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ABSTRACT
Motivation: The correlation among fragment ions in a tandem
mass spectrum is crucial in reducing stochastic mismatches
for peptide identification by database searching. Until now,
an efficient scoring algorithm that considers the correlative
information in a tunable and comprehensive manner has been
lacking.
Results: This paper provides a promising approach to utilizing
the correlative information for improving the peptide identifica-
tion accuracy.The kernel trick, rooted in the statistical learning
theory, is exploited to address this issue with low computational
effort. The common scoring method, the tandem mass spec-
tral dot product (SDP), is extended to the kernel SDP (KSDP).
Experiments on a dataset reported previously demonstrate the
effectiveness of the KSDP.The implementation on consecutive
fragments shows a decrease of 10% in the error rate com-
pared with the SDP. Our software tool, pFind, using a simple
scoring function based on the KSDP, outperforms two SDP-
based software tools, SEQUEST and Sonar MS/MS, in terms
of identification accuracy.
Contact: yfu@ict.ac.cn
Supplementary Information: http://www.jdl.ac.cn/user/yfu/
pfind/index.html

INTRODUCTION
In recent years, mass spectrometry (MS) has been recog-
nized as one of the most successful techniques in proteomics
research (Aebersold and Mann, 2003). The method of protein
identification via tandem mass spectrometry (MS/MS) plays
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Fig. 1. Fragment ions resulting from peptide bonds cleavage by
collision-induced dissociation.

a fundamental and indispensable role in current proteomic
laboratories. The relevant research has drawn much attention
from both biological and computational fields.

A peptide is a string of amino acid residues joined together
by peptide bonds. In the mass spectrometer, peptides derived
from digested proteins are ionized. Peptide precursors of a
specific mass–charge ratio (m/z) are selected and further frag-
mented by collision-induced dissociation (CID). Product ions
are detected. The measured m/z and intensity of the product
ions form finally the peaks in the tandem mass spectrum
(MS/MS spectrum).

By CID, three kinds of backbone cleavages on peptide bonds
can produce six series of fragment ions, denoted by N-terminal
a, b and c type fragments and C-terminal x, y and z type
fragments, as illustrated in Figure 1. For low-energy CID,
usually just one backbone cleavage occurs in a peptide and
a, b and y are dominant fragment types. Fragments can be
singly charged or multiply charged and may possibly lose a
neutral water or ammonia molecule. Besides these fragments,
other types of product ions also present themselves as peaks
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Table 1. Notations for fragment description

Notation Meaning

i Subscript denoting the number of residues in the fragment
(examples in Fig. 1)

0 Superscript indicating a loss of a water molecule
* Superscript indicating a loss of an ammonia molecule
++ Superscript indicating a double charge state

(single charge as default)

in the MS/MS spectrum as well as noise and contaminants.
Table 1 gives the notations used in this paper for describing
fragments.

Three computational approaches have been employed to
identify peptide sequences via MS/MS: database searching,
de novo and sequence tag query. The database searching
approach (Eng et al., 1994; Fenyö et al., 1998; Clauser
et al., 1999; Perkins et al., 1999; Pevzner et al., 2000; Bafna
and Edwards, 2001; Field et al., 2002; Zhang et al., 2002)
searches the protein database for the target peptide sequence
by simulating protein digestion and peptide fragmentation and
comparing the theoretical MS/MS spectra with the experi-
mental spectrum. The de novo approach (Taylor and Johnson,
1997; Danick et al., 1999; Chen et al., 2001; Taylor and
Johnson, 2001; Ma et al., 2003) tries to recover the full
peptide sequence directly from the observed MS/MS spec-
trum without any dependence on databases. The sequence tag
query approach (e.g. Mann and Wilm, 1994; Perkins et al.,
1999) searches the database for the full peptide sequence
with partial sequence information, which is recovered from
the observed MS/MS spectrum either automatically or manu-
ally. The database searching approach has been applied widely
to high-throughput protein identification. This paper focuses
on peptide-scoring algorithms in the database searching
approach.

Various strategies have been proposed for scoring peptides
in the existing database search tools. The shared peak count
in early work counts the number of matched peaks between
the theoretical and the experimental spectra. SEQUEST (Eng
et al., 1994) uses the notion of cross-correlation between
spectra. Sonar MS/MS (Fenyö and Beavis, 2003) adopts the
vector representation (Wan et al., 2002) of spectra and cal-
culates the dot product of two spectral vectors as the score.
Mascot (Perkins et al., 1999), SCOPE (Bafna and Edwards,
2001) and ProbID (Zhang et al., 2002) deal with the pep-
tide identification problem in the probabilistic framework
with different assumptions. As a rule, predicted fragments
are compared with the observed peaks, and all the matches
contribute equally to the final score. However, there is no
guarantee for the correctness of these matches. Stochastic
mismatches are accepted falsely and may lead finally to false
assignment of peptides to spectra. In fact, the fragmentation

pattern of a peptide and the relative intensity of the peaks in the
MS/MS spectrum are not fully predictable. Noise and unex-
pected product ion types may result in many uninterpretable
peaks. The databases of proteins sequenced or predicted from
genomes expand rapidly. All these facts increase the possib-
ility of stochastic mismatches and make the peptide-scoring
algorithm less satisfactory.

In this paper, we make use of the correlative information
among fragments to reduce stochastic mismatches. One of
our most important observations about the MS/MS spectrum
is that the fragments resulting from peptide fragmentation
by CID rarely occur independently; most often they tend to
occur correlatively with each other. However, few scoring
algorithms make good use of this kind of correlative inform-
ation to reduce stochastic mismatches. SCOPE assumes
independence between fragments in order to make its complex
probability computable. SEQUEST increases its Sp score for
each matched consecutive fragment. ProbID calculates the
ratio of matched consecutive and complementary fragment
pairs as a component of its probability. However, an efficient
algorithm that considers correlations among more fragments
in a tunable manner is still lacking. There are two computa-
tional difficulties in such an algorithm. One is how to count
exhaustly all possible combinations of correlated ions while
excluding others. The other is how to deal with the exponen-
tial combinations in a computationally efficient way. With the
observation that current scoring algorithms are based mostly
on the spectral dot product (SDP), we propose to extend it
with kernels, whose concept is deeply rooted in the machine
learning discipline, to introduce the correlative information.
By applying the locally improved kernels, the two diffi-
culties are overcome gracefully. Experiments demonstrate the
effectiveness of our new approach.

ALGORITHM
Spectral vector
Thereotical and experimental spectra can be expressed as
N -dimensional vectors, where N is the number of different
m/z values used. Let c = [c1, c2, . . . , cN ] denote the experi-
mental spectrum and vector t = [t1, t2, . . . , tN ] the theoretical
one. ci and ti take binary values {0, 1} or the intensity of
the fragment with the i-th m/z value in the spectra (assumed
intensities for predicted fragments). Thus, both spectra are
elements in the N -dimensional vector space, which we call
the initial spectral space.

Spectral dot product
The tandem mass SDP between the experimental and theor-
etical spectra is defined as

SDP = 〈c, t〉 =
N∑

i=1

ci ti . (1)
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The SDP-based cosine value of the angle between spectral
vectors was used as a similarity measure for MS/MS spectra
(Wan et al., 2002; Tabb et al., 2003). In current peptide-scoring
algorithms, the SDP is often involved directly or indirectly
and plays an important role. The vector representation and
the dot product were adopted explicitly in the Sonar MS/MS
for scoring. In SEQUEST, the cross-correlation of two spectra
is actually the SDP, and the score Xcorr is the SDP minus the
mean of a series of τ -displaced SDPs intended to reduce the
stochastically high SDP. The shared peak count is the special
case of the SDP where ci and ti are binary values. In addition,
some de novo algorithms, e.g. PEAKS (Ma et al., 2003), also
use scoring functions similar to the SDP as the objectives to
be maximized.

The SDP is conceptually simple, computationally efficient
and effective in many cases. However, an inherent draw-
back of the SDP is that it ignores all correlative information
among the dimensions of the spectral vector, corresponding
to different fragments. Any match between the fragments in
experimental and in theoretical spectra is arbitrarily accepted
as the true match. However, due to the reasons mentioned in
the above section, many matches may well be stochastic and
result finally in false positives.

Kernel SDP (KSDP)
Some fragments tend to occur together in the MS/MS
spectrum. Positively correlated fragments potentially include
consecutive fragments, complementary fragments, isotopic
fragments, and fragments differing in units of charges or the
neutral loss of a water or ammonia molecule. Intuitively, when
positively correlated fragments are matched together, they are
more likely to be true matches and should be assigned a higher
score as a whole than as individuals.

One way of improving the SDP by including the correlative
information among fragments is to map the spectral vector
space non-linearly into a high-dimensional space in which
all combinations of correlated fragments have their corres-
ponding dimensions. We call this space the combinational
correlative space. The dot product in this space counts all
the matched combinations of correlated fragments other than
matched individual fragments. However, one problem is how
to map the spectral space efficiently to the correlative space so
that the dimensions in the correlative space only correspond
to combinations of truly correlated fragments. Another issue
is that the dimensionality of the correlative space might be too
high to compute efficiently in it; i.e. there may be too many
combinations of correlated fragments to count one by one.

An idea inspired by the kernel trick (Boser et al., 1992;
Vapnik, 1995) is to compute directly the dot product in the
correlative space with a proper kernel without an explicit map-
ping from the spectral space to the correlative space. To this
end, all predicted fragments are arranged in a manner we call
the correlative matrix, as shown in Figure 2. Thus, all correl-
ated fragments cluster together and can be included naturally

Fig. 2. Correlative matrix and correlative windows.

into the local correlative windows, e.g. the dashed frames in
Figure 2. This makes it possible to exploit the locally improved
polynomial kernel (Schölkopf et al., 1998; Zien et al., 2000)
to capture this kind of local correlation among fragments.

All predicted fragments are assumed to possess unique
m/z values so that all non-zero dimensions in the theoret-
ical spectral vector, t, can be extracted and rearranged into
the matrix T = (tpq)m×n in a manner according to their frag-
ment types and fragmentation positions as shown in Figure 2,
where m is the number of fragment types and n + 1 is the
residue number of the peptide precursor. For example, t2,3 cor-
responds to the fragment b3 in Figure 2. The corresponding
dimensions in experimental spectral vector c are also extrac-
ted and rearranged into the matrix C = (cpq)m×n. This can
be accomplished as follows. If the predicted fragments are
present in the experimental spectrum within a given match-
ing tolerance, then the corresponding position in the matrix
C is set to 1 or the observed intensity; otherwise, it is set to
zero. Under the assumption above, we have

SDP = 〈c, t〉 =
m∑

p=1

n∑
q=1

cpqtpq .

To introduce correlative information, we define the function
Kpep(c, t) given the peptide pep as

winj (c, t) =

 ∑

(p,q)∈Uj

wpq(cpqtpq)
1/d




d

,

Kpep(c, t) =
∑

j

winj (c, t), (2)

where Uj is the set of all subscripts of elements in the j -th
correlative window in the matrices C and T, wpq are weights
and d is called the window power. We call the function defined
in Equation (2) the KSDP. It is a kernel function (Schölkopf
et al., 1998) that maps implicitly the spectral space to the
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correlative space. For example, when d is equal to two and
wpq equal to one, we have

winj (c, t) = 〈φj (c), φj (t)〉,
φj (s) = [√

suvspq : (u, v), (p, q) ∈ Uj

]
,

where s represents the spectral vector c or t, and φj (s) is the
vector with the elements

√
suvspq , (u, v), (p, q) ∈ Uj . Hence,

when cpq and tpq take binary values, winj (c, t) amounts to
the number of all matched fragment pairs in the j -th cor-
relative window. For d greater than two, the KSDP given in
Equation (2) incorporates correlative information of more than
two fragments. When d is 1, the KSDP is reduced to the SDP
given in Equation (1).

In principle, the window power, d , is required to be a pos-
itive integer for the function given in Equation (2) to be a
valid kernel. In such a case, d defines the maximum number
of correlated fragments. However, since we are not dealing
with a kernel-based learning algorithm, this restriction can
be removed without side effects. Here, d controls the degree
of correlation of fragments for scoring candidate peptides.
Therefore, d could be used conveniently as a continuous vari-
able. In addition, such usage allows the two parameters l and
d to be tuned effectively.

The correlative window should be defined according to
expert knowledge about which fragments are correlated and
how or should be learned from labeled data. For instance,
when we believe that consecutive fragments are positively
correlated, the KSDP can be implemented as

Kpep(c, t) =
m∑

i=1

n∑
j=1


 j+l2∑

k=j−l1

(w|k−j |(ciktik)
1/d)




d

, (3)

where positive integers l1 and l2 equal �(l − 1)/2� and
�(l − 1)/2	, respectively. Integer l is the size of the correlat-
ive window. cik and tik are set to zero for k ≤ 0 and k > n.
The weight w|k−j | reflects the assumed correlating strength
between the fragments in the position (i, j ) and its neighbor
with |k − j | residues near it. The KSDP given in Equation (3)
can be computed in O(lmn) time in general and in O(mn)
time if w|k−j | is equal to one. The experimental analysis of
this KSDP will be presented below.

We summarize some advantageous properties of the KSDP.
First, the KSDP incorporates correlative information among
fragments. It is locally improved, which implies that com-
binations of uncorrelated fragments are excluded. Second,
the KSDP is fragment-type scalable. It is applicable to any
fragment series that can be arranged into a correlative mat-
rix. Third and most importantly, the KSDP can be computed
efficiently with a low time complexity, often O(mn), the same
as that of the SDP.

Relation to traditional approach
SEQUEST and ProbID consider the continuity of matched
fragments by counting explicitly the matched consecutive
fragment pairs. For comparison, we define the score function
PSCORE, which is a simplified form of the score function Sp

used by SEQUEST:

PSCORE = nf(1 + npα), (4)

where nf is the number of matched fragments, np is the num-
ber of matched consecutive fragment pairs and α is a small
positive real number. Such a score function is expected to
perform equivalently to the special case of the KSDP given in
Equation (4) where the window size, l, is fixed to two. This is
demonstrated by experiments.

IMPLEMENTATION
During the above derivation of the KSDP, we assumed that
all the predicted fragments of the candidate peptide had a
unique m/z value. When several predicted fragments shared
a common m/z value, we treated them just as if each of
them had a unique m/z. The consequence of such a treat-
ment is that the dimension of this m/z is emphasized to some
extent in the final score. Suppose that the candidate peptide
did produce the experimental spectrum and several fragments
of it share the common m/z; it is rather unlikely that none
of these fragments had been detected and measured. On the
contrary, if this common m/z is observed in the experimental
spectrum, then we consider it as good evidence for the candid-
ate peptide. Therefore, the emphasis on this common m/z is
reasonable.

When w|k−j | in Equation (3) is set to one, the KSDP given
in Equation (3) can be computed efficiently in time of O(mn)
as follows.

K_ct = 0;
for(i = 1; i ≤ m; i++)

{
wini1 = 0;
for(j = 1; j ≤ 1 + l2; j++)

wini1 = wini1 + (cij tij )
1/d ;

K_ct = K_ct + wind
i1;

for(j = 2; j ≤ n; j++)

{
winij = wini,j−1 + (ci,j+l2 ti,j+l2)

1/d

− (ci,j−l1−1ti,j−l1−1)
1/d ;

K_ct = K_ct + wind
ij ;

}
}

The KSDP algorithm was implemented in our database
search tool, pFind, written in C/C++. A Windows interface
is provided for entering search parameters and MS/MS data.
pFind reports the peptide and protein identification results in
HTML/XML files.
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RESULTS
Data
The MS/MS spectra used for experiments come from a pre-
viously reported dataset of ion trap spectra (Keller et al.,
2002). A total of 18 purified proteins with different physi-
cochemical properties were mixed together and divided into
two mixtures, A and B, which were then digested with trypsin.
A total of 14 LC/MS/MS runs and 8 LC/MS/MS runs were per-
formed on the mixtures A and B, respectively. The resulting
MS/MS spectra were analyzed using SEQUEST (Eng et al.,
1994). All spectra were searched against a database includ-
ing human protein sequences plus the 18 control mixture
proteins (denoted by ‘human plus mixture database’). From
the SEQUEST search results, 2757 spectra were confirmed
manually as having been correctly identified.

Out of the 2757 spectra, those with their peptide terminus
consistent with the substrate specificity of trypsin were selec-
ted for our experiments. The 731 spectra derived from the
mixture B (denoted by dataset B) were used to tune the para-
meters in Equation (3), while the 1323 spectra derived from
mixture A (denoted by dataset A) were used to compare pFind
with the existing database search tools.

Noise reduction
If unprocessed, the numerous noise peaks in the raw spectra
may have led to a heavy computational cost and decreased
identification accuracy. Since our purpose is to show the
effectiveness of the kernel trick to correlate fragments and tune
the parameters in the KSDP, simple data preprocessing was
performed. Only the 200 most intense peaks were reserved in
each spectrum.

Database and search parameters
Parameter tuning was performed against the human plus mix-
ture database. Comparison with other software tools was
performed against the SWISS-PROT database. The trypsin
enzyme and up to two missed cleavage sites were specified
for digesting theoretically the sequences in their databases.
The matching tolerance for the precursor and the fragment,
respectively, is set at 3 and 1 Da. The predicted fragment
types include b, b++, b0, y, y++ and y0.

Tuning parameters of KSDP
Although we have constructed the formula for the KSDP given
in Equation (3), the choice for the values of the parameters
is another issue. In this part of the experiment, two important
parameters, the correlative window size, l, and the window
power, d, were tuned on the dataset B against the human plus
mixture database. The KSDP given in Equation (3) was used
directly as the scoring function, with cik and tik being binary
values and w|k−j | equal to one.

Since d is allowed to be continuous, it must be quantized
somehow for the experiments. In addition, it is expected that
dis more finely tuned for smaller l and more coarsely tuned for

l = 4

l = 3

l = 6

l = 5

l = 2

l =1 (SDP)

Fig. 3. Curves of the error rate versus the window power for the
KSDP given in Equation (3) with various window sizes l. [Note that
the window power d = 1+β(l−1). The point on the curve indicates
the lowest point.]

larger l. To this end, an auxiliary parameter β was introduced
to correlate l and d:

d = 1 + β(l − 1).

Experiments are performed for l ∈ {1, 2, 3, 4, 5, 6} and
β ∈ {0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 1.4}. A spectrum is
regarded as falsely identified if its correct peptide sequence
does not rank first in the search result. Figure 3 illustrates the
error rate against the changing window size and the window
power.

When l = 1, the KSDP given in Equation (3) reduces to
the SDP given in Equation (1). When l becomes greater than
one, the kernel function takes effect and the error rate drops
rapidly. It is seen clearly in Figure 3 that nearly all the error
rates for l > 1 are remarkably lower than that for l = 1. The
lowest error rate is obtained when l = 5 and β = 0.5 (d = 3).
Compared with the SDP, the KSDP decreases the error rate
by 10% at best in this experiment. The role of the correlative
window in reducing stochastic mismatches is significant.

Figure 4 presents the curve of the error rate on dataset B
for the scoring function PSCORE given in Equation (4). The
curve of the error rate for the KSDP with the window size 2 is
also plotted for comparison. Although the variable paramet-
ers for the two curves are different, interesting phenomena can
be observed from this forcible combination. The two curves
share the lowest value of about 13% and overlap each other
largely. This suggests that PSCORE is almost equivalent in
performance to the special case of the KSDP, where the win-
dow size is fixed to two. It can be explained by observing that
both the scoring functions only consider the continuity of two
matched fragments. When the continuity of more matched
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PSCORE
KSDP (l= 2)

Fig. 4. Curve of the error rate versus the parameter α for the
PSCORE given in Equation (4) and curve of the error rate versus the
parameter β for the KSDP given in Equation (3) with the window
size, l, fixed at two. (Note that window power, d , here equals 1 +β.)

fragments is considered, it is possible to obtain a lower error
rate as illustrated in Figure 3.

Comparing pFind with existing software tools
SEQUEST and Sonar MS/MS are two popular software
tools that use SDP-based scoring algorithms. In this part of
the experiment, pFind is compared with them in terms of
identification accuracy.

The KSDP tuned above ignores some important information
such as the observed intensities of fragments and the length
of peptides. To include such information, the following score,
based on the KSDP, is used as a practical scoring method in
pFind. (∑

i

√
Ii

)
· K/L, (5)

where Ii is the observed intensity of the i-th matched frag-
ment, K is the KSDP defined in Equation (3), with cik and
tik being binary values and w|k−j | equal to one, and L is
the length of the candidate peptide being scored. We found
empirically that reducing appropriately the observed intensi-
ties could improve the identification accuracy. Therefore, the
square roots of the intensities are summed instead of their
original values. The denominator, L, plays the normalizing
role in avoiding the inherent bias of the KSDP toward large
peptides.

The spectra in dataset A described above are searched
against the SWISS-PROT database. Table 2 shows the search
results of the three software tools pFind, SEQUEST (ver-
sion 2.7) and Sonar MS/MS (version 2002.07.01.04). The
same search parameters are set for the three search engines.
The scoring method given in Equation (5) is used in pFind

Table 2. Comparison of three software tools on the dataset A against the
SWISS-PROT database

Dataset Total Correctly identified
pFind SEQUEST Sonar MS/MS

A-1, 2 230 218 214 184
A 1323 1262 1257 —

with the experimentally optimized correlative window size 5
and the window power 3.

Since the software Sonar MS/MS available on the Internet
cannot batch spectra files, only the 230 spectra derived from
the first two LC/MS/MS runs on mixture A (denoted by A-1, 2)
are searched with Sonar MS/MS.

As shown in Table 2, pFind performs remarkably better than
Sonar MS/MS. But the advantage over the industry standard
software, SEQUEST, is slim. This may be due partly to the
rough data preprocessing and simple form of the scoring func-
tion in the current version of pFind. It is also important to
realize that the test dataset may tend to favor SEQUEST as it
was with the analysis by SEQUEST that the correct peptide
sequences of these spectra were recovered.

CONCLUSIONS
This paper provides a novel approach to utilizing the cor-
relative information among fragment ions in a tandem mass
spectrum to improve the peptide identification accuracy by
database searching. The common scoring method, the tan-
dem mass SDP, is extended to the KSDP. By virtue of the
kernel trick, the KSDP avoids enumeration of the exponen-
tial combinations of correlated fragments and thereby has a
low computational complexity. The experiments on a data-
set reported previously demonstrate the effectiveness of the
KSDP in correlating consecutive fragments. The error rate
decreases by 10% at best compared with the SDP because
the SDP ignores all correlative information. Experiments also
suggest that the traditional approach to considering correlat-
ive information resembles a special case of the KSDP that is
much less optimal. Our software tool, pFind, using a simple
scoring function based on the KSDP, outperforms two SDP-
based software tools, SEQUEST and Sonar MS/MS, in terms
of identification accuracy.

Correlative windows for more types of correlation will
be investigated as our future work. The flexible definition
of correlative windows, as a key for the KSDP to succeed,
can potentially be learned from training data. The elaborate
spectrum preprocessing and sophisticated scoring algorithm
based on the KSDP will be added to the new version of the
pFind system. Finally, we emphasize that any existing scoring
algorithm based on the SDP can be extended to incorporate
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the correlative information among fragment ions simply by
replacing the SDP with the KSDP.

ACKNOWLEDGEMENTS
This work was supported by the National Key Basic Research
& Development Program (973) of China under Grant No.
2002CB713807. We thank Simin He, Yiqiang Chen, Hu
Zhou and Xiaobiao Wang for valuable discussions. We
acknowledge Dr Andrew Keller for providing the MS/MS
dataset, as well as the referees for helpful comments.

REFERENCES
Aebersold,R. and Mann,M. (2003) Mass spectrometry-based proteo-

mics. Nature, 422, 198–207.
Bafna,V. and Edwards,N. (2001) SCOPE: a probabilistic model

for scoring tandem mass spectra against a peptide database.
Bioinformatics, 17(Suppl. 1), S13–S21.

Boser,B.E., Guyon,I.M. and Vapnik,V.N. (1992) A training
algorithm for optimal margin classifiers. In Haussler,D. (ed.),
5th Annual ACM Workshop on COLT. ACM Press, Pittsburgh,
PA, pp. 144–152.

Chen,T., Kao,M.Y., Tepel,M., Rush,J. and Church,J. (2001) A
dynamic programming approach to de novo peptide sequencing
via tandem mass spectrometry. J. Comput. Biol., 8, 325–337.

Clauser,K.R., Baker,P. and Burlingame,A.L. (1999) Role of accurate
mass measurement (±10 ppm) in protein identification strategies
employing MS or MS/MS and database searching. Anal. Chem.,
71, 2871–2882.

Danick,V., Addona,T.A., Clauser,K.R., Vath,J.E. and Pevzner,P.A
(1999) De novo peptide sequencing via tandem mass spectro-
metry. J. Comput. Biol., 6, 327–342.

Eng,J.K., McCormack,A.L. and Yates,J.R. (1994) An approach to
correlate tandem mass spectral data of peptides with amino acid
sequences in a protein database. J. Am. Soc. Mass Spectrom., 5,
976–989.

Fenyö,D., Qin,J. and Chait,B.T. (1998) Protein identification using
mass spectromic information. Electrophoresis, 19, 998–1005.

Fenyö,D. and Beavis,R.C. (2003) A method for assessing the
statistical significance of mass spectrometry-based protein
identifications using general scoring schemes. Anal. Chem.,
75, 768–774.

Field,H.I., Fenyö,D. and Beavis,R.C. (2002) RADARS, a bioinform-
atics solution that automates proteome mass spectral analysis,

optimises protein identification, and archives data in a relational
database. Proteomics, 2, 36–47.

Keller,A., Purvine,S., Nesvizhskii,A.I., Stolyar,S., Goodlett,D.R.
and Kolker,E. (2002) Experimental protein mixture for validating
tandem mass spectral analysis. Omics, 6, 207–212.

Ma,B., Zhang,K.Z., Hendrie,C., Liang,C.Z., Li,M., Doherty-
Kirby,A. and Lajoie,G. (2003) PEAKS: powerful software for
peptide de novo sequencing by MS/MS. Rapid Commun. Mass
Spectrom., 17, 2337–2342.

Mann,M. and Wilm,M. (1994) Error-tolerant identification of pep-
tides in sequence databases by peptide sequence tags. Anal Chem.,
66, 4390–4399.

Perkins,D.N., Pappin,D.J., Creasy,D.M. and Cottrell,J.S. (1999)
Probability-based protein identification by searching sequence
databases using mass spectrometry data. Electrophoresis, 20,
3551–3567.

Pevzner,P.A., Dancik,V. and Tang,C.L. (2000) Mutation-tolerant
protein identification by mass-spectrometry. J. Comput. Biol., 7,
777–787.

Schölkopf,B., Simard,P., Smola,A. and Vapnik,V. (1998) Prior
knowledge in support vector kernels. In Jordan,M., Kearns,M.
and Solla,S. (eds), Advances in Neural Information. Processing
Systems 10. MIT Press, Cambridge, MA, pp. 640–646.

Tabb,D.L., MacCoss,M.J., Wu,C.C., Anderson,S.D. and Yates,J.R.
(2003) Similarity among tandem mass spectra from proteomic
experiments: detection, significance, and utility. Anal. Chem., 75,
2470–2477.

Taylor,J.A. and Johnson,R.S. (1997) Sequence database searches via
de novo peptide sequencing by tandem mass spectrometry. Rapid
Commun. Mass Spectrom., 11, 1067–1075.

Taylor,J.A. and Johnson,R.S. (2001) Implementation and uses of
automated de novo peptide sequencing by tandem mass spectro-
metry. Anal. Chem., 73, 2594–2604.

Vapnik,V.N. (1995) The Nature of Statistical Learning Theory.
Springer, New York.

Wan,K.X., Vidavsky,I. and Gross,M.L. (2002) Comparing similar
spectra: from similarity index to spectral contrast angle. J. Am.
Soc. Mass Spectrom., 13, 85–88.

Zhang,N., Aebersold,R. and Schwikowski,B. (2002) ProbID: a
probabilistic algorithm to identify peptides through sequence data-
base searching using tandem mass spectral data. Proteomics, 2,
1406–1412.

Zien,A., Raetsch,G., Mika,S., Schölkopf,B., Lengauer,T. and
Mueller,K. (2000) Engineering support vector machine kernels
that recognize translation initiation sites. Bioinformatics, 16,
799–807.

1954


