be
tested, and in what order, to minimize the total cost of tests
and misclassifications. The three test strategies correspond
well to three different policies in diagnosis. We evaluate
the performance of the three test strategies (in terms of the
total cost) empirically, and compare them to previous
methods using naïve Bayes. The results show that the new
test strategies perform well. The time complexity of these
new test strategies is linear to the tree depth or the tree
size, making them efficient for testing a large number of
test cases. These strategies can be readily applied to large
datasets in the real world. A detailed case study on heart
disease is given in the paper.
 In our future work, we plan to continue to work with
medical doctors to apply our algorithms to medical data.

References
Blake, C.L., and Merz, C.J. 1998. UCI Repository of
machine learning databases (website). Irvine, CA:
University of California, Department of Information and
Computer Science.
Chai, X., Deng, L., Yang, Q., and Ling,C.X.. 2004. Test-
Cost Sensitive Naïve Bayesian Classification. In
Proceedings of the Fourth IEEE International Conference
on Data Mining. UK : IEEE Computer Society Press.
Elkan, C. 2001. The Foundations of Cost-Sensitive
Learning. In Proceedings of the 17th International Joint
Conference of Artificial Intelligence, 973-978. Seattle.
Fayyad, U.M., and Irani, K.B. 1993. Multi-interval
discretization of continuous-valued attributes for
classification learning. In Proceedings of the 13th
International Joint Conference on Artificial Intelligence,
1022-1027. France: Morgan Kaufmann.
Gorry, G. and Barnett, G. 1968. “Experience with a model
of sequential diagnosis”, Computers and Biomedical
Research.
Greiner, R., Grove, A., and Roth, D. 2002. Learning cost-
sensitive active classifiers. Artificial Intelligence, 139(2):
137-174.
Ling, C.X., Yang, Q., Wang, J., and Zhang, S. 2004.
Decision Trees with Minimal Costs. In Proceedings of the
Twenty-First International Conference on Machine
Learning, Banff, Alberta: Morgan Kaufmann.
Melville, P., Saar-Tsechansky, M., Provost, F., and
Mooney, R.J. 2004. Active Feature Acquisition for
Classifier Induction. In Proceedings of the Fourth
International Conference on Data Mining. Brighton, UK.
Melville, P., Saar-Tsechansky, M., Provost, F., and
Mooney, R.J. 2005. Economical Active Feature-value
Acquisition through Expected Utility Estimation. UBDM
Workshop, KDD 2005.
Nunez, M. 1991. The use of background knowledge in
decision tree induction. Machine learning, 6:231-250.
Quinlan, J.R. eds. 1993. C4.5: Programs for Machine
Learning. Morgan Kaufmann.
Tan, M. 1993. Cost-sensitive learning of classification
knowledge and its applications in robotics. Machine
Learning Journal, 13:7-33.
Turney, P.D. 1995. Cost-Sensitive Classification:
Empirical Evaluation of a Hybrid Genetic Decision Tree
Induction Algorithm. Journal of Artificial Intelligence
Research 2:369-409.
Turney, P.D. 2000. Types of cost in inductive concept
learning. In Proceedings of the Workshop on Cost-
Sensitive Learning at the 17th ICML, California.
Zubek, V.B., and Dietterich, T. 2002. Pruning improves
heuristic search for cost-sensitive learning. In Proceedings
of the Nineteenth International Conference of Machine
Learning, 27-35, Sydney, Australia: Morgan Kaufmann.

350

450

550

650

750

0.2 0.4 0.6 0.8 1
Ratio of Unknown Attributes

To
ta

l C
os

t

NB-SinB
Single Batch

350
400
450
500
550
600

0.2 0.4 0.6 0.8 1
Ratio of Unknown Attributes

To
ta

l C
os

t

NB-Seq
Sequential Test

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

