
Simple Test Strategies for Cost-Sensitive Decision Trees 

Shengli Sheng1, Charles X. Ling1, Qiang Yang2 

1Department of Computer Science, The University of Western Ontario 
London, Ontario N6A 5B7, Canada 

{cling, ssheng}@ csd.uwo.ca 
2Department of Computer Science, Hong Kong UST, Hong Kong 

qyang @ cs.ust.hk 

Abstract. We study cost-sensitive learning of decision trees that incorporate both 
test costs and misclassification costs. In particular, we first propose a lazy decision 
tree learning that minimizes the total cost of tests and misclassifications. Then 
assuming test examples may contain unknown attributes whose values can be 
obtained at a cost (the test cost), we design several novel test strategies which 
attempt to minimize the total cost of tests and misclassifications for each test 
example. We empirically evaluate our tree-building and various test strategies, and 
show that they are very effective. Our results can be readily applied to real-world 
diagnosis tasks, such as medical diagnosis where doctors must try to determine what 
tests (e.g., blood tests) should be ordered for a patient to minimize the total cost of 
tests and misclassifications (misdiagnosis). A case study on heart disease is given 
throughout the paper.  

1   Introduction 

In many real-world machine learning applications, minimizing misclassification error is 
often not the ultimate goal, as “errors” can cost differently. This type of learning is called 
cost-sensitive learning. Turney [13] surveys a wide range of costs in cost-sensitive 
learning, among which two types of costs are singled out as most important: 
misclassification costs and test costs. For example, in a binary classification task, the 
costs of false positive (FP) and false negative (FN) are often very different. In addition, 
attributes may have costs (test costs) when acquiring values. The goal of learning is to 
minimize the total cost of misclassifications and tests.   
 Tasks involving both misclassification and test costs are abundant in real-world 
applications. For example, when building a model for medical diagnosis from the training 
data, we must consider the cost of tests (such as blood tests, X-ray, etc.) and the cost of 
misclassifications (errors in the diagnosis). Further, when a doctor sees a new patient (a 
test example), tests are normally ordered, at a cost to the patient or the insurance 
company, to better diagnose or predict the disease of the patient (i.e., reducing the 
misclassification cost). Doctors must balance the trade-off between potential 



misclassification costs and test costs to determinate which tests should be ordered, and at 
what order, to reduce the expected total cost. A case study on heart disease is given in the 
paper.  
 In this paper, we propose a lazy-tree learning that improves on a previous decision tree 
algorithm that minimizes the total cost of misclassifications and tests. We then describe 
several novel “test strategies” to determine what tests should be performed, and at what 
order, for attributes with unknown values in test examples such that the total expected 
cost is minimum. Extensive experiments have been conducted to show the effectiveness 
of our tree building and test strategies compared to previous methods.  

2 Review of Previous Work 

Cost-sensitive learning has received an extensive attention in recent years. Much work 
has been done in considering non-uniform misclassification costs (alone), such as [4, 5, 
7]. Those works can often used to solve the problem of learning with very imbalanced 
datasets [3]. Some previous work, such as [11], considers the test cost alone without 
incorporating misclassification cost. As pointed out by [13] it is obviously an oversight. 
A few previous works consider both misclassification and test costs, and they are 
reviewed below.  
 In [14], the cost-sensitive learning problem is cast as a Markov Decision Process 
(MDP). They adopt an optimal search strategy, which may incur a high computational 
cost.  In contrast, we adopt the local search similar to C4.5 [10], which is very efficient. 
Lizotte et al. [9] study the theoretical aspects of active learning with test costs using naïve 
Bayes classifiers. Turney [12] presents a system called ICET, which uses a genetic 
algorithm to build a decision tree to minimize the cost of tests and misclassifications. Our 
algorithm again is expected to be more efficient than Turney’s genetic algorithm. 
 Ling et al. [8] propose a new decision tree learning algorithm that uses minimum total 
cost of tests and misclassifications as the attribute split criterion. However, a single tree is 
built for all test examples. The information of some known attributes in a test example is 
ignored if they do not appear in the path through which the test example goes down the 
tree to a leaf, and their test strategies are very simple. In this paper, we propose a lazy-
tree learning to minimize the total cost of misclassifications and tests. But it can make use 
of the known attributes in each test example to reduce the total cost. We also propose an 
improved attribute selection criterion to split the training data. In addition, we propose 
several novel and sophisticated test strategies for obtaining missing attribute values when 
classifying new test examples that, as far as we know, have not been published 
previously.  
 Chai et al. [1] propose a naïve Bayes based algorithm, called CSNB, which searches 
for minimal total cost of tests and misclassifications. Our test strategies utilize the tree 
structure while naïve Bayes does not. Experiments show that our tree-based test strategies 
outperform CSNB in most situations (see experimental comparisons later in the paper). 



3 Lazy Decision Trees for Minimum Total Cost 

We assume that we are given a set of training data (with possible missing attribute 
values), the misclassification costs (FP and FN), and test costs for each attribute. Instead 
of building a single decision tree for all test examples [8], we propose a lazy-tree 
approach to utilize as much information in the known attributes as possible. More 
specifically, given a test example with known and unknown attributes, we first reassign 
the test cost of the known attributes to be 0 while the cost of the unknown attributes 
remains unchanged. For example, suppose that there are 3 attributes and their costs are 
$30, $40, and $60 respectively. If in a test example, the second attribute value is 
unknown (obtain by testing), then the new test costs would be reset to $0, $40, and $0 
respectively. Then a tree is built using the split criterion that minimizes the total cost of 
tests and misclassifications. Clearly our method builds different trees for test examples 
with different sets of unknown attributes. As our lazy-tree learning approach utilizes as 
much information in the known attributes as possible, we expect it will reduce the total 
cost in testing significantly. The rationale is that attributes with the zero test cost are more 
likely to be chosen early during the tree building process. When a test example is 
classified by this specific tree, it is less likely to be stopped by unknown attributes near 
the top of the decision tree. This tends to reduce the total test cost, and thus the total cost, 
as shown later in the experiments.  
 Another improvement we made over [8] is that we use the expected total 
misclassification cost when selecting an attribute for splitting. This gives a more accurate 
choice for attribute selection. That is, an attribute may be selected as a root node of a 
decision tree if the sum of the test cost and the expected misclassification costs of all 
branches is minimum among other attributes, and is less than that of the root. For a subset 
of examples with tp positive examples and tn negative examples, if CP = tp×TP + tn×FP 
is the total misclassification cost of being a positive leaf, and CN  =  tn× TN + tp×FN is 
the total misclassification cost of being a negative leaf, then the probability of being 
positive is estimated by the relative cost of CP and CN; the smaller the cost, the larger the 
probability (as minimum cost is sought). Thus, the probability of being positive is: 
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expected total misclassification cost after splitting on A is: 
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Thus, (E – EA –TC) is the expected cost reduction splitting on A, where TC is the total test 
cost for all examples on A. it is easy to find out which attribute has the smallest expected 
total cost (the sum of the test cost and the expected misclassification cost), and if it is 
smaller than the one without split (if so, it is worth to split). With the expected total 
misclassification cost described above as the splitting criterion, the lazy-tree learning 
algorithm is shown as follows. 
  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
  
 
 
 
 
  

LazyTree(Examples, Attributes, TestCosts, testExample) 
1. For each attribute 

a. If its value is known in testExample, its test cost is assigned as 0 
2. call CSDT(Examples, Attributes, TestCostsUpdated) to build a cost-sensitive 

decision tree 
 

CSDT(Examples, Attributes, TestCosts) 
1. Create a root node for the tree 
2. If all examples are positive, return the single-node tree, with label = + 
3. If all examples are negative, return the single-node tree, with label = - 
4. If attributes is empty, return the single-node tree, with label assigned according to 

min (EP, EN) 
5. Otherwise Begin 

a. If maximum cost reduction < 0 return the single-node tree, with label 
assigned according to min (EP, EN) 

b. A is an attribute which produces maximum cost reduction among all the 
remaining attributes 

c. Assign the attribute A as the tree root 
d. For each possible value vi of the attribute A 

i. Add a new branch below root, corresponding to the test A=vi 
ii. Segment the training examples into each branch Example_vi 

iii. If no examples in a branch, add a leaf node in this branch, with label 
assigned according to min (EP, EN) 

iv. Else add a subtree below this branch, CSDT(examples_vi, Attributes-A, 
TestCosts) 

6. End  
7. Return root 

 
 
 One weakness of our method is higher computational cost associated with lazy 
learning. However, our tree-building process has the same time complexity as C4.5, so it 
is quite efficient. In addition, lazy trees for the same set of unknown attributes are the 
same. Trees frequently used can be stored in memory for the speed trade-off.    



4 A Case Study on Heart Disease 

We apply our lazy decision tree learning on a real dataset, the Heart Disease, with known 
test costs. The dataset was used in the cost-sensitive genetic algorithm by [12]. The 
learning problem is to predict the coronary artery disease from the 13 non-invasive tests 
on patients. The class label 0 or negative class indicates a less than 50% of artery 
narrowing, and 1 indicates more than 50%. The costs of the 13 non-invasive tests are in 
Canadian dollars, and were obtained from the Ontario Health Insurance Program's fee 
schedule [12]. These individual tests and their costs are: age ($1), sex ($1), cp (chest pain 
type, $1), trestbps (resting blood pressure, $1), chol (serum cholesterol in mg/dl, $7.27), 
fbs (fasting blood sugar, $5.20), restecg (resting electrocardiography results, $15.50), 
thalach (maximum heart rate achieved, $102.90), exang (exercise induced angina, 
$87.30), oldpeak (ST depression induced by exercise, $87.30), slope (slope of the peak 
exercise ST segment, $87.30), ca (number of major vessels colored by fluoroscopy, 
$100.90), and thal ($102.90). Tests such as thalach, exang, oldpeak, and slope are 
electrocardiography results when the patient runs on a treadmill, and are usually 
performed as a group. Tests done in a group may be discounted in costs, but this is not 
considered in this paper (see future work). However, no information about 
misclassification costs was given. After consulting a researcher in the Heart-Failure 
Research Group in the local medical school, a positive prediction normally entails a more 
expensive and invasive test, the angiographic test, to be performed, which accurately 
measures the percentage of artery narrowing. A negative prediction may prompt doctors 
to prescribe medicines, but the angiographic test may still be ordered if other diseases 
(such as diabetes) exist. An angiographic test costs about $600. Thus, it seems reasonable 
to assign false positive and false negative to be $600 and $1000 respectively. 
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Fig. 1. Lazy tree for the test case with missing values for all attributes 



 Assuming in a new test example all attribute values are missing (as seeing a completely 
new patient), the original test costs given above are used directly for the tree building. 
The numerical attributes in datasets are discretized into integers (1, 2, …) using the 
minimal entropy method of [6]. We apply our lazy decision tree learning for this test 
case, and obtain a decision tree shown in Figure 1.  
 We can see that often less expensive tests are used in the top part of the tree. For 
example, cp is selected as the root of the tree, sex and fbs are in the second level of the 
tree. But slope and thal, expensive tests, are also selected in the second level, since they 
have higher merit to reduce the total cost. That is, the splitting criterion selects tests 
according to their relative merit of reducing the total cost.  When this tree is presented to 
the Heart-Failure researcher, he thinks that the tree is reasonable in predicting artery 
narrowing. Note that it is not feasible for us to compare our results on this dataset with 
[12] and other previous work using the same dataset, as they have very different settings. 
Here we present this case to show intuitively how our lazy-tree building algorithm and 
test strategies (to be discussed next) work.   

5 Two Categories of Test Strategies 

We define two categories of test strategies: Sequential Test and Single Batch Test. For a 
given test example with unknown attributes, the Sequential Test can request only one test 
at a time, and wait for the test result to decide which attribute to be tested next, or if a 
final prediction is made.  The Single Batch Test, on the other hand, can request one set 
(batch) of one or many tests to be done simultaneously before a final prediction is made.  
 The related test strategies have many corresponding applications in the real world. In 
medical diagnoses, for example, doctors normally order one set of tests (at a cost) to be 
done at once. This is the case of the Single Batch Test. If doctors only order one test at a 
time (this can happen if tests are very expensive and/or risky), this is the case of the 
Sequential Test. In the next two subsections the two types of test strategies will be 
discussed in great details. 

5.1 Lazy-trees Optimal Sequential Test (LazyOST)  

Recall that Sequential Test allows one test to be performed (at a cost) each time before 
the next test is determined, until a final prediction is made. Ling et al. [8] described a 
simple strategy called Optimal Sequential Test (or OST in short) that directly utilizes the 
decision tree built to guide the sequence of tests to be performed in the following way: 
when the test example is classified by the tree, and is stopped by an attribute whose value 
is unknown, a test of that attribute is made at a cost. This process continues until the test 
case reaches a leaf of the tree. According to the leaf reached, a prediction is made, which 
may incur a misclassification cost if the prediction is wrong. Clearly the time complexity 
of OST is only linear to the depth of the tree. 



 One weakness with this approach is that it uses the same tree for all testing examples. 
In this work, we have proposed a lazy decision-tree learning algorithm (Section 3) that 
builds a different tree for each test example. We apply the same test process above in the 
lazy tree, and call it Lazy-tree Optimal Sequential Test (LazyOST). Note that this 
approach is “optimal” by the nature of the decision tree built to minimize the total cost; 
that is, subtrees are built because there is a cost reduction in the training data. Therefore, 
the tree’s suggestions for tests will also result in minimum total cost. (Note the terms such 
as “optimal” and “minimum” used in this paper do not mean in the absolute and global 
sense. As in C4.5, the tree building algorithm and test strategies use heuristics which are 
only locally optimal).  
 Note that it is not obvious that this lazy-tree Optimal Sequential (LazyOST) Test 
should always produce a small total cost compared to the single-tree OST. This is 
because in both approaches, the test costs of the known attributes do not count during the 
classifying of a test example. However, when we build decision tree specifically for a test 
example, the tree minimizes the total cost without counting the known attributes in the 
training data. This would produce a smaller total cost for that test example. In contrast, in 
the single tree approach, only one tree is built for all test examples, and specific 
information about known and unknown attributes in each test example is not utilized. In 
Section 4.1.2 we will compare LazyOST and OST on ten real-world datasets to see which 
one is better in terms of having a smaller total cost.  
Case Study on Heart Disease Continued. Continuing on the heart-disease example, we 
next choose a test example with most attribute values known from the dataset, as the 
known values serve as the test results. The discretized attribute values for this test case 
are: age=1, sex=2, cp=3, trestbps=1, chol=1, fbs=1, restecg=1, thalach=1, exang=2,  
oldpeak=2, slope=1, ca=?, thal=2, and class=0 (a negative case). We apply LazyOST on 
the tree in Figure 1. Again assuming all values are unknown, LazyOST requests the 
sequence of tests as: cp (=3), fbs (=1), thal (=2), and restecg (=1), with a total test cost of 
$124.60. The prediction of the tree is 0 (correct), thus the misclassification cost is 0. 
Therefore, the total cost for this test case is $124.60.  
Comparing Sequential Test Strategies. To compare various sequential test strategies, 
we choose 10 real-world datasets, listed in Table 1, from the UCI Machine Learning 
Repository [1]. These datasets are chosen because they are binary class, have at least 
some discrete attributes, and have a good number of examples. Each dataset is split into 
two parts: the training set (60%) and the test set (40%). Unlike the case study of heart 
disease, the detailed test costs of these datasets are unknown. To make the comparison 
possible, we simply choose randomly the test costs of all attributes to be some values 
between 0 and 100. This is reasonable because we compare the relative performance of 
all test strategies under the same chosen costs. The misclassification cost is set to 200/600 
(200 for false positive and 600 for false negative). For test examples, a certain ratio of 
attributes (0.2, 0.4, 0.6, 0.8, and 1) are randomly selected and marked as unknown to 
simulate test cases with various degrees of missing values. Three Sequential Test 
strategies, OST [8], LazyOST (our work), and CSNB [2] are compared. We repeat this 
process 25 times, and the average total costs for the 10 datasets are plotted in Figure 2.  
 



Table 1. Datasets used in the experiments 
 No. of 

Attributes
No. of 

Examples
Class dist. 

(N/P)
Ecoli 6 332 230/102
Breast 9 683 444/239
Heart 8 161 98/163
Thyroid 24 2000 1762/238
Australia 15 653 296/357
Tic-tac- 9 958 332/626
Mushroom 21 8124 4208/3916
Kr-vs-kp 36 3196 1527/1669
Voting 16 232 108/124
Cars 6 446 328/118
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Fig. 2. Comparing our new Sequential Test strategy LazyOST with CSNB and OST 

 We can make several interesting conclusions. First, we can see clearly that LazyOST 
outperforms OST on all 10 datasets under every unknown attribute ratio, except 1. When 
all attributes are unknown, the eager and lazy tree learners produce the same tree. Second, 
the difference between OST and LazyOST is larger at a lower ratio of unknown attributes 
compared to a higher ratio. This is because when the ratio is low, most attributes are 
known, and LazyOST takes advantages of these known attributes for individual test 
examples while OST does not. This confirms our early expectation that our new lazy 
trees learning algorithm produces a tree with smaller total costs compared to the previous 
single tree approach. Last, we also see that the CSNB [2] performs better than OST when 
the ratio of unknown attributes is less than 0.7 (confirming results in [2]), since CSNB 
has a lower misclassification cost than OST with lower ratios of unknown attributes. 
However, LazyOST performs best among the three strategies when the ratio of unknown 
attributes is greater than 0.3.  

5.2 Single Batch Tests 

The Sequential Test Strategies discussed in the previous section have to wait for the 
result of each test to determine which test will be the next one. Waiting not only agonizes 



the patient in medical diagnosis, it may also be life threatening if the disease is not 
diagnosed and treated promptly. Thus doctors normally order one set (batch) of tests to be 
done at once. This is the case of the Single Batch Test. Note that results of the tests in the 
batch can only be obtained simultaneously after the batch is determined.   
 In [8] a very simple heuristic is described. The basic idea is that when a test example is 
classified by a minimum-cost tree and is stopped by the first attribute whose value is 
unknown in the test case, all unknown attributes under and including this first attribute 
would be tested, as a single batch. Clearly, this strategy would have exactly the same 
misclassification cost as the Optimal Sequential Test, but the total test cost is higher as 
extra tests are performed. We call this strategy Naïve Single Batch (NSB).  
 We propose two new and more sophisticated Single Batch Test strategies, and discuss 
their strengths and weaknesses. We will show experimentally that they are better than the 
Naïve Single Batch and the single batch based on naïve Bayes [2].  
Greedy Single Batch (GSB). The rationale behind GSB is to find the most likely leaf 
(the most typical case) that the test example may fall into, and collect the tests on the path 
to this leaf for the batch test (to “confirm” the case). More specifically, it first locates all 
“reachable” leaves under the first unknown attribute (let us call it u) when the test 
example is classified by the tree. Reachable leaves are the leaves that can be possibly 
reached from u given the values of known attributes and all possible values of the 
unknown attributes under u. Then a reachable leaf with the maximum number of training 
examples is located, and the unknown attributes on the path from u to this leaf are 
collected as the batch of tests to be performed. 
 Intuitively this strategy reduces the total test cost than the Naïve Single Batch as only a 
subset of the tests is performed. However, it may increase the misclassification costs 
compared to the Optimal Sequential Test, as the greedy “guesses” may not be correct, in 
which case the test example will not reach a leaf, and must be classified by an internal 
node in the decision tree, which is usually less accurate than a leaf node. This will incur a 
higher misclassification cost.  
Optimal Single Batch (OSB). The Optimal Single Batch (OSB) seeks a set of tests to be 
performed such that the sum of the test costs and expected misclassification cost after 
those tests are done is optimal (minimal). Intuitively, it finds the expected cost reduction 
for each unknown attribute (test), and adds a test to the batch if the cost reduction is 
positive and maximum (among other tests). More specifically, when a test example is 
classified by the tree, and is stopped by the first unknown attribute u in the tree, the total 
expected cost misc(u) can be calculated. At this point, misc(u) is simply the expected 
misclassification cost of u, and there is no test cost. If u is tested at a cost C, then the test 
example is split according to the percentage of training examples that belong to different 
attribute values, and is duplicated and distributed into different branches of the tree (as 
we do not know u’s value since this is a batch test), until it reaches some leaves, or is 
stopped by other unknown attributes. For each such reachable leaf or unknown attribute, 
the expected cost can be calculated again, and the weighted misclassification cost can be 
obtained (let us call it S). The sum of C and S is then the expected cost if u is tested, and 
the difference between misc(u) and C+S is the cost reduction E(u) if u is tested. If such a 
cost reduction is positive, then u is put into the batch of tests. Then from the current set of 
reachable unknown attributes, a node with the maximum positive cost reduction is 



chosen, and it is added into the current batch of tests. This process is continued until the 
maximum cost reduction is no longer greater than 0, or there is no reachable unknown 
attributes (all unknown attributes under u are in the batch, reducing to Naïve Single 
Batch). The batch of tests is then discovered. The pseudo-code of OSB is shown here. 
 In the pseudo-code, misc(.) is the expected misclassification cost of a node, c(.) is the 
test cost of an attribute, R(.) is all reachable unknown nodes and leaves under a node, and 
p(.) is the probability (estimated by ratios in the training data) that a node is reached.  
Therefore, the formula E(i) in the pseudo-code calculates the cost difference between no 
test at i (so only misclassification cost at i) and after testing i (the test cost plus the 
weighted sum of misclassification costs of reachable nodes under i). That is, E(i) is the 
expected cost reduction if i is tested. Then the node t with the maximum cost reduction is 
found, and if such reduction is positive, t should be tested in the batch. Thus, t is removed 
from L and added into the batch list B, and all reachable unknown nodes or leaves of t, 
represented by the function r(t), is added into L for further consideration. This process 
continues until there is no positive cost reduction or there is no unknown nodes to be 
considered (i.e., L is empty). The time complexity is linear to the size of the tree, as each 
node is considered only once. 
 

L = empty   /* list of reachable and unknown attributes */ 
B = empty   /* the batch of tests */ 
u = the first unknown attribute when classifying a test case 
Add u into L  
Loop 

For each i ∈  L, calculate E(i):  
  E(i)= misc(i) – [c(i) +∑ ] 

 E(t) = max E(i)  /* t has the maximum cost reduction */ 
If E(t) > 0 then add t into B, delete t from L, add r(t) into L 
     else exit Loop    /* No positive cost reduction */ 

Until L is empty 
Output B as the batch of tests   

 

× ))(())(( iRmisciRp

  
 
 
 
 
 
 
 
 
 
 
 
 
Comparing the two new single batch strategies, Greedy Single Batch (GSB) is simple and 
intuitive; it finds the most likely situation (leaf) and requests tests to “confirm” it. The 
time complexity is linear to the depth of the tree. It works well if there is a reachable leaf 
with a large number of training examples. The time complexity of the Optimal Single 
Batch (OSB) is linear to the size of the tree, but it is expected to have a smaller total cost 
than GSB. Both GSB and OSB may suggest tests that may be wasted, and test examples 
may not fall into a leaf.  
Case Study on Heart Disease Continued. We apply GSB and OSB on the same test 
case as in Section 4.1.1 with the decision tree in Figure 1. The GSB suggests the (single) 
batch of (cp, and thal), while the OSB suggests the single batch of (cp, sex, slope, fbs, 
thal, age, chol, and restecg) to be tested. With both GSB and OSB, the test case does not 
go into a leaf, and some tests are wasted. The test cost is $103.9 for GSB and $221.17 for 
OSB, while the misclassification costs are 0 for both GSB and OSB. Thus, the total cost 



for the test case is $103.9 and $221.17 for GSB and OSB respectively. Note that we 
cannot conclude here GSB is better than OSB as this is only for a test case.  
Comparing Single Batch Test Strategies. We use the same experiment procedure on the 
same 10 datasets to compare various Single Batch Test strategies including CSNB-SB 
[2]. The misclassification costs are set to 2000/6000. These costs are set to larger values 
so the trees will be larger to show more clearly the effect of batch tests. The total costs for 
the 10 datasets are compared and the average total costs for the 10 datasets are plotted in 
Figure 3.  
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Fig. 3. Comparing our new Single Batch Test strategies GSB and OSB CSNB-SB and NSB  

 From Figure 3 we can clearly see that Optimal Single Batch (OSB) performs the best 
among other single batch test strategies. When the ratio of missing attributes is relatively 
small (0.2), the three tree-based single batch test strategies are similar, as very few 
attributes would need to be tested. When the ratio of missing attributes increases, the 
differences become more evident, especially between Naïve Single Batch and Greedy 
Single Batch. All the tree-based single batch strategies perform better than the single 
batch with naïve Bayes. The reason is that the structure of the decision tree is utilized 
when deciding the single batch, while naïve Bayes has no such structure to rely on.   

6 Conclusions and Future Work 

In this paper, we present a lazy decision tree learning algorithm to minimize the total cost 
of misclassifications and tests. We then design two categories of test strategies: 
Sequential Test and Single Batch Test, to determine which unknown attributes should be 
tested, and in what order, to minimize the total cost of tests and misclassifications. We 
evaluate the performance (in terms of the total cost) empirically, compared to previous 
methods using a single decision tree and naïve Bayes. The results show that the new test 
strategies, Lazy-tree Optimal Sequential Test, and Optimal Single Batch, work best in the 
corresponding categories. The time complexity of these new test strategies is linear to the 
tree depth or the tree size, making them efficient for testing a large number of test cases. 



These strategies can be readily applied to large datasets in the real world. A detailed case 
study on heart disease is given in the paper.  
 In our future work we plan to continue to work with medical doctors to apply our 
algorithms to medical data with real costs. We also plan to consider discounts when 
groups of tests are ordered at the same time, and to incorporate other types of costs in our 
decision tree learning and test strategies. 
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