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Abstract

Direct marketing is a process of identifying likely buy-
ers of certain products and promoting the products ac-
cordingly. It is increasingly used by banks, insurance
companies, and the retail industry. Data mining can
provide an effective tool for direct marketing. During
data mining, several specific problems arise. For exam-
ple, the class distribution is extremely imbalanced (the
response rate is about 1%), the predictive accuracy is
no longer suitable for evaluating learning methods, and
the number of examples can be too large. In this pa-
per, we discuss methods of coping with these problems
based on our experience on direct-marketing projects
using data mining.

1 Introduction

Almost all industries that sell products and services
need to advertise and promote their products and ser-
vices. Banks, insurance companies, and retail stores are
typical examples. There are generally two approaches
to advertisement and promotion: mass marketing and
direct marketing. Mass marketing, which uses mass
media such as television, radio, and newspapers, broad-
casts messages to the public without discrimination. It
used to be an effective way of promotion when the prod-
ucts were in great demand by the public. For example,
electronic goods (TVs, fridges) after World War IT were
in great demand, so TV commercials were effective in
promoting those products (Hughes, 1996). However,
in today’s world where products are overwhelming and
the market is highly competitive, mass marketing has
become less effective. The response rate, the percent
of people who actually buy the products after seeing
the promotion, is often low. From the datasets that we
have studied (see later), 1% is quite typical.

The second approach of promotion is direct market-
ing. Instead of promoting to customers indiscrimina-
tively, direct marketing studies customers’ character-
istics and needs, and selects certain customers as the
target for promotion. The hope is that the response
rate for the selected customers can be much improved.
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Nowadays, a huge amount of information on cus-
tomers is kept in databases. Thus, data mining can
be very effective for direct marketing. Regularities
and patterns for buyers can be discovered from the
database to predict and select worthy customers for pro-
motion. Data mining, an integration of machine learn-
ing, computer visualization, and statistics, has been
used widely in direct marketing to target customers
(Agrawal, Ghosh, Imielinski, Tyer, & Swami, 1992; Ter-
ano & Ishino, 1996; Ciesielski & Palstra, 1996).

2 Process of Data Mining for Direct
Marketing

According to Fayyad, Piatetsky-Shapiro, Smyth, and
Uthurusamy (1996), data mining is a non-trivial pro-
cess of discovering novel, implicit, useful, and compre-
hensive knowledge from a large amount of data. In di-
rect marketing, this knowledge is a description of likely
buyers or responders, and is useful in obtaining higher
profit than mass marketing.

As an example, banks and insurance companies may
have a large database of customers to whom they want
to sell certain products (such as loan products, retire-
ment packages, and life insurance policies). There can
be two situations. In the first situation, some (say X %)
of the customers in the database have already bought
the product, through previous mass marketing or pas-
sive promotion. X is usually rather small, typically
around 1. Data mining can be used to discover patterns
of buyers, in order to single out likely buyers from the
current non-buyers, (100 — X)% of all customers. More
specifically, data mining for direct marketing in the first
situation can be described in the following steps:

1. Get the database of all customers, among which X%
are buyers.

2. Data mining on the dataset
e Overlaying: append geo-demographic information
to the database.

e Data pre-processing: transform address and area
codes, deal with missing values, etc.

e Split the database into training set and testing set.
e Apply learning algorithms to the training set.
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3. Evaluate the patterns found on the testing set. It
may be necessary to iterate to previous steps if the
results are not satisfactory.

4. Use the patterns found to predict likely buyers among
the current non-buyers.

5. Promote to the likely buyers (called rollout).

In the second situation, a brand new product is to
be promoted to the customers in the database, so none
of the customers are buyers. In this case, a pilot study
is conducted, in which a small portion (say 5%) of the
customers is chosen randomly as the target of promo-
tion. Again, X% of the customers in the pilot group
may respond to the promotion. Then data mining is
performed in the pilot group to find likely buyers in the
whole database.

Clearly, the two situations are quite similar from the
data mining point of view, except that the dataset for
mining in the second case 1s smaller. The datasets to
be discussed in this paper belong to the first situation.
They are particularly suitable for data mining since the
sizes of the datasets are usually quite large.

Let us first take a quick look at the benefit of one form
of direct marketing, direct mail campaign, compared to
mass mail campaign. See Table 1 for details. Assume
that the whole database contains 600,000 customers. In
direct mailing, only 20% of the customers identified as
likely buyers by data mining (which costs $40,000) are
chosen to receive the promotion package in the mail.
The mailing cost is thus reduced dramatically. At the
same time, however, the response rate can be improved
from 1% in mass mailing to 3% (a realistic improvement
for a 20% rollout). The net profit from the promotion
becomes positive in direct mailing, compared to a loss
in mass mailing. See Table 1 for specific figures in this
realistic example.

3 Datasets for Direct Marketing

We have three datasets used for direct marketing from
three different sources. All three belong to the first sit-
uation discussed in the previous section: small percents
of the customers in the datasets are already buyers or
responders, and we need to discover likely buyers from
the current non-buyers. Due to confidentiality of the
datasets, we can only give very a brief description.

The first dataset is for a loan product promotion from
a major bank in Canada. It has about 90,000 customers
in total, and only 1.2% are responders. Each customer
is described by 55 attributes, about half are discrete and
the other half numerical. After transforming some at-
tributes (such as the area code), a total of 62 attributes
are used for the data mining purpose.

The second dataset is from a major life insurance
company, for an RRSP (Registered Retirement Saving
Plan) campaign. It has 80,000 customers in total, with
an initial 7% buyers. Each customer is described by 10
numerical and discrete attributes.

The third dataset is from a company which runs a
particular “bonus program”. The company has over

100 sponsors (retail stores, gas stations, etc.), and when
customers buy certain products from the partners, a
certain amount of bonus is accumulated, which can be
redeemed for other services and products (from free
flights to free movies). Naturally, the company is gath-
ering a huge amount of information on what customers
are buying every day. The company then mails com-
mercial flyers to customers along with quarterly sum-
mary statements, and it wants to send the right set of
commercial flyers to customers to improve the response
rate. The dataset we have contains about 104,000 cus-
tomers, and only 1% are responders. Each customer is
described by 299 attributes, most of which are numeri-
cal.

4 Specific Problems in Data Mining

During data mining on these three datasets for direct
marketing, we encountered several specific problems.

The first and most obvious problem is the extremely
imbalanced class distribution. Typically, only 1% of
the examples are positive (responders or buyers), and
the rest are negative. Most learning algorithms do not
behave well on this kind of dataset: they simply dis-
cover one rule or pattern saying that all examples are
negative. This rule can reach 99% accuracy in pre-
dicting training examples, as well as testing examples
(assuming that they have a similar class distribution
as training examples). Many data mining and machine
learning researchers have recognized and studied this
problem in recent years (Fawcett & Provost, 1996; Ku-
bat, Holte, & Matwin, 1997; Kubat & Matwin, 1997;
Lewis & Catlett, 1997; Pazzani, Merz, Murphy, Ali,
Hume, & Brunk, 1997).

The second problem is that even if sensible patterns
can be found, the predictive accuracy cannot be used
as a suitable evaluation criterion for the data mining
process. One reason 1s that classification errors must
be dealt with differently: having false positive errors
(recognizing buyers among non-buyers) is actually the
goal, while false negative errors (recognizing non-buyers
among existing buyers?) are not desired. Another rea-
son 1is that the predictive accuracy is too weak for the
purpose of customer targeting. Binary classification can
only predict two classes, buyers and non-buyers, and it
does not make a finer distinction among the predicted
buyers or non-buyers. This does not provide enough
flexibility in choosing a certain percent of likely buy-
ers for promotion (e.g., we may want to promote to
30% of customers, but the programs only predict 6%
as likely buyers). In addition, it does not provide an
opportunity for using different means of promotion on
the chosen customers. For example, we may want to
make personal calls to the first 100 most likely buyers,
and send personal mail to the next 1,000 likely buyers,
ete.

The third problem is that when we split the whole
dataset into training and testing sets with equal sizes,
the training set with a large number of variables can
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Table 1: A comparison between direct mail campaign and mass mail campaign.

Mass mailing | Direct mailing
Number of customers mailed 600,000 | (20%) 120,000
Cost of printing, mailing ($0.71 each) $426,000 $85,200
Cost of data mining $0 $40,000
Total promotion cost $426,000 $125,200
Response rate 1.0% 3.0%
Number of sales 6,000 3,600
Profit from sale ($70 each) $420,000 $252,000
Net profit from promotion | —$6,000 | $126,300 |

be too large for certain learning algorithms. We must
choose efficient learning algorithms for these datasets.

5 Solutions

To solve the second problem (of inadequacy of bi-
nary classification algorithms), we require learning al-
gorithms not only to classify, but also to classify with a
confidence measurement, such as a probability estima-
tion or certainty factor. This allows us to rank training
and testing examples. The ranking of non-buyers (from
most likely to least likely buyers) makes it possible to
choose any number of likely buyers for the promotion.
It also provides a fine distinction among chosen cus-
tomers to apply different means of promotion. There-
fore, we need learning algorithms that can also produce
probability estimation or certainty factors. We will dis-
cuss such algorithms that we used in Section 5.1.

Since we will use learning algorithms that can pro-
duce probability and thus can rank examples, we should
use the liftinstead of the predictive accuracy as the eval-
uation criterion. Lift analysis has been widely used in
database marketing previously (Hughes, 1996). A lift
reflects the redistribution of responders in the testing
set after the testing examples are ranked. Clearly, if
some regularities are found, the ranking of testing ex-
amples from most likely to least likely buyers would
result in a distribution in which most existing buyers
appear in the upper part of the ranked list. Section 5.2
discusses the lift analysis in more detail.

Presumably, since we apply learning algorithms that
rank testing examples and we use lift as the evaluation
criterion, we do not need to care much about the imbal-
anced class distribution in the training set — the first
problem mentioned in Section 4 — as long as the learn-
ing algorithms produce suitable ranking of the testing
examples even if all of them are predicted as negative.
Section 5.3 shows that a certain class distribution of
training examples produces the best lift, compared to
other distributions. As a bonus, 1t also dramatically
reduces the size of the training set, which is the third
problem mentioned in Section 4.

5.1 Data Mining Algorithms

As discussed earlier, we need to use learning algorithms
that also produce probability in order to rank the test-

ing examples. Several types of learning algorithms
satisfy this condition: Naive Bayes algorithm, near-
est neighbour algorithm, and neural networks. Due to
efficiency considerations, we choose Naive Bayes algo-
rithm, which makes a conditional independent assump-
tion: given the class label, the attribute values of any
example are independent. This assumption is almost
certainly violated, but Domingos and Pazzani (1996)
showed that it may not affect the classification deci-
sion. Details of the Naive Bayes can be found in (Lan-
gley, Tbha, & Thompson, 1992), and we will not repeat
it here.

Decision tree learning algorithms such as C4.5 (Quin-
lan, 1993) normally only classify examples. We modify
(4.5 slightly so that it also produces a certainty factor
(CF) for its classification. Basically, the classification
of each leaf is determined by the majority class in that
leaf. The certainty factor of examples in a leaf is the
ratio of the number of examples of the majority class
over the total number of examples in that leaf. This
method was used in the program consult that comes
with the C4.5 package (Quinlan, 1993).

We do not apply Naive Bayes and C4.5 with CF di-
rectly on the datasets we have. Recent results show
that using an ensemble of classifiers often improves the
predictive accuracy by reducing the variation error of
unstable classifiers (Domingos & Pazzani, 1996; Quin-
lan, 1996). Bagging (Breiman, 1996) and ada-boosting
(Freund & Schapire, 1996) are two common methods
of ensembling classifiers. We use ada-boost applied to
the Naive Bayes (Elkan, 1997) and to C4.5 with CF
as our learning algorithms.! Basically, ada-boost main-
tains a sampling probability distribution on the train-
ing set, and modifies the probability distribution after
each classifier is built. The probability of examples with
an incorrect prediction by the previous classifier is in-
creased, so these examples will be sampled more heavily
in the next round of boosting, to be learnt correctly.

However, the original ada-boost (Freund & Schapire,
1996) was designed to work with binary classifiers
(without CF or probability). Since classifiers required
for direct marketing also produce probability, we can

'The algorithms wused in this paper are for non-
commercial purpose.



To appear, KDD-98 (http://www-aig.jpl.nasa.gov/public/kdd98/). Plenary Presentation. 4

make use of the probability in ada-boost. Therefore,
ada-boost was modified at several places to work bet-
ter with classifiers with CF. For example, the amount of
update in probability of training examples is calculated
from the difference in probability of the prediction, giv-
ing a more graded effect than just correct or incorrect
predictions (Elkan, 1997).

The original Naive Bayes only produces a classifica-
tion after weighing predictions from all classifiers. We
modify this to produce probability of the prediction by
combining probabilities of predictions from all classi-
fiers.

5.2 Lift Index for Evaluation

As we discussed in the beginning of Section 5, we should
use the lift instead of the predictive accuracy as the
evaluation criterion. After the learning algorithm ranks
all testing examples from most likely responders to least
likely responders, we divide the ranked list into 10 equal
deciles (could be more partitions), and see how the orig-
inal responders distribute in the 10 deciles. If regular-
ities are found, we will see more responders in the top
deciles than bottom deciles (Hughes, 1996). Table 2
is an example of the lift table. In this example, the
testing set has a total of 100,000 examples (thus each
decile has 10,000), with a total of 1,000 positive ex-
amples. Clearly, this lift table shows a distribution in
which more responders are gathered in the top deciles
than bottom deciles.

Given such a lift table as in Table 2, how can we eval-
uate a learning algorithm? In KDD-97-Cup Competi-
tion, two measurements are used. One is the number
of responders in the top decile (top 10%); in the above
example, 410. This reflects the ability to locate a small
number of highly likely buyers. The other is the total
number of responders in the top 4 deciles (top 40%); in
the above example, it 1s 4104+1904130+76 = 806. This
reflects the ability to locate a large number of likely re-
sponders in a larger rollout. These two measurements
are used separately in evaluating data mining tools in
the KDD-97-Cup Competition.

We feel that this may not be a suitable way of mea-
suring learning methods. First of all, the two measure-
ments may not be correlated. More importantly, when
using the number of responders in the top X deciles
as the measurement, the distribution within the top X
deciles and within the rest of the deciles can be skewed.
For example, if the distribution of the top 4 deciles is
0, 0, 0, and 806, it will give the same score of 806, but
that is clearly undesirable. It would be best to use just
one number to measure the performance of learning al-
gorithms based on the whole lift table.

We decide to use a weighted sum of the items in the
lift table. Assuming the 10 deciles in the lift table (from
top) are Sy, Sa, ..., S1o, then we define the lift indez as

Slift = (1 XS 4+09%x 8 +...+0.1x Sl)/ Zz S;
In the above example, the lift index is Si;¢; = (1x 410+
0.9x 190+ ...4 0.1 x 26)/1000 = 81.1%.

It turns out that such a lift index Sj; ;¢ converges to
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Figure 1: A cumulative lift curve.

the ratio of the area under the cumulative lift curve
(AUCQ), which is illustrated in Figure 1. If the distribu-
tion of the buyers in the 10 deciles is random (no regu-
larity is found), then the cumulative curve would con-
verge to the diagonal line, and S5+ would be 55% (but
converges to 50% with more partitions). In the best
situation when S = 3. S; < 10%, Siup: = 100%. In
the worse case when Sip = >, S; (and rest of S; = 0),
Siife = 10% (but converges to 0%). That is, the lift
index has a nice property that it is independent to the
number of the responders. It will be 50% for the ran-
dom distribution, above 50% for better than random,
and below 50% for worse than random distributions.

The cumulative lift curve as in Figure 1 has a close
relation with the ROC (receiver operating character-
istic) curves, which have been widely used previously
(see, for example, Hanley & McNeil, 1982). To obtain
an ROC curve, positive and negative cases are mixed
randomly first, and then presented to a decision maker
who rates each case, normally ranging from definitely
negative (0) to definitely positive (1). The ROC curve
is then obtained by considering broader and broader
ranges for positive cases (i.e., greater than 0.95 as pos-
itive, greater than 0.9 as positive, greater than 0.8 as
positive, etc.): the z axis is the rate of false positive
(over all negative cases), while the y axis the rate of
true positive (over all positive cases). The ROC curve
looks similar to the cumulative lift curve, except the
former lies slightly above the latter (except at (100,
100)). For any point (p,¢) where p < ¢ on the ROC
curve, the corresponding point on the lift curve would
be (¢ x X% +p x (1 — X%),q), where X is the percent
of positive cases in the dataset. Thus, the lift curve 1s
slightly under the ROC curve when p < ¢q. Therefore,
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Table 2: A typical lift table.

10% | 10% | 10% | 10% | 10% | 10% | 10% | 10% | 10% | 10%

410 | 190 | 130 | 76 42

32 35 30 29 26

the lift index we proposed is also closely related to the
area under the curve (AUC) index of the ROC curves.

However, the cumulative lift curves and the lift in-
dex have better intuitive meanings for direct market-
ing. Thus, we use the lift index as the sole criterion in
evaluating and comparing learning methods in the rest
of the paper.

5.3 Mixture of Training Set

Now we have two learning algorithms (ada-boosted
Naive Bayes and ada-boosted C4.5 with CF) that
also produce probability. We split randomly all three
datasets described in Section 3 into training and test-
ing sets with equal sizes, and use the training set for
learning. The learned results are used to rank the test-
ing examples. We then calculate the lift index on the
ranked testing examples to evaluate and compare learn-
ing algorithms. We repeat this 10 times for each dataset
to obtain an average lift index.

Since we now rank testing examples, the imbalanced
class distribution in the training set (the first problem
described in Section 4) may no longer be a problem,
as long as the ranking is preserved. To test this possi-
bility, we keep all positive examples in the training set,
but add different numbers of negative examples to form
new training sets. Similar methods of reducing nega-
tive examples have been studied previously (Kubat &
Matwin, 1997; Lewis & Catlett, 1997). The results of
applying boosted Naive Bayes are shown in Table 3. Re-
sults with boosted decision trees are similar and thus
omitted here.

It is interesting to see that for all three datasets, the
best lift index is obtained when the positive and nega-
tive examples are about equal in number (the difference
with more negative examples is not statistically signifi-
cant). If only 1% of training examples are positive (re-
sponders), we only need to use another 1% of the nega-
tive examples (non-responders) to form a new training
set. This naturally reduces the size of the training set
dramatically.

A more careful look at the probability distribution
of testing examples reveals why this is the case. Naive
Bayes (and C4.5 with CF) does not produce true proba-
bilities. However, with equal class distribution in train-
ing set, the probabilities of testing examples are evenly
distributed between 0 and 1, thus reducing mistakes in
ranking. If the class distribution is unequal, the proba-
bility distribution may be skewed within a narrow range
in one end. Thus, errors in probability estimation af-
fects the ranking more easily, causing a lower lift index.

While the best lift index is obtained when the ra-
tio of positive and negative examples is about 1/1, the

error rates (not shown here) drop dramatically from
about 40% with 1/1 ratio to 3% with 1/8 ratio in one
dataset. This verifies that the error rate is not suitable
for obtaining the best lift in the extremely imbalanced
datasets.

However, it seems undesirable to use only 1% of the
negative examples, throwing away information in the
rest of the negative examples. One possibility is to over-
sample with replacement the existing positive examples
to a few times (2x, bx, 10x, 20x) of the original size,
while keeping the same numbers of negative examples.?
This way, we naturally increase the information on neg-
ative examples in the training set while still keeping
numbers of positive and negative examples the same.
Table 4 lists the average lift index with boosted Naive
Bayes on the three datasets.

It is surprising to see that oversampling does not pro-
vide any significant improvement using the Naive Bayes
algorithm. This is because Naive Bayes is a global al-
gorithm, unlike local algorithms such as C4.5, which
can carve the instance space locally to finer partitions
with more training examples. It has been observed pre-
viously that Naive Bayes does not scale up well (Ko-
havi, 1996). In addition, one must also remember that
oversampling positive examples does not really increase
information.

It might be expected that the local algorithm C4.5
(with CF) may perform better with larger training sets.
It does, but only slightly (statistically significant). Ta-
ble b illustrates the average lift index using C4.5 with
CF on the three datasets. Clearly, the best results from
C4.5 are similar to the ones with Naive Bayes without
oversampling. This makes both Naive Bayes and C4.5
attractive algorithms that are also efficient to apply to
large datasets.

6 Discussions and Summary

We must not lose the big picture of doing data mining,
which is to improve the ROI (return of investment) or
net profit. In the example of the direct mail campaign
using data mining as illustrated in Table 1, if we ob-
tain a lift curve as in Figure 1, we can plot a curve of
net profit as in Figure 2. As we can clearly see, if we
only mail to some top small percent of customers, even
though the relative lift is higher, the total number of
responders would be too small. If we mail to too many
customers, the gain in response will not be justifiable
for the printing and mailing cost. Therefore, there is

2Since there are enough negative examples, we sample
them without replacement. This approach was used in (Sol-
berg & Solberg, 1996).
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Table 3: Average lift index on three datasets with different numbers of negative examples using boosted Naive Bayes.

Positive/negative Bank Life Insurance | Bonus Program
1/0.25 66.4% 72.3% 78.7%
1/0.5 68.8% 74.3% 80.3%

1/1 70.5% 75.2% 81.3%
1/2 70.4% 75.3% 81.2%
1/4 69.4% 75.4% 81.0%
1/8 69.1% 75.4% 80.4%

Table 4: Average lift index on three datasets with different numbers of oversampled positive examples and unique

negative examples using boosted Naive Bayes.

Positive/negative Bank Life Insurance | Bonus Program
Ix/1x 70.5% 75.2% 81.3%
2x/2x 70.5% 75.3% 81.4%
5x/5x 70.6% 75.2% 81.6%

10x/10x 70.6% 75.2% 81.8%
20x/20x 70.6% NA 81.8%

an optimal percent that can bring us the maximum net
profit. Of course, such optimal cut-off points depend
critically on many factors in the whole process of direct
marketing using data mining: cost of mailing, cost of
data mining, profit per sale, lift curve, etc. Some of
these factors depend on each other, making the strate-
gic decision on data mining non-trivial. For example,
more data mining effort (also more cost) may improve
the lift index, but too much may not be worthy of doing.

150
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|
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1
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0 20 40 60 80 100

Percent seleted in direct mailing

Figure 2: Net profit in direct mailing.

To summarize, we have used Naive Bayes and C4.5
with CF on three datasets for direct marketing from
different sources. Several common problems emerged,

and we have provided solutions to these problems. We
demonstrated that data mining is an effective tool for
direct marketing, which can bring more profit to banks,
insurance companies, and the retail industry than the
traditional means of mass marketing.
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