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Synonyms  
Learning with different classification costs, cost-sensitive classification 
 
Definition  
 
Cost-Sensitive Learning is a type of learning in data mining that takes the misclassification costs 
(and possibly other types of cost) into consideration. The goal of this type of learning is to 
minimize the total cost. The key difference between cost-sensitive learning and cost-insensitive 
learning is that cost-sensitive learning treats the different misclassifications differently. Cost-
insensitive learning does not take the misclassification costs into consideration. The goal of this 
type of learning is to pursue a high accuracy of classifying examples into a set of known classes. 
 
The class imbalanced datasets occurs in many real-world applications where the class 
distributions of data are highly imbalanced. Cost-sensitive learning is a common approach to 
solve this problem. 
 
Motivation and Background 
 
Classification is the most important task in inductive learning and machine learning. A classifier 
can be trained from a set of training examples with class labels, and can be used to predict the 
class labels of new examples. The class label is usually discrete and finite. Many effective 
classification algorithms have been developed, such as naïve Bayes, decision trees, neural 
networks, and so on. However, most original classification algorithms pursue to minimize the 
error rate: the percentage of the incorrect prediction of class labels. They ignore the difference 
between types of misclassification errors. In particular, they implicitly assume that all 
misclassification errors cost equally.  
 
In many real-world applications, this assumption is not true. The differences between different 
misclassification errors can be quite large. For example, in medical diagnosis of a certain cancer, 
if the cancer is regarded as the positive class, and non-cancer (healthy) as negative, then missing 
a cancer (the patient is actually positive but is classified as negative; thus it is also called “false 
negative”) is much more serious (thus expensive) than the false-positive error. The patient could 
lose his/her life because of the delay in the correct diagnosis and treatment. Similarly, if carrying 
a bomb is positive, then it is much more expensive to miss a terrorist who carries a bomb to a 
flight than searching an innocent person. 
 
Cost-sensitive learning takes costs, such as the misclassification cost, into consideration. It is one 
of the most active and important research areas in machine learning, and it plays an important 



   

role in real-world data mining applications. (Turney, 2000) provides a comprehensive survey of 
a large variety of different types of costs in data mining and machine learning, including 
misclassification costs, data acquisition cost (instance costs and attribute costs), active learning 
costs, computation cost, human-computer interaction cost, and so on. The misclassification cost 
is singled out as the most important cost, and it has also been mostly studied in recent years.  
 
Theory 
 
We summarize the theory of cost-sensitive learning, published mostly in (Elkan, 2001; Zadrozny 
and Elkan, 2001). The theory describes how the misclassification cost plays its essential role in 
various cost-sensitive learning algorithms.  
 
Without loss of generality, we assume binary classification (i.e., positive and negative class) in 
this paper. In cost-sensitive learning, the costs of false positive (actual negative but predicted as 
positive; denoted as FP), false negative (FN), true positive (TP) and true negative (TN) can be 
given in a cost matrix, as shown in Table 1. In the table, we also use the notation C(i, j) to 
represent the misclassification cost of classifying an instance from its actual class j into the 
predicted class i. (We use 1 for positive, and 0 for negative). These misclassification cost values 
can be given by domain experts, or learned via other approaches. In cost-sensitive learning, it is 
usually assume that such a cost matrix is given and known. For multiple classes, the cost matrix 
can be easily extended by adding more rows and more columns.  
 

Table 1. An example of cost matrix for binary classification. 
 Actual negative  Actual positive 
Predict  negative C(0,0), or TN C(0,1), or FN 
Predict  positive C(1,0), or FP C(1,1), or TP 

 
Note that C(i, i) (TP and TN) is usually regarded as the “benefit” (i.e., negated cost) when an 
instance is predicted correctly. In addition, cost-sensitive learning is often used to deal with 
datasets with very imbalanced class distribution (Japkowicz and Stephen, 2002). Usually (and 
without loss of generality), the minority or rare class is regarded as the positive class, and it is 
often more expensive to misclassify an actual positive example into negative, than an actual 
negative example into positive. That is, the value of FN or C(0,1) is usually larger than that of 
FP or C(1,0). This is true for the cancer example mentioned earlier (cancer patients are usually 
rare in the population, but predicting an actual cancer patient as negative is usually very costly) 
and the bomb example (terrorists are rare).  
  
Given the cost matrix, an example should be classified into the class that has the minimum 
expected cost. This is the minimum expected cost principle. The expected cost R(i|x) of 
classifying an instance x into class i (by a classifier) can be expressed as:  
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where P(j|x) is the probability estimation of classifying an instance into class j. That is, the 
classifier will classify an instance x into positive class if and only if: 
P(0|x)C(1,0) + P(1|x)C(1,1) ≤ P(0|x)C(0,0) + P(1|x)C(0,1) 
This is equivalent to: 



   

P(0|x)(C(1,0) – C(0,0)) ≤ P(1|x)(C(0,1) – C(1,1)) 
            
Thus, the decision (of classifying an example into positive) will not be changed if a constant is 
added into a column of the original cost matrix. Thus, the original cost matrix can always be 
converted to a simpler one by subtracting C(0,0) to the first column, and C(1,1) to the second 
column. After such conversion, the simpler cost matrix is shown in Table 2. Thus, any given 
cost-matrix can be converted to one with C(0,0) = C(1,1) = 0. 1 In the rest of the paper, we will 
assume that C(0,0) = C(1,1) = 0. Under this assumption, the classifier will classify an instance x 
into positive class if and only if: 

P(0|x)C(1,0) ≤ P(1|x)C(0,1) 
 

Table 2. A simpler cost matrix with an equivalent optimal classification. 
 True negative  True positive 

Predict negative 0 C(0,1) – C(1,1) 
Predict positive C(1,0) – C(0,0) 0 

  
As P(0|x)=1 – P(1|x), we can obtain a threshold p* for the classifier to classify an instance x into 
positive if P(1|x) ≥ p*, where   
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Thus, if a cost-insensitive classifier can produce a posterior probability estimation p(1|x) for test 
examples x, we can make it cost-sensitive by simply choosing the classification threshold 
according to (2), and classify any example to be positive whenever P(1|x) ≥ p*. This is what 
several cost-sensitive meta-learning algorithms, such as Relabeling, are based on (see later for 
details).  However, some cost-insensitive classifiers, such as C4.5, may not be able to produce 
accurate probability estimation; they are designed to predict the class correctly. Empirical 
Thresholding (Sheng and Ling, 2006) does not require accurate estimation of probabilities – an 
accurate ranking is sufficient. It simply uses cross-validation to search the best probability from 
the training instances as the threshold.  
 
Traditional cost-insensitive classifiers are designed to predict the class in terms of a default, 
fixed threshold of 0.5. (Elkan, 2001) shows that we can “rebalance” the original training 
examples by sampling such that the classifiers with the 0.5 threshold is equivalent to the 
classifiers with the p* threshold as in (2), in order to achieve cost-sensitivity. The rebalance is 
done as follows. If we keep all positive examples (as they are assumed as the rare class), then the 
number of negative examples should be multiplied by C(1,0)/C(0,1) = FP/FN. Note that as 
usually FP < FN, the multiple is less than 1. This is thus often called “under-sampling the 
majority class”. This is also equivalent to “proportional sampling”, where positive and negative 
examples are sampled by the ratio of: 

p(1) FN : p(0) FP                (3) 
where p(1) and p(0) are the prior probability of the positive and negative examples in the original 
training set. That is, the prior probabilities and the costs are interchangeable: doubling p(1) has 
the same effect as doubling FN, or halving FP (Drummond and Holte, 2000). Most sampling 

                                                        
1 Here we assume that the misclassification cost is the same for all examples. This property is stronger than the one 
discussed in (Elkan 2001). 



   

meta-learning methods, such as Costing (Zadrozny et al., 2003), are based on (3) above (see later 
for details).  
 
Almost all meta-learning approaches are either based on (2) or (3) for the thresholding- and 
sampling-based meta-learning methods respectively, to be discussed in the next section.   
 
 
Structure of Learning System 
 
Broadly speaking, cost-sensitive learning can be categorized into two categories. The first one is 
to design classifiers that are cost-sensitive in themselves. We call them the direct method. 
Examples of direct cost-sensitive learning are ICET (Turney, 1995) and cost-sensitive decision 
tree (Drummond and Holte, 2000; Ling et al, 2004). The other category is to design a “wrapper” 
that converts any existing cost-insensitive (or cost-blind) classifiers into cost-sensitive ones. The 
wrapper method is also called cost-sensitive meta-learning method, and it can be further 
categorized into thresholding and sampling. Here is a hierarchy of the cost-sensitive learning and 
some typical methods. This paper will focus on cost-sensitive meta-learning that considers the 
misclassification cost only. 
 
Cost-sensitive learning 
 Direct methods  

o ICET (Turney, 1995)  
o Cost-senstive decision trees (Drummond and Holte, 2000; Ling et al, 2004)  

 Meta-learning 
o Thresholding  

 MetaCost (Domingos, 1999) 
 CostSensitiveClassifier (CSC in short) (Witten & Frank, 2005) 
 Cost-sensitive naïve Bayes (Chai et al., 2004)  
 Empirical Thresholding (ET in short) (Sheng and Ling, 2006) 

o Sampling  
 Costing (Zadrozny et al., 2003) 
 Weighting (Ting, 1998) 

 
 
Direct Cost-sensitive Learning  
 
The main idea of building a direct cost-sensitive learning algorithm is to directly introduce and 
utilize misclassification costs into the learning algorithms. There are several works on direct 
cost-sensitive learning algorithms, such as ICET (Turney, 1995) and cost-sensitive decision trees 
(Ling et al., 2004).  
 
ICET (Turney, 1995) incorporates misclassification costs in the fitness function of genetic 
algorithms. On the other hand, cost-sensitive decision tree (Ling et al., 2004), called CSTree here, 
uses the misclassification costs directly in its tree building process. That is, instead of 
minimizing entropy in attribute selection as in C4.5, CSTree selects the best attribute by the 



   

expected total cost reduction. That is, an attribute is selected as a root of the (sub)tree if it 
minimizes the total misclassification cost.  
 
Note that as both ICET and CSTree directly take costs into model building, they can also take 
easily attribute costs (and perhaps other costs) directly into consideration, while meta cost-
sensitive learning algorithms generally cannot. 
 
(Drummond and Holte, 2000) investigates the cost-sensitivity of the four commonly used 
attribute selection criteria of decision tree learning: accuracy, Gini, entropy, and DKM. They 
claim that the sensitivity of cost is highest with the accuracy, followed by Gini, entropy, and 
DKM.  
 
Cost-Sensitive Meta-Learning 
 
Cost-sensitive meta-learning converts existing cost-insensitive classifiers into cost-sensitive ones 
without modifying them. Thus, it can be regarded as a middleware component that pre-processes 
the training data, or post-processes the output, from the cost-insensitive learning algorithms.  
 
Cost-sensitive meta-learning can be further classified into two main categories: thresholding and 
sampling, based on (2) and (3) respectively, as discussed in the Theory section. 
 
Thresholding uses (2) as a threshold to classify examples into positive or negative if the cost-
insensitive classifiers can produce probability estimations. MetaCost (Domingos, 1999) is a 
thresholding method. It first uses bagging on decision trees to obtain reliable probability 
estimations of training examples, relabels the classes of training examples according to (2), and 
then uses the relabeled training instances to build a cost-insensitive classifier. CSC (Witten & 
Frank, 2005) also uses (2) to predict the class of test instances. More specifically, CSC uses a 
cost-insensitive algorithm to obtain the probability estimations P(j|x) of each test instance2. Then 
it uses (2) to predict the class label of the test examples. Cost-sensitive naïve Bayes (Chai et al., 
2004) uses (2) to classify test examples based on the posterior probability produced by the naïve 
Bayes.    
 
As we have seen, all thresholding-based meta-learning methods replies on accurate probability 
estimations of p(1|x) for the test example x. To achieve this, (Zadrozny and Elkan, 2001) propose 
several methods to improve the calibration of probability estimates. ET (Empirical Thresholding) 
(Sheng and Ling, 2006) is a thresholding-based meta-learning method. It does not require 
accurate estimation of probabilities – an accurate ranking is sufficient. ET simply uses cross-
validation to search the best probability from the training instances as the threshold, and uses the 
searched threshold to predict the class label of test instances.  
 
On the other hand, sampling first modifies the class distribution of training data according to (3), 
and then applies cost-insensitive classifiers on the sampled data directly. There is no need for the 
classifiers to produce probability estimations, as long as it can classify positive or negative 
examples accurately. (Zadrozny et al., 2003) show that proportional sampling with replacement 
produces duplicated cases in the training, which in turn produces overfitting in model building. 
                                                        
2 CSC is a meta-learning method and can be applied on any classifiers.  



   

However, it is unclear if proper overfitting avoidance (without overlapping between the training 
and pruning sets) would work well (future work). Instead, (Zadrozny et al., 2003) proposes to 
use “rejection sampling” to avoid duplication. More specifically, each instance in the original 
training set is drawn once, and accepted into the sample with the accepting probability C(j,i)/Z, 
where C(j,i) is the misclassification cost of class i, and Z is an arbitrary constant such that Z ≥ 
max C(j,i). When Z = max C(j,i), this is equivalent to keeping all examples of the rare class, and 
sampling the majority class without replacement according to C(1,0)/C(0,1) – in accordance with 
(3). Theorems on performance guarantee have been proved. Bagging is applied after rejection 
sampling to improve the results further. The resulting method is called Costing.  
 
Weighting (Ting, 1998) can also be viewed as a sampling method. It assigns a normalized weight 
to each instance according to the misclassification costs specified in (3). That is, examples of the 
rare class (which carries a higher misclassification cost) are assigned proportionally high weights. 
Examples with high weights can be viewed as example duplication – thus sampling. Weighting 
then induces cost-sensitivity by integrating the instances’ weights directly into C4.5, as C4.5 can 
take example weights directly in the entropy calculation. It works whenever the original cost-
insensitive classifiers can accept example weights directly3. In addition, Weighting does not rely 
on bagging as Costing does, as it “utilizes” all examples in the training set.  
 
Applications 
 
The class imbalanced datasets occurs in many real-world applications where the class 
distributions of data are highly imbalanced. Again, without loss of generality, we assume that the 
minority or rare class is the positive class, and the majority class is the negative class. Often the 
minority class is very small, such as 1% of the dataset. If we apply most traditional (cost-
insensitive) classifiers on the dataset, they will likely to predict everything as negative (the 
majority class). This was often regarded as a problem in learning from highly imbalanced 
datasets.  
 
However, as pointed out by (Provost, 2000), two fundamental assumptions are often made in the 
traditional cost-insensitive classifiers. The first is that the goal of the classifiers is to maximize 
the accuracy (or minimize the error rate); the second is that the class distribution of the training 
and test datasets is the same.  Under these two assumptions, predicting everything as negative for 
a highly imbalanced dataset is often the right thing to do. (Drummond and Holte, 2005) show 
that it is usually very difficult to outperform this simple classifier in this situation.  
 
Thus, the imbalanced class problem becomes meaningful only if one or both of the two 
assumptions above are not true; that is, if the cost of different types of error (false positive and 
false negative in the binary classification) is not the same, or if the class distribution in the test 
data is different from that of the training data. The first case can be dealt with effectively using 
methods in cost-sensitive meta-learning. 
 
In the case when the misclassification cost is not equal, it is usually more expensive to 
misclassify a minority (positive) example into the majority (negative) class, than a majority 
example into the minority class (otherwise it is more plausible to predict everything as negative). 
                                                        
3 Thus, we can say that Weighting is a semi meta-learning method. 



   

That is, FN > FP. Thus, given the values of FN and FP, a variety of cost-sensitive meta-learning 
methods can be, and have been, used to solve the class imbalance problem (Ling and Li, 1998; 
Japkowicz and Stephen, 2002). If the values of FN and FP are not unknown explicitly, FN and 
FP can be assigned to be proportional to p(-):p(+) (Japkowicz and Stephen, 2002).   
 
In case the class distributions of training and test datasets are different (for example, if the 
training data is highly imbalanced but the test data is more balanced), an obvious approach is to 
sample the training data such that its class distribution is the same as the test data (by 
oversampling the minority class and/or undersampling the majority class) (Provost, 2000).  
 
Note that sometimes the number of examples of the minority class is too small for classifiers to 
learn adequately. This is the problem of insufficient (small) training data, different from that of 
the imbalanced datasets.  
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