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Abstract 

We propose a data-mining approach that produces generalized query patterns (with generalized keywords) from the raw 
user logs of the Microsoft Encarta search engine (http://encarta.msn.com). Those query patterns can act as cache of the 
search engine, improving its performance. The cache of the generalized query patterns is more advantageous than the 
cache of the most frequent user queries since our patterns are generalized, covering more queries and future queries - 
even those not previously asked. Our method is unique since query patterns discovered reflect the actual dynamic usage 
and user feedbacks of the search engine, rather than the syntactic linkage structure of web pages (as Google does). 
Simulation shows that such generalized query patterns improve search engine’s overall speed considerably. The 
generalized query patterns, when viewed with a graphical user interface, are also helpful to web editors, who can easily 
discover topics in which users are mostly interested. 

Keywords: web log mining, web mining, data mining on the Internet, search engine improvement.  

1. Introduction 
We study data mining applied to the Internet search engine in this paper. In particular, we apply data mining to discover 
useful and implicit knowledge from user logs of the Microsoft Encarta search engine (http://encarta.msn.com) to improve 
its performance. The user logs keep traces of users behaviors when they use the Encarta search engine. The purpose of the 
web-log mining is to improve Encarta search engine’s performance (which is defined precisely later in the paper) by 
utilizing the mined knowledge as cache. Indeed, data mining is a promising approach since popular search engines like 
Encarta get hundreds of thousands of hits each single day, and therefore, it would be infeasible for traditional methods or 
human to analyze such logs. 

Encarta accepts users’ submission as keyword queries, and returns a list of articles for users to choose from. There are 
over 40,000 articles in Encarta. Users can also browse articles organized under a hierarchical structure of several levels. 

*This work was done while those authors were visiting Microsoft Research Asia. 
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The log keeps track of users’ queries and their clicks on the returned articles, as well as their browsing activities. The log 
file is quite large: a one-day log is over several hundreds megabytes in size.  

Our log-mining system is an integration of previous techniques (mostly on smaller problems though), but when they are 
carefully integrated and tuned, they are effective to solve this large-scale real-world problem. The goal is to find useful 
“patterns” - rules associating keywords of the queries with the target articles. If many users keying in similar queries 
clicked on the same article, then generalized query patterns summarizing the queries will provide a direct answer (the 
article) to the similar queries in the future. When a set of such patterns is used as cache of the Encarta search engine, its 
overall performance can be dramatically improved.  

Let us assume that cache is k times faster than a regular search by the search engine. To obtain overall improvement with 
the cache, we must consider how likely a future user query is hit by the cache, and how accurately the cache predicts the 
article (so user does not have to revoke the regular search engine for the correct answer). The first part is measured by the 
recall (R) (or the hit ratio) of the cache; it measures the percent of the testing queries that are matched with the queries 
patterns in the cache. The second part is the precision (P), which measures, among queries hit by the cache, the percent 
of the testing queries that are correctly predicted (that is, user’s click on the article returned from the query is the same as 
what query patterns predict). Thus, assuming a unit time is needed by a regular search engine, the overall time when the 
search engine is equipped with the cache is: 

        P R / k  +  R (1 - P)(1+1/k) + (1 - R)(1+1/k) 

The first term is for the user query correctly matched with a pattern (with the probability PR the cache returns the correct 
result within time 1/k), the second term for an incorrectly matched query (so the user requests another search from the 
regular search engine), and the third term for no match (so the regular search engine is invoked). The overall time is equal 
to: 

1 + 1/k – P R 

Clearly, the larger the k, and the larger the product of P and R, the less the overall time of the search engine equipped with 
cache. Thus, our first goal of mining user logs of Encarta is to improve the product of the precision and recall of the cache.  

A major advantage of our caching technique over the previous ones is that our cache consists of generalized query 
patterns so that each pattern covers many different user queries. They can even match with new queries that were not 
asked previously. Most previous caching approaches keep the frequent user queries, or invert lists directly (See [Saraiva 
et al, 2001] and the references), limiting the recall of cache with a fix size dramatically. Some previous work on semantic 
caching (such as [Chidlovskii et al, 1999]) can compose answers of new queries by applying Boolean operations to the 
previous answers. However, they do not allow generalization of the previous queries as we do.  

The second goal of the research is to discover comprehensible descriptions on the topics in which users are mostly 
interested. The web editors can study those topics, and add more articles on popular topics. Our generalized query 
patterns are production-rule based, and are easy to comprehend. Therefore, we need to build a user-friendly interface, 
providing different and clear views of the query patterns discovered.   

Past work on web-log mining has been done. However, most has focused on mining to change the web structure for easier 
browsing [Craven, et al, 2000; Sundaresan and Yi, 2000], predicting browsing behaviors for pre-fetching [Zaine, et al, 
1998; Boyan, 1996], or predicting user preference for active advertising [Pei, et al, 2000; Perkowitz, 1997]. Some work 
has been done on mining to improve search engine’s performance. The most notable example is the Google search engine 
[Google], in which statistical information is mined from the linkage structure among web pages for weighting and ranking 
of the web pages. However, when users click on web pages returned, they access to the web pages directly. Therefore, 
Google does not collect users’ feedback on the search results (unless when users click on the cached pages on the Google 
server). Thus, Google’s improvement on the search engine is largely syntactic and static based on linkage relations among 
web pages. Our method is semantic and dynamic, since it mines from the users actual clicks (feedback) on the search 
results, and it dynamically reflects the actual usage of the search engine. See Section 4 for more reviews of other work 
and its relation to ours. 

The rest of the paper is organized in the following order: Section 2 describes our mining algorithm in detail. Section 3 
presents a user interface that shows results of the mining system. Section 4 relates our mining algorithm to the previous 
work. Last, Section 5 discusses future work and concludes the paper. 
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2. Mining Generalized Query Patterns 
In this Section, we describe in details how data mining is used to improve the Encarta search engine’s performance. The 
Encarta website (http://encarta.msn.com) consists of a search engine, with 41,942 well-versed articles (written by experts 
of various domains) as answers to the user queries, and a well-organized hierarchy of articles for browsing (but one 
cannot use the search engine and the hierarchy interchangeably). The users’ activities are recorded in the raw IIS (Internet 
Information Services) log files, which keep a lot of information about each user’s access to the web server. The log files 
are large: one-day log files are about 700 megabytes in size. 

A log pre-processing program is written to extract user queries and their corresponding articles clicked. The search engine 
is a keyword-based search engine, and therefore, almost all queries are simply lists of keyword(s). The results of the log 
pre-processing program is as follows: 

keyword1, keyword2, …; article1, article2, … 

Each line indicates that a user query contains keyword1, keyword2, and so on, and the corresponding articles that the user 
clicks are article1, article2, etc.  

We find that most queries have a very small number of keywords: 52.5% of queries contain only one keyword, 32.5% 
two, 10% three, and 5% four and above. Also most users clicked on only one article for their queries: only 0.0619% of 
user session clicked on two or more articles for a query. We simply convert each of those queries into several queries, 
each of which contains the same keyword(s), and one article that the user clicked. This would introduce an inherit error 
rate, since the same query is linked to different articles as answers.  

One inherent difficulty in our work is that user queries are mostly short, consisting one or two keywords. On the other 
hand, user clicks of the articles can vary due to various user intentions. Our data-mining algorithm should be able to deal 
with noise in the data, and to find rules associating queries with the most relevant articles. 

From two-month Encarta’s user log, we obtained 4.8 million queries, each of which is a list of keyword(s) and one article 
clicked. Our data mining starts from this query list, and produces generalized query patterns, which summarize similar 
queries answered to the same article. Again, those queries patterns will act as the cache of the Encarta search engine.  

2.1 A Bottom-up Generalization Algorithm 

A query pattern represents a set of user queries with the same or similar intention, and thus is associated with an article as 
the answer. It is difficult to capture the “similar intention” in natural language, and therefore, we use both syntactic 
constraints (such as stemming of keywords; see later) as well as semantic constraints (such as generalized concepts and 
synonyms; see later) in our definition of queries with “similar intentions”.  

The simplest form of patterns consists of some keyword(s), and possibly, a “don’t care” keyword, in the format of:  

  article ID ← keyword1, …, keywordi, [any]; accuracy; coverage 

where “any” represents any keyword(s), and is placed in […] to distinguish it from user-inputted keywords. If a pattern 
contains a generalized term placed in [ ], it is called a generalized pattern; otherwise (if it contains user-inputted 
keywords only) it is called a simple pattern.  

Accuracy and coverage are two numbers for evaluating query patterns. (Note that the precision and recall mentioned 
earlier are measures for testing queries on the whole set of patterns, while accuracy and coverage here are for each 
individual query pattern.) Coverage is the number of original user queries that are correctly covered (or predicted) by this 
pattern, and accuracy is the percentage of queries that correctly covered. If error is the number of queries incorrectly 
covered by a pattern (when users clicked a different article), then accuracy = coverage/(coverage + error). If the 
accuracy and coverage of all query patterns are known, and the distributions of testing set on those patterns are known, 
then the overall precision and recall of the pattern set (cache) on the test set can be easily derived.  

A bottom-up generalization algorithm is designed to find generalized patterns with [any], and the overall process is 
described below. First, it groups the queries clicked by the same article together, and sorts them by the article frequency, 
so that queries of the most clicked articles are mined first. From the queries of the same article, two are chosen according 
to a greedy heuristic (see later) if they have some keyword(s) in common. Then a tentative pattern is created with those 
common keyword(s), and the [any] keyword inserted. Its accuracy and coverage can then be calculated. If the accuracy or 

 2

http://encarta.msn.com/


the coverage of this pattern is below some thresholds, it is discarded; else the pattern replaces all queries correctly 
covered by it, and the process repeats, until no new patterns can be formed. Then the generalized patterns (with the 
generalized concept [any]) and the simple patterns (the remaining user queries) are returned, and they are all associated 
with that article. This process is applied to all articles. In the end, all patterns of all articles are sorted according to their 
coverage, and the top t patterns with highest coverage from all articles are outputted as the cache. The cache size t was 
chosen as 5,000 in this paper, since a query distribution analysis shows that when t is overly larger than 5,000, the overall 
benefit of larger caching is reduced.  

Note that the relation between query patterns and articles is a many-to-many one. On one hand, the same query pattern 
can associate with more than one article (since general keywords such as “animal” can be the keyword of several articles). 
Therefore, several articles can be returned if the user query matches with several query patterns with different articles. On 
the other hand, the same article can be associated with many query patterns (different keywords can associate with the 
same article). 

To choose which two queries for generalization, a greedy heuristic is used. Every pair of queries is tried, and the pair with 
the maximum coverage while the accuracy is above some pre-set threshold is chosen at each step for generalization.  

Experiments (not shown here) indicate that this algorithm does not produce satisfactory results: only a few useful patterns 
are produced. The first reason is that the generalization step of introducing [any] into patterns is often too bold: such 
patterns cover too many queries incorrectly, and thus have a low accuracy. Second, many keywords have slightly 
different spellings (sometimes with a minor spelling error) and thus are not regarded as the same, preventing possible 
generalization. Third, many keywords are synonyms; but since they are spelled differently, they cannot be treated as the 
same for possible generalization. Fourth, one-keyword queries are not paired for generalization, since it would inevitably 
produce an overly generalized pattern “article ID ← [any]”. However, most (52.5%) of the queries in the user logs are 
one-word queries. We want generalization to happen more gradually. This would also alleviate the first problem 
mentioned above.  

In the following four subsections we provide solutions to the four problems mentioned above. Most improvements have 
been published previously (see Section on Relation to Previous Work), but when they are carefully integrated and tuned, 
they are shown to be effective to solve this large-scale real-world problem. 

2.2 Improvement 1: A Hierarchy Over Keywords 

The first problem mentioned earlier is over generalization. That is, any two different keywords from two queries will be 
replaced by [any]. To provide more graded generalization, a hierarchical structure with the “is-a” relation would be useful. 
With this hierarchy, the generalization of two keywords would be the lowest concept that is an ancestor of both keywords 
in the hierarchy.  

It is a tedious job to construct such a hierarchy over tens of thousands of keywords in the user queries. We used WordNet 
[Miller, 1990] to generate such a hierarchy automatically. A problem occurred is that most keywords have different 
senses or meanings, which in turn, have different parents in the hierarchy. We adopt the first, or the most frequently used 
meaning of each keyword in the WordNet. Previous research [Ng et al, 1996; Lin, 1997] found that the most frequently 
used meanings are accurate enough compared with more sophisticated methods.  

For example, if we use “<” to represent the is-a relation, then WordNet would generalize “alphabet” as:  

alphabet < character set < list < database < information < message < communication < social relation < relation < abstraction 
Similarly, “symbol” would be generalized as:  

symbol < signal < communication < social relation < relation < abstraction 
Then “communication” would be the least general concept of “alphabet” and “symbol” in the hierarchy. 

A problem that allows for gradual generalization using WordNet is that it introduces too many possibilities of 
generalization from two user queries. A keyword in one query may generalize with any other keyword in the other query 
using WordNet, introducing an explosive number of combinations. A heuristic is further introduced: two queries can be 
generalized only when they have the same number of keywords, and only one keyword in the two queries is different. That 
is, the two queries must be in the format of:  
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  keyword1, …, keywordi, keywordj 

  keyword1, …, keywordi, keywordk 

where keywordj ≠ keywordk. A potential pattern is then produced:  

  keyword1, …, keywordi, [concept1] 

where concept1 is the lowest concept which is an ancestor of keywordj and keywordk in the hierarchy.  

With the introduction of the concept hierarchy, more interesting patterns can be discovered. For example, from 

  Greek, alphabet 

  Greek, symbol 

A generalized query pattern: 

   article ID ← Greek, [communication] 

is produced. “[communication]” would also cover other keywords such as “document”, “letter”, and “myth”, which might 
be contained in future user queries.  

Obviously, when the generalized query patterns are cached for the search engine Encarta, WordNet API calls must be 
available for testing whether or not a keyword in a new user query is covered by generalized concepts. This can be 
optimized to have little impact on the speed of the cache.  

2.3 Improvement 2: Flexible Generalizations 

Due to the introduction of the hierarchy, pairs of one-keyword queries may now be generalized. As to which two queries 
are paired for generalization, the same greedy heuristic is used: the pair that produces a pattern with the maximum 
coverage while the accuracy is above a threshold is chosen. All queries covered by the new pattern are removed, and the 
process repeats until no new patterns can be generated.  

As discussed in the Introduction, the goal of producing generalized query patterns is to have the product of the recall and 
precision of patterns as large as possible. Therefore, a further generalization is applied here. After a least general keyword 
in the WordNet is obtained from a pair of two keywords, it is further generalized by “climbing” up in the hierarchy of the 
WordNet until just before the accuracy of the pattern falls under the fixed threshold. This would produce patterns with a 
maximum recall while maintaining the adequate accuracy.  

This improvement produces many useful generalized queries, such as:  

“Democracy, of, [American_state]” from  

• Democracy, of, California 

• Democracy, of, Texes 

• Democracy, of, Pennsylvania; 

“[weapon_system]” from  

• Gun 

• Pistol 

• Bullet 

• firearm 

“[European], unification” from  

• German, unification 

• Italian, unification 
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“[rank], amendment” from  

• first, amendment 

• fourteenth, amendment 

• fifth, amendment 

2.4 Improvement 3: Morphology Conversion 

The second reason preventing useful generalization of the two queries is that minor differences in the spelling of the same 
keyword are regarded as different keywords. For example, “book” and “books” are regarded as completely different 
keywords. Misspelled words are also treated as completely different words. This would prevent many possible 
generalizations since all other keywords except one in two queries must be exactly the same.  

A simple morphology analysis using WordNet is designed to convert words into their “original” forms (i.e., stemming). 
For example, “books” to “book”, “studied” to “study”. We apply the conversion in our program before generalization is 
taken place. Currently we are working on spelling correction on the keywords in user queries. 

With this improvement, we see user queries such as: 

• populations, Glasgow 

• population, Edinburgh 

which cannot be generalized (because both keywords in the two queries are different) can now be generalized, and 
produce a generalized query pattern “population, [UK_region]” 

2.5 Improvement 4: Synonym Conversion 

A similar problem is that many keywords are synonyms: they have very similar meanings but with different spellings. For 
example, “Internet” and “WWW”, “penalty” and “punishment”, and “computer” and “data-processor” are all synonyms. 
Since any generalization of two queries requires all keywords except one must be the same, such synonyms should be 
recognized to allow more possible generalizations.  

WordNet is again used for the synonym conversion. A dictionary of keywords appearing in user queries is dynamically 
created when the user logs are scanned. Before a new keyword is inserted into the dictionary, its synonyms are checked to 
see if any of them is already in the dictionary. If it is, the synonym in the dictionary replaces this keyword. This would 
reduce the size of the dictionary by about 27%. Even though the reduction is not huge, we found that the reduction 
happens on keywords that are very frequently used in the queries. 

With this improvement, more useful generalized queries can be produced, which would not be possible previously. For 
example:  

“DNA, [investigation]” from  

• DNA, testing 

• gene, analysis 

• genetic, inquiry 

2.6 Implementations 
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The pseudo-code of our log mining algorithm for Encarta with all improvements is presented in Figure 1. The program is 
written in Visual C++.  

Several further possible generalization methods are currently under investigation. For example, queries with different 
number of keywords, queries with two different keywords in the pair, and so on.  

 

QuerySet = IIS log files   /* Original user log of Encarta */ 

QuerySet = Filtering(QuerySet)   /* Producing list of user keywords and click */ 

QuerySet = Stemming(QuerySet)      /* Improvement 3 (morphology conversion) */ 

QuerySet = Synonym(QuerySet)     /* Improvement 4 (synonym conversion) */ 

QuerySet = sort(QuerySet)      /* Cluster queries by article ID */ 

For each article ID do    

  Repeat      

     Max_pattern = “ ” 

     For each pair of queries with the same length and only one keyword different  

        Temp_pattern = generalize(pair) /* use WordNet to generalize the keyword */ 

        While accuracy(climb_up(Temp_pattern)) > threshold do  /* Improvement 2 */ 

           Temp_pattern = climb_up(Temp_pattern)  /* generalize one step up in WordNet */ 

        If cover(Temp_pattern) > cover(Max_pattern) then Max_pattern = Temp_pattern 

     Remove all queries covered by Max_pattern from QuerySet 

     Insert Max_pattern into QuerySet /* Max_pattern can be paired for further generalization */

  Until no new patterns can be found 

Output t generalized and simple patterns with top coverage for all articles 

 

Figure 1: Pseudo-code of the mining top t user query patterns. 

 

3. Simulation Experiments 
We have constructed an off-line mining system as described in the previous section. From the two-month user log files of 
a total size about 22 GB, it takes a few hours to mine all the patterns. Most of the time was spent on error calculation of 
each generalized query pattern, since it requires scanning all of the rest of the queries to see if it covers any “negative 
examples”. The efficiency of the code would be improved since no attempt is made yet to optimize it. In the end, 5,000 
query patterns are chosen whose accuracy is above 0.75 (a threshold we chose for the experiments).  

We run several realistic simulations to see how our generalized query patterns help to improve the Encarta search engine, 
compared to a baseline cache which consists of the same number of the most frequent (ungeneralized) user queries. We 
partition the two-month log files into two batches: a training batch which is about 80% of all logs from the beginning, and 
a testing batch which is the last 20% of the logs. We then run our mining algorithm on the training batch, and test the 
patterns produced on the testing batch (last 20% of the queries unused in the training), simulating the actual deployment 
of the cache in the search engine after data mining has been conducted.  
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Again, recall and precision (see Introduction) of the cache are calculated to measure the overall speed of the search engine 
with cache of the generalized query patterns. The overall saving would be larger if the product of recall and precision is 
larger, and if the k (the speed difference between regular search and cache) is larger.  

We also run our mining algorithm in three versions with an increasing power: the first version comes with the concept 
hierarchy and flexible generalization (Sections 2.2 and 2.3), the second with hierarchy and word morphology analysis 
(Section 2.4), and the third with hierarchy, word morphology analysis, and the synonym conversion (Section 2.5). We 
expect to see better results with later versions. This also allows us to find out which component is the “source of power” 
that produces good results. 

4. Analyses of the Results 
Table 1 presents our experiment results. As we can see, the recall (or hit ratio) of the cache does improve dramatically 
when more improvements in the mining algorithms are incorporated, and is much higher than the baseline cache, which 
consists of the same number of most frequent original user queries. On the other hand, the precision is virtually the same 
for different versions. This is actually within our expectation since patterns are chosen according to their coverage when 
their accuracy is above a fixed threshold (0.75). Overall, the best version produces the highest product of precision and 
recall. As we can see, the major improvement in recall comes from the generalization with hierarchy from the WordNet 
(improvements 1 and 2), and from synonym conversion (improvement 4).  

If k is equal to 100, which is quite common as the speed up of using the cache vs the regular search engine, then the 
search engine with cache of the generalized query patterns would have an overall user search time of only 30% of the 
search engine without the patterns according to the formula 1 + 1/k – P R (see Introduction). That is, the search engine 
with the cache of the best generalized patterns is 3.3 times faster overall then the one without using the cache, and 3.1 
times faster than the baseline cache of the most frequent user queries. 

 

 Recall Precision Overall search time with cache, if 
no cache is 100%. 

Baseline cache 7.31% 82.3% 95% 

I: with hierarchy 41.7% 81.7% 67% 

II: I + morphology analysis 52.8% 90.6% 53% 

III: II + synonyms 80.4% 88.3% 30% 

Table 1: Results of our log-mining algorithm for the Encarta search engine.  
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 Figure 2: A user interface for viewing the patterns mined. 

5. The Graphic User Interface 
As discussed in the Introduction, the second goal of this research is to provide an intuitive graphic user interface for web 
editors to view the resulting generalized query patterns to discover overall users interests for maintaining and improving 
the Encarta search engine. A GUI for easy viewing of the resulting patterns is built, and is illustrated in Figure 2. It allows 
web designers to view all patterns (both simple and generalized) or generalized patterns only, sorted by different ways, 
and in different level of details. In Figure 2, detailed display is chosen, so queries that were used to produce generalized 
patterns are also listed under the patterns. One can see that some generalized patterns might be too general (for example, 
“ice” and “paw” become [entity something]), while others make sense; for example, “bird” and “fish” become [vertebrate 
craniate], “robin” and “goldfinch” become [oscine oscine_bird], and so on. 

6. Relation to Previous Work 
Many techniques used in this paper have been used (mostly on smaller problems though). We demonstrate that when 
those techniques are carefully integrated and tuned, they can solve this large-scale real-world problem.  

Pattern learning discussed in this paper is similar to rule learning from labeled examples, a well studied area in machine 
learning. Many methods have been developed, such as C4.5 rule, the AQ family, and RIPPER. C4.5 rule [Quinlan 1993] 
is a state-of-art method for learning production rule. It first builds a decision tree, and then extracts rules from the 
decision tree. Rules are then pruned by deleting conditions that do not affect the predictive accuracy. However, C4.5rule 
is limited to produce rules using only the original features (that is, only “dropping variables” is used in generalization), 
while our method also introduces generalized concepts in the hierarchy. 

The AQ family [Michalski, 1983] generates production rules directly from data. It uses the “generate and remove” 
strategy, which is adopted in our algorithm. However, AQ is a top-down induction algorithm, starting from a most general 
rule and making it more specific by adding more conditions. AQ does not utilize concept hierarchy as we use in our 
generalization process. It seems difficult to incorporate concept hierarchy in the top-down learning strategy, as a large 
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number of concepts in the hierarchy must be tried for making a rule more specific. The difference between our mining 
algorithm and RIPPER [Cohen, 1995] are also similar. 

Concept hierarchy has been used in various machine learning and data mining systems. One usage is as background 
knowledge, as in [Han, Cai and Cercone, 1993]. Concept hierarchies have also been used in various algorithms for 
characteristic rule mining [Han, 1995, 1996; Srikant, 1995], multiple-level association mining [Han 1995], and 
classification [Kamber 1997]. What makes our work different is that our concept hierarchy is much larger and more 
general; it is generated automatically from WordNet over tens of thousands of keywords.  

The improvements over the simple generalization algorithm are similar to approaches to the term mismatch problem in 
information retrieval. These approaches, called dimensionality reduction in [Fabio, 2000], aim to increase the chance that 
a query and a document refer to the same concept using different terms. This can be achieved by reducing the number of 
possible ways in which a concept is expressed; in other word, reducing the “vocabulary” used to represent the concepts. A 
number of techniques have been proposed. The most important ones are manual thesauri [Aitchison and Gilchrist, 1987], 
stemming and conflation [Frakes, 1992], clustering or automatic thesauri [Rasmussen 1992, Srinivasan 1992], and Latent 
Semantic Indexing [Deerwester et al., 1990].  These techniques propose different strategies of term replacement. The 
strategies can be characterized by (1) semantic considerations (manual thesauri), (2) morphological rules (stemming and 
conflation), and (3) term similarity or co-occurrence (clustering or Latent Semantic Indexing). In our work, we used 
strategies similar to (1) and (2). The manual thesauri we used is WordNet. We also dealt with synonymous, but unlike 
strategy (3) which clusters similar terms based on co-occurrence, we used clusters of synonymous provided by WordNet 
directly. Our training data are user logs, which do not contain full text information of processed documents, which are 
necessary for co-occurrence estimation. 

7. Conclusions and Future Work 
We have described an integration of data-mining algorithms that discovers generalized query patterns from large, raw 
user logs of the Encarta search engine. Those patterns can be used as a cache technique of the search engine to improve its 
overall performance measured by the average time that the users spend to obtain the correct answers to the keyword 
search. Our approach is semantic (since it mines from the users actual feedbacks on the search results rather than a mere 
syntactic linkage relation), and dynamic (since it dynamically reflects the actual usage of the search engine and user 
interests). The query patterns discovered also provide insights to the web editors as to what topics users are mostly 
interested in.  

In our future work, more semantic information will be introduced into our mining system so queries of similar meanings 
can be clustered and generalized further. In addition, efforts will be put into improving the code efficiency, and 
transferring our research and prototype system into the deployment of the Encarta search engine.   
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