
Simple Test Strategies for Cost-Sensitive Decision Trees

Shengli Sheng1, Charles X. Ling1, Qiang Yang2

1Department of Computer Science, The University of Western Ontario
London, Ontario N6A 5B7, Canada

{cling, ssheng}@ csd.uwo.ca
2Department of Computer Science, Hong Kong UST, Hong Kong

qyang @ cs.ust.hk

Abstract. We study cost-sensitive learning of decision trees that incorporate both
test costs and misclassification costs. In particular, we first propose a lazy decision
tree learning that minimizes the total cost of tests and misclassifications. Then
assuming test examples may contain unknown attributes whose values can be
obtained at a cost (the test cost), we design several novel test strategies which
attempt to minimize the total cost of tests and misclassifications for each test
example. We empirically evaluate our tree-building and various test strategies, and
show that they are very effective. Our results can be readily applied to real-world
diagnosis tasks, such as medical diagnosis where doctors must try to determine what
tests (e.g., blood tests) should be ordered for a patient to minimize the total cost of
tests and misclassifications (misdiagnosis). A case study on heart disease is given
throughout the paper.

1 Introduction

In many real-world machine learning applications, minimizing misclassification error is
often not the ultimate goal, as “errors” can cost differently. This type of learning is called
cost-sensitive learning. Turney [13] surveys a wide range of costs in cost-sensitive
learning, among which two types of costs are singled out as most important:
misclassification costs and test costs. For example, in a binary classification task, the
costs of false positive (FP) and false negative (FN) are often very different. In addition,
attributes may have costs (test costs) when acquiring values. The goal of learning is to
minimize the total cost of misclassifications and tests.
 Tasks involving both misclassification and test costs are abundant in real-world
applications. For example, when building a model for medical diagnosis from the training
data, we must consider the cost of tests (such as blood tests, X-ray, etc.) and the cost of
misclassifications (errors in the diagnosis). Further, when a doctor sees a new patient (a
test example), tests are normally ordered, at a cost to the patient or the insurance
company, to better diagnose or predict the disease of the patient (i.e., reducing the
misclassification cost). Doctors must balance the trade-off between potential

misclassification costs and test costs to determinate which tests should be ordered, and at
what order, to reduce the expected total cost. A case study on heart disease is given in the
paper.
 In this paper, we propose a lazy-tree learning that improves on a previous decision tree
algorithm that minimizes the total cost of misclassifications and tests. We then describe
several novel “test strategies” to determine what tests should be performed, and at what
order, for attributes with unknown values in test examples such that the total expected
cost is minimum. Extensive experiments have been conducted to show the effectiveness
of our tree building and test strategies compared to previous methods.

2 Review of Previous Work

Cost-sensitive learning has received an extensive attention in recent years. Much work
has been done in considering non-uniform misclassification costs (alone), such as [4, 5,
7]. Those works can often used to solve the problem of learning with very imbalanced
datasets [3]. Some previous work, such as [11], considers the test cost alone without
incorporating misclassification cost. As pointed out by [13] it is obviously an oversight.
A few previous works consider both misclassification and test costs, and they are
reviewed below.
 In [14], the cost-sensitive learning problem is cast as a Markov Decision Process
(MDP). They adopt an optimal search strategy, which may incur a high computational
cost. In contrast, we adopt the local search similar to C4.5 [10], which is very efficient.
Lizotte et al. [9] study the theoretical aspects of active learning with test costs using naïve
Bayes classifiers. Turney [12] presents a system called ICET, which uses a genetic
algorithm to build a decision tree to minimize the cost of tests and misclassifications. Our
algorithm again is expected to be more efficient than Turney’s genetic algorithm.
 Ling et al. [8] propose a new decision tree learning algorithm that uses minimum total
cost of tests and misclassifications as the attribute split criterion. However, a single tree is
built for all test examples. The information of some known attributes in a test example is
ignored if they do not appear in the path through which the test example goes down the
tree to a leaf, and their test strategies are very simple. In this paper, we propose a lazy-
tree learning to minimize the total cost of misclassifications and tests. But it can make use
of the known attributes in each test example to reduce the total cost. We also propose an
improved attribute selection criterion to split the training data. In addition, we propose
several novel and sophisticated test strategies for obtaining missing attribute values when
classifying new test examples that, as far as we know, have not been published
previously.
 Chai et al. [1] propose a naïve Bayes based algorithm, called CSNB, which searches
for minimal total cost of tests and misclassifications. Our test strategies utilize the tree
structure while naïve Bayes does not. Experiments show that our tree-based test strategies
outperform CSNB in most situations (see experimental comparisons later in the paper).

3 Lazy Decision Trees for Minimum Total Cost

We assume that we are given a set of training data (with possible missing attribute
values), the misclassification costs (FP and FN), and test costs for each attribute. Instead
of building a single decision tree for all test examples [8], we propose a lazy-tree
approach to utilize as much information in the known attributes as possible. More
specifically, given a test example with known and unknown attributes, we first reassign
the test cost of the known attributes to be 0 while the cost of the unknown attributes
remains unchanged. For example, suppose that there are 3 attributes and their costs are
$30, $40, and $60 respectively. If in a test example, the second attribute value is
unknown (obtain by testing), then the new test costs would be reset to $0, $40, and $0
respectively. Then a tree is built using the split criterion that minimizes the total cost of
tests and misclassifications. Clearly our method builds different trees for test examples
with different sets of unknown attributes. As our lazy-tree learning approach utilizes as
much information in the known attributes as possible, we expect it will reduce the total
cost in testing significantly. The rationale is that attributes with the zero test cost are more
likely to be chosen early during the tree building process. When a test example is
classified by this specific tree, it is less likely to be stopped by unknown attributes near
the top of the decision tree. This tends to reduce the total test cost, and thus the total cost,
as shown later in the experiments.
 Another improvement we made over [8] is that we use the expected total
misclassification cost when selecting an attribute for splitting. This gives a more accurate
choice for attribute selection. That is, an attribute may be selected as a root node of a
decision tree if the sum of the test cost and the expected misclassification costs of all
branches is minimum among other attributes, and is less than that of the root. For a subset
of examples with tp positive examples and tn negative examples, if CP = tp×TP + tn×FP
is the total misclassification cost of being a positive leaf, and CN = tn× TN + tp×FN is
the total misclassification cost of being a negative leaf, then the probability of being
positive is estimated by the relative cost of CP and CN; the smaller the cost, the larger the
probability (as minimum cost is sought). Thus, the probability of being positive is:

NP

N

NP

P

CC
C

CC
C

+
=

+
−1 . The expected misclassification cost of being positive is:

P
NP

N
P C

CC
CE ×
+

= . Similarly, the probability of being a negative leaf is
NP

P

CC
C
+

;

and the expected misclassification cost of being negative is: N
NP

P
N C

CC
C

×
+

=E .

Therefore, without splitting, the expected total misclassification cost of a given set of

examples is:
NP

NP
N CC

CCE
+PEE ××

=
2

+= . If an attribute A has l branches, then the

expected total misclassification cost after splitting on A is:
ii

ii

NP

NP
l

i
A CC

CC
+

×
×= ∑

=1
2E .

Thus, (E – EA –TC) is the expected cost reduction splitting on A, where TC is the total test
cost for all examples on A. it is easy to find out which attribute has the smallest expected
total cost (the sum of the test cost and the expected misclassification cost), and if it is
smaller than the one without split (if so, it is worth to split). With the expected total
misclassification cost described above as the splitting criterion, the lazy-tree learning
algorithm is shown as follows.

LazyTree(Examples, Attributes, TestCosts, testExample)
1. For each attribute

a. If its value is known in testExample, its test cost is assigned as 0
2. call CSDT(Examples, Attributes, TestCostsUpdated) to build a cost-sensitive

decision tree

CSDT(Examples, Attributes, TestCosts)
1. Create a root node for the tree
2. If all examples are positive, return the single-node tree, with label = +
3. If all examples are negative, return the single-node tree, with label = -
4. If attributes is empty, return the single-node tree, with label assigned according to

min (EP, EN)
5. Otherwise Begin

a. If maximum cost reduction < 0 return the single-node tree, with label
assigned according to min (EP, EN)

b. A is an attribute which produces maximum cost reduction among all the
remaining attributes

c. Assign the attribute A as the tree root
d. For each possible value vi of the attribute A

i. Add a new branch below root, corresponding to the test A=vi
ii. Segment the training examples into each branch Example_vi

iii. If no examples in a branch, add a leaf node in this branch, with label
assigned according to min (EP, EN)

iv. Else add a subtree below this branch, CSDT(examples_vi, Attributes-A,
TestCosts)

6. End
7. Return root

 One weakness of our method is higher computational cost associated with lazy
learning. However, our tree-building process has the same time complexity as C4.5, so it
is quite efficient. In addition, lazy trees for the same set of unknown attributes are the
same. Trees frequently used can be stored in memory for the speed trade-off.

4 A Case Study on Heart Disease

We apply our lazy decision tree learning on a real dataset, the Heart Disease, with known
test costs. The dataset was used in the cost-sensitive genetic algorithm by [12]. The
learning problem is to predict the coronary artery disease from the 13 non-invasive tests
on patients. The class label 0 or negative class indicates a less than 50% of artery
narrowing, and 1 indicates more than 50%. The costs of the 13 non-invasive tests are in
Canadian dollars, and were obtained from the Ontario Health Insurance Program's fee
schedule [12]. These individual tests and their costs are: age ($1), sex ($1), cp (chest pain
type, $1), trestbps (resting blood pressure, $1), chol (serum cholesterol in mg/dl, $7.27),
fbs (fasting blood sugar, $5.20), restecg (resting electrocardiography results, $15.50),
thalach (maximum heart rate achieved, $102.90), exang (exercise induced angina,
$87.30), oldpeak (ST depression induced by exercise, $87.30), slope (slope of the peak
exercise ST segment, $87.30), ca (number of major vessels colored by fluoroscopy,
$100.90), and thal ($102.90). Tests such as thalach, exang, oldpeak, and slope are
electrocardiography results when the patient runs on a treadmill, and are usually
performed as a group. Tests done in a group may be discounted in costs, but this is not
considered in this paper (see future work). However, no information about
misclassification costs was given. After consulting a researcher in the Heart-Failure
Research Group in the local medical school, a positive prediction normally entails a more
expensive and invasive test, the angiographic test, to be performed, which accurately
measures the percentage of artery narrowing. A negative prediction may prompt doctors
to prescribe medicines, but the angiographic test may still be ordered if other diseases
(such as diabetes) exist. An angiographic test costs about $600. Thus, it seems reasonable
to assign false positive and false negative to be $600 and $1000 respectively.

1

2

2

3211

11 1

2

2 2

1

2 3

41

2

3

1 2

thal
($102.9)

fbs
($5.2)

restecg
($15.5)

sex
($1)

chol
($7.27)

0

cp
($1)

0

slope
($87.3)

restecg
($15.5)

age
($1)

thal
($102.9)

1 0 1 1

1 0 01 1

1 10 0
21

Fig. 1. Lazy tree for the test case with missing values for all attributes

 Assuming in a new test example all attribute values are missing (as seeing a completely
new patient), the original test costs given above are used directly for the tree building.
The numerical attributes in datasets are discretized into integers (1, 2, …) using the
minimal entropy method of [6]. We apply our lazy decision tree learning for this test
case, and obtain a decision tree shown in Figure 1.
 We can see that often less expensive tests are used in the top part of the tree. For
example, cp is selected as the root of the tree, sex and fbs are in the second level of the
tree. But slope and thal, expensive tests, are also selected in the second level, since they
have higher merit to reduce the total cost. That is, the splitting criterion selects tests
according to their relative merit of reducing the total cost. When this tree is presented to
the Heart-Failure researcher, he thinks that the tree is reasonable in predicting artery
narrowing. Note that it is not feasible for us to compare our results on this dataset with
[12] and other previous work using the same dataset, as they have very different settings.
Here we present this case to show intuitively how our lazy-tree building algorithm and
test strategies (to be discussed next) work.

5 Two Categories of Test Strategies

We define two categories of test strategies: Sequential Test and Single Batch Test. For a
given test example with unknown attributes, the Sequential Test can request only one test
at a time, and wait for the test result to decide which attribute to be tested next, or if a
final prediction is made. The Single Batch Test, on the other hand, can request one set
(batch) of one or many tests to be done simultaneously before a final prediction is made.
 The related test strategies have many corresponding applications in the real world. In
medical diagnoses, for example, doctors normally order one set of tests (at a cost) to be
done at once. This is the case of the Single Batch Test. If doctors only order one test at a
time (this can happen if tests are very expensive and/or risky), this is the case of the
Sequential Test. In the next two subsections the two types of test strategies will be
discussed in great details.

5.1 Lazy-trees Optimal Sequential Test (LazyOST)

Recall that Sequential Test allows one test to be performed (at a cost) each time before
the next test is determined, until a final prediction is made. Ling et al. [8] described a
simple strategy called Optimal Sequential Test (or OST in short) that directly utilizes the
decision tree built to guide the sequence of tests to be performed in the following way:
when the test example is classified by the tree, and is stopped by an attribute whose value
is unknown, a test of that attribute is made at a cost. This process continues until the test
case reaches a leaf of the tree. According to the leaf reached, a prediction is made, which
may incur a misclassification cost if the prediction is wrong. Clearly the time complexity
of OST is only linear to the depth of the tree.

 One weakness with this approach is that it uses the same tree for all testing examples.
In this work, we have proposed a lazy decision-tree learning algorithm (Section 3) that
builds a different tree for each test example. We apply the same test process above in the
lazy tree, and call it Lazy-tree Optimal Sequential Test (LazyOST). Note that this
approach is “optimal” by the nature of the decision tree built to minimize the total cost;
that is, subtrees are built because there is a cost reduction in the training data. Therefore,
the tree’s suggestions for tests will also result in minimum total cost. (Note the terms such
as “optimal” and “minimum” used in this paper do not mean in the absolute and global
sense. As in C4.5, the tree building algorithm and test strategies use heuristics which are
only locally optimal).
 Note that it is not obvious that this lazy-tree Optimal Sequential (LazyOST) Test
should always produce a small total cost compared to the single-tree OST. This is
because in both approaches, the test costs of the known attributes do not count during the
classifying of a test example. However, when we build decision tree specifically for a test
example, the tree minimizes the total cost without counting the known attributes in the
training data. This would produce a smaller total cost for that test example. In contrast, in
the single tree approach, only one tree is built for all test examples, and specific
information about known and unknown attributes in each test example is not utilized. In
Section 4.1.2 we will compare LazyOST and OST on ten real-world datasets to see which
one is better in terms of having a smaller total cost.
Case Study on Heart Disease Continued. Continuing on the heart-disease example, we
next choose a test example with most attribute values known from the dataset, as the
known values serve as the test results. The discretized attribute values for this test case
are: age=1, sex=2, cp=3, trestbps=1, chol=1, fbs=1, restecg=1, thalach=1, exang=2,
oldpeak=2, slope=1, ca=?, thal=2, and class=0 (a negative case). We apply LazyOST on
the tree in Figure 1. Again assuming all values are unknown, LazyOST requests the
sequence of tests as: cp (=3), fbs (=1), thal (=2), and restecg (=1), with a total test cost of
$124.60. The prediction of the tree is 0 (correct), thus the misclassification cost is 0.
Therefore, the total cost for this test case is $124.60.
Comparing Sequential Test Strategies. To compare various sequential test strategies,
we choose 10 real-world datasets, listed in Table 1, from the UCI Machine Learning
Repository [1]. These datasets are chosen because they are binary class, have at least
some discrete attributes, and have a good number of examples. Each dataset is split into
two parts: the training set (60%) and the test set (40%). Unlike the case study of heart
disease, the detailed test costs of these datasets are unknown. To make the comparison
possible, we simply choose randomly the test costs of all attributes to be some values
between 0 and 100. This is reasonable because we compare the relative performance of
all test strategies under the same chosen costs. The misclassification cost is set to 200/600
(200 for false positive and 600 for false negative). For test examples, a certain ratio of
attributes (0.2, 0.4, 0.6, 0.8, and 1) are randomly selected and marked as unknown to
simulate test cases with various degrees of missing values. Three Sequential Test
strategies, OST [8], LazyOST (our work), and CSNB [2] are compared. We repeat this
process 25 times, and the average total costs for the 10 datasets are plotted in Figure 2.

Table 1. Datasets used in the experiments
 No. of

Attributes
No. of

Examples
Class dist.

(N/P)
Ecoli 6 332 230/102
Breast 9 683 444/239
Heart 8 161 98/163
Thyroid 24 2000 1762/238
Australia 15 653 296/357
Tic-tac- 9 958 332/626
Mushroom 21 8124 4208/3916
Kr-vs-kp 36 3196 1527/1669
Voting 16 232 108/124
Cars 6 446 328/118

40

60

80

100

0.2 0.4 0.6 0.8 1
Ratio of Unknown Attributes

To
ta

l C
os

t

CSNB OST LazyOST

Fig. 2. Comparing our new Sequential Test strategy LazyOST with CSNB and OST

 We can make several interesting conclusions. First, we can see clearly that LazyOST
outperforms OST on all 10 datasets under every unknown attribute ratio, except 1. When
all attributes are unknown, the eager and lazy tree learners produce the same tree. Second,
the difference between OST and LazyOST is larger at a lower ratio of unknown attributes
compared to a higher ratio. This is because when the ratio is low, most attributes are
known, and LazyOST takes advantages of these known attributes for individual test
examples while OST does not. This confirms our early expectation that our new lazy
trees learning algorithm produces a tree with smaller total costs compared to the previous
single tree approach. Last, we also see that the CSNB [2] performs better than OST when
the ratio of unknown attributes is less than 0.7 (confirming results in [2]), since CSNB
has a lower misclassification cost than OST with lower ratios of unknown attributes.
However, LazyOST performs best among the three strategies when the ratio of unknown
attributes is greater than 0.3.

5.2 Single Batch Tests

The Sequential Test Strategies discussed in the previous section have to wait for the
result of each test to determine which test will be the next one. Waiting not only agonizes

the patient in medical diagnosis, it may also be life threatening if the disease is not
diagnosed and treated promptly. Thus doctors normally order one set (batch) of tests to be
done at once. This is the case of the Single Batch Test. Note that results of the tests in the
batch can only be obtained simultaneously after the batch is determined.
 In [8] a very simple heuristic is described. The basic idea is that when a test example is
classified by a minimum-cost tree and is stopped by the first attribute whose value is
unknown in the test case, all unknown attributes under and including this first attribute
would be tested, as a single batch. Clearly, this strategy would have exactly the same
misclassification cost as the Optimal Sequential Test, but the total test cost is higher as
extra tests are performed. We call this strategy Naïve Single Batch (NSB).
 We propose two new and more sophisticated Single Batch Test strategies, and discuss
their strengths and weaknesses. We will show experimentally that they are better than the
Naïve Single Batch and the single batch based on naïve Bayes [2].
Greedy Single Batch (GSB). The rationale behind GSB is to find the most likely leaf
(the most typical case) that the test example may fall into, and collect the tests on the path
to this leaf for the batch test (to “confirm” the case). More specifically, it first locates all
“reachable” leaves under the first unknown attribute (let us call it u) when the test
example is classified by the tree. Reachable leaves are the leaves that can be possibly
reached from u given the values of known attributes and all possible values of the
unknown attributes under u. Then a reachable leaf with the maximum number of training
examples is located, and the unknown attributes on the path from u to this leaf are
collected as the batch of tests to be performed.
 Intuitively this strategy reduces the total test cost than the Naïve Single Batch as only a
subset of the tests is performed. However, it may increase the misclassification costs
compared to the Optimal Sequential Test, as the greedy “guesses” may not be correct, in
which case the test example will not reach a leaf, and must be classified by an internal
node in the decision tree, which is usually less accurate than a leaf node. This will incur a
higher misclassification cost.
Optimal Single Batch (OSB). The Optimal Single Batch (OSB) seeks a set of tests to be
performed such that the sum of the test costs and expected misclassification cost after
those tests are done is optimal (minimal). Intuitively, it finds the expected cost reduction
for each unknown attribute (test), and adds a test to the batch if the cost reduction is
positive and maximum (among other tests). More specifically, when a test example is
classified by the tree, and is stopped by the first unknown attribute u in the tree, the total
expected cost misc(u) can be calculated. At this point, misc(u) is simply the expected
misclassification cost of u, and there is no test cost. If u is tested at a cost C, then the test
example is split according to the percentage of training examples that belong to different
attribute values, and is duplicated and distributed into different branches of the tree (as
we do not know u’s value since this is a batch test), until it reaches some leaves, or is
stopped by other unknown attributes. For each such reachable leaf or unknown attribute,
the expected cost can be calculated again, and the weighted misclassification cost can be
obtained (let us call it S). The sum of C and S is then the expected cost if u is tested, and
the difference between misc(u) and C+S is the cost reduction E(u) if u is tested. If such a
cost reduction is positive, then u is put into the batch of tests. Then from the current set of
reachable unknown attributes, a node with the maximum positive cost reduction is

chosen, and it is added into the current batch of tests. This process is continued until the
maximum cost reduction is no longer greater than 0, or there is no reachable unknown
attributes (all unknown attributes under u are in the batch, reducing to Naïve Single
Batch). The batch of tests is then discovered. The pseudo-code of OSB is shown here.
 In the pseudo-code, misc(.) is the expected misclassification cost of a node, c(.) is the
test cost of an attribute, R(.) is all reachable unknown nodes and leaves under a node, and
p(.) is the probability (estimated by ratios in the training data) that a node is reached.
Therefore, the formula E(i) in the pseudo-code calculates the cost difference between no
test at i (so only misclassification cost at i) and after testing i (the test cost plus the
weighted sum of misclassification costs of reachable nodes under i). That is, E(i) is the
expected cost reduction if i is tested. Then the node t with the maximum cost reduction is
found, and if such reduction is positive, t should be tested in the batch. Thus, t is removed
from L and added into the batch list B, and all reachable unknown nodes or leaves of t,
represented by the function r(t), is added into L for further consideration. This process
continues until there is no positive cost reduction or there is no unknown nodes to be
considered (i.e., L is empty). The time complexity is linear to the size of the tree, as each
node is considered only once.

L = empty /* list of reachable and unknown attributes */
B = empty /* the batch of tests */
u = the first unknown attribute when classifying a test case
Add u into L
Loop

For each i ∈ L, calculate E(i):
 E(i)= misc(i) – [c(i) +∑]

 E(t) = max E(i) /* t has the maximum cost reduction */
If E(t) > 0 then add t into B, delete t from L, add r(t) into L
 else exit Loop /* No positive cost reduction */

Until L is empty
Output B as the batch of tests

×))(())((iRmisciRp

Comparing the two new single batch strategies, Greedy Single Batch (GSB) is simple and
intuitive; it finds the most likely situation (leaf) and requests tests to “confirm” it. The
time complexity is linear to the depth of the tree. It works well if there is a reachable leaf
with a large number of training examples. The time complexity of the Optimal Single
Batch (OSB) is linear to the size of the tree, but it is expected to have a smaller total cost
than GSB. Both GSB and OSB may suggest tests that may be wasted, and test examples
may not fall into a leaf.
Case Study on Heart Disease Continued. We apply GSB and OSB on the same test
case as in Section 4.1.1 with the decision tree in Figure 1. The GSB suggests the (single)
batch of (cp, and thal), while the OSB suggests the single batch of (cp, sex, slope, fbs,
thal, age, chol, and restecg) to be tested. With both GSB and OSB, the test case does not
go into a leaf, and some tests are wasted. The test cost is $103.9 for GSB and $221.17 for
OSB, while the misclassification costs are 0 for both GSB and OSB. Thus, the total cost

for the test case is $103.9 and $221.17 for GSB and OSB respectively. Note that we
cannot conclude here GSB is better than OSB as this is only for a test case.
Comparing Single Batch Test Strategies. We use the same experiment procedure on the
same 10 datasets to compare various Single Batch Test strategies including CSNB-SB
[2]. The misclassification costs are set to 2000/6000. These costs are set to larger values
so the trees will be larger to show more clearly the effect of batch tests. The total costs for
the 10 datasets are compared and the average total costs for the 10 datasets are plotted in
Figure 3.

350
450
550
650
750
850

0.2 0.4 0.6 0.8 1
Ratio of Unknown Attributes

To
ta

l C
os

t

CSNB-SB NSB GSB OSB

Fig. 3. Comparing our new Single Batch Test strategies GSB and OSB CSNB-SB and NSB

 From Figure 3 we can clearly see that Optimal Single Batch (OSB) performs the best
among other single batch test strategies. When the ratio of missing attributes is relatively
small (0.2), the three tree-based single batch test strategies are similar, as very few
attributes would need to be tested. When the ratio of missing attributes increases, the
differences become more evident, especially between Naïve Single Batch and Greedy
Single Batch. All the tree-based single batch strategies perform better than the single
batch with naïve Bayes. The reason is that the structure of the decision tree is utilized
when deciding the single batch, while naïve Bayes has no such structure to rely on.

6 Conclusions and Future Work

In this paper, we present a lazy decision tree learning algorithm to minimize the total cost
of misclassifications and tests. We then design two categories of test strategies:
Sequential Test and Single Batch Test, to determine which unknown attributes should be
tested, and in what order, to minimize the total cost of tests and misclassifications. We
evaluate the performance (in terms of the total cost) empirically, compared to previous
methods using a single decision tree and naïve Bayes. The results show that the new test
strategies, Lazy-tree Optimal Sequential Test, and Optimal Single Batch, work best in the
corresponding categories. The time complexity of these new test strategies is linear to the
tree depth or the tree size, making them efficient for testing a large number of test cases.

These strategies can be readily applied to large datasets in the real world. A detailed case
study on heart disease is given in the paper.
 In our future work we plan to continue to work with medical doctors to apply our
algorithms to medical data with real costs. We also plan to consider discounts when
groups of tests are ordered at the same time, and to incorporate other types of costs in our
decision tree learning and test strategies.

References

1. Blake, C.L., and Merz, C.J. 1998. UCI Repository of machine learning databases (website).
Irvine, CA: University of California.

2. Chai, X., Deng, L., Yang, Q., and Ling,C.X.. 2004. Test-Cost Sensitive Naïve Bayesian
Classification. In Proceedings of the Fourth IEEE International Conference on Data Mining.
Brighton, UK : IEEE Computer Society Press.

3. Chawla,N.V., Japkowicz, N., and Kolcz, A. eds. 2004. Special Issue on Learning from
Imbalanced Datasets. SIGKDD, 6(1): ACM Press.

4. Domingos, P. 1999. MetaCost: A General Method for Making Classifiers Cost-Sensitive. In
Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining,
155-164. San Diego, CA: ACM Press.

5. Elkan, C. 2001. The Foundations of Cost-Sensitive Learning. In Proceedings of the Seventeenth
International Joint Conference of Artificial Intelligence, 973-978. Seattle, Washington: Morgan
Kaufmann.

6. Fayyad, U.M., and Irani, K.B. 1993. Multi-interval discretization of continuous-valued attributes
for classification learning. In Proceedings of the 13th International Joint Conference on
Artificial Intelligence, 1022-1027. France: Morgan Kaufmann.

7. Ting, K.M. 1998. Inducing Cost-Sensitive Trees via Instance Weighting. In Proceedings of the
Second European Symposium on Principles of Data Mining and Knowledge Discovery, 23-26.
Springer-Verlag.

8. Ling, C.X., Yang, Q., Wang, J., and Zhang, S. 2004. Decision Trees with Minimal Costs. In
Proceedings of the Twenty-First International Conference on Machine Learning, Banff, Alberta:
Morgan Kaufmann.

9. Lizotte, D., Madani, O., and Greiner R. 2003. Budgeted Learning of Naïve-Bayes Classifiers. In
Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence. Acapulco,
Mexico: Morgan Kaufmann.

10. Quinlan, J.R. eds. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann.
11. Tan, M. 1993. Cost-sensitive learning of classification knowledge and its applications in

robotics. Machine Learning Journal, 13:7-33.
12. Turney, P.D. 1995. Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic

Decision Tree Induction Algorithm. Journal of Artificial Intelligence Research 2:369-409.
13. Turney, P.D. 2000. Types of cost in inductive concept learning. In Proceedings of the

Workshop on Cost-Sensitive Learning at the Seventeenth International Conference on Machine
Learning, Stanford University, California.

14. Zubek, V.B., and Dietterich, T. 2002. Pruning improves heuristic search for cost-sensitive
learning. In Proceedings of the Nineteenth International Conference of Machine Learning, 27-
35, Sydney, Australia: Morgan Kaufmann.

