
To appear, KDD-98 (http://www-aig.jpl.nasa.gov/public/kdd98/). Plenary Presentation. 1Data Mining for Direct Marketing: Problems and SolutionsCharles X. Ling and Chenghui LiDepartment of Computer ScienceThe University of Western OntarioLondon, Ontario, Canada N6A 5B7Tel: 519-661-3341; Fax: 519-661-3515E-mail: ling,cli@csd.uwo.caAbstractDirect marketing is a process of identifying likely buy-ers of certain products and promoting the products ac-cordingly. It is increasingly used by banks, insurancecompanies, and the retail industry. Data mining canprovide an e�ective tool for direct marketing. Duringdata mining, several speci�c problems arise. For exam-ple, the class distribution is extremely imbalanced (theresponse rate is about 1%), the predictive accuracy isno longer suitable for evaluating learning methods, andthe number of examples can be too large. In this pa-per, we discuss methods of coping with these problemsbased on our experience on direct-marketing projectsusing data mining.1 IntroductionAlmost all industries that sell products and servicesneed to advertise and promote their products and ser-vices. Banks, insurance companies, and retail stores aretypical examples. There are generally two approachesto advertisement and promotion: mass marketing anddirect marketing. Mass marketing, which uses massmedia such as television, radio, and newspapers, broad-casts messages to the public without discrimination. Itused to be an e�ective way of promotion when the prod-ucts were in great demand by the public. For example,electronic goods (TVs, fridges) after World War II werein great demand, so TV commercials were e�ective inpromoting those products (Hughes, 1996). However,in today's world where products are overwhelming andthe market is highly competitive, mass marketing hasbecome less e�ective. The response rate, the percentof people who actually buy the products after seeingthe promotion, is often low. From the datasets that wehave studied (see later), 1% is quite typical.The second approach of promotion is direct market-ing. Instead of promoting to customers indiscrimina-tively, direct marketing studies customers' character-istics and needs, and selects certain customers as thetarget for promotion. The hope is that the responserate for the selected customers can be much improved.Copyright c
1998, American Association for Arti�cialIntelligence (www.aaai.org). All rights reserved.

Nowadays, a huge amount of information on cus-tomers is kept in databases. Thus, data mining canbe very e�ective for direct marketing. Regularitiesand patterns for buyers can be discovered from thedatabase to predict and select worthy customers for pro-motion. Data mining, an integration of machine learn-ing, computer visualization, and statistics, has beenused widely in direct marketing to target customers(Agrawal, Ghosh, Imielinski, Iyer, & Swami, 1992; Ter-ano & Ishino, 1996; Ciesielski & Palstra, 1996).2 Process of Data Mining for DirectMarketingAccording to Fayyad, Piatetsky-Shapiro, Smyth, andUthurusamy (1996), data mining is a non-trivial pro-cess of discovering novel, implicit, useful, and compre-hensive knowledge from a large amount of data. In di-rect marketing, this knowledge is a description of likelybuyers or responders, and is useful in obtaining higherpro�t than mass marketing.As an example, banks and insurance companies mayhave a large database of customers to whom they wantto sell certain products (such as loan products, retire-ment packages, and life insurance policies). There canbe two situations. In the �rst situation, some (say X%)of the customers in the database have already boughtthe product, through previous mass marketing or pas-sive promotion. X is usually rather small, typicallyaround 1. Data mining can be used to discover patternsof buyers, in order to single out likely buyers from thecurrent non-buyers, (100�X)% of all customers. Morespeci�cally, data mining for direct marketing in the �rstsituation can be described in the following steps:1. Get the database of all customers, among which X%are buyers.2. Data mining on the dataset� Overlaying: append geo-demographic informationto the database.� Data pre-processing: transform address and areacodes, deal with missing values, etc.� Split the database into training set and testing set.� Apply learning algorithms to the training set.



To appear, KDD-98 (http://www-aig.jpl.nasa.gov/public/kdd98/). Plenary Presentation. 23. Evaluate the patterns found on the testing set. Itmay be necessary to iterate to previous steps if theresults are not satisfactory.4. Use the patterns found to predict likely buyers amongthe current non-buyers.5. Promote to the likely buyers (called rollout).In the second situation, a brand new product is tobe promoted to the customers in the database, so noneof the customers are buyers. In this case, a pilot studyis conducted, in which a small portion (say 5%) of thecustomers is chosen randomly as the target of promo-tion. Again, X% of the customers in the pilot groupmay respond to the promotion. Then data mining isperformed in the pilot group to �nd likely buyers in thewhole database.Clearly, the two situations are quite similar from thedata mining point of view, except that the dataset formining in the second case is smaller. The datasets tobe discussed in this paper belong to the �rst situation.They are particularly suitable for data mining since thesizes of the datasets are usually quite large.Let us �rst take a quick look at the bene�t of one formof direct marketing, direct mail campaign, compared tomass mail campaign. See Table 1 for details. Assumethat the whole database contains 600,000 customers. Indirect mailing, only 20% of the customers identi�ed aslikely buyers by data mining (which costs $40,000) arechosen to receive the promotion package in the mail.The mailing cost is thus reduced dramatically. At thesame time, however, the response rate can be improvedfrom 1% in mass mailing to 3% (a realistic improvementfor a 20% rollout). The net pro�t from the promotionbecomes positive in direct mailing, compared to a lossin mass mailing. See Table 1 for speci�c �gures in thisrealistic example.3 Datasets for Direct MarketingWe have three datasets used for direct marketing fromthree di�erent sources. All three belong to the �rst sit-uation discussed in the previous section: small percentsof the customers in the datasets are already buyers orresponders, and we need to discover likely buyers fromthe current non-buyers. Due to con�dentiality of thedatasets, we can only give very a brief description.The �rst dataset is for a loan product promotion froma major bank in Canada. It has about 90,000 customersin total, and only 1.2% are responders. Each customeris described by 55 attributes, about half are discrete andthe other half numerical. After transforming some at-tributes (such as the area code), a total of 62 attributesare used for the data mining purpose.The second dataset is from a major life insurancecompany, for an RRSP (Registered Retirement SavingPlan) campaign. It has 80,000 customers in total, withan initial 7% buyers. Each customer is described by 10numerical and discrete attributes.The third dataset is from a company which runs aparticular \bonus program". The company has over

100 sponsors (retail stores, gas stations, etc.), and whencustomers buy certain products from the partners, acertain amount of bonus is accumulated, which can beredeemed for other services and products (from free
ights to free movies). Naturally, the company is gath-ering a huge amount of information on what customersare buying every day. The company then mails com-mercial 
yers to customers along with quarterly sum-mary statements, and it wants to send the right set ofcommercial 
yers to customers to improve the responserate. The dataset we have contains about 104,000 cus-tomers, and only 1% are responders. Each customer isdescribed by 299 attributes, most of which are numeri-cal.4 Speci�c Problems in Data MiningDuring data mining on these three datasets for directmarketing, we encountered several speci�c problems.The �rst and most obvious problem is the extremelyimbalanced class distribution. Typically, only 1% ofthe examples are positive (responders or buyers), andthe rest are negative. Most learning algorithms do notbehave well on this kind of dataset: they simply dis-cover one rule or pattern saying that all examples arenegative. This rule can reach 99% accuracy in pre-dicting training examples, as well as testing examples(assuming that they have a similar class distributionas training examples). Many data mining and machinelearning researchers have recognized and studied thisproblem in recent years (Fawcett & Provost, 1996; Ku-bat, Holte, & Matwin, 1997; Kubat & Matwin, 1997;Lewis & Catlett, 1997; Pazzani, Merz, Murphy, Ali,Hume, & Brunk, 1997).The second problem is that even if sensible patternscan be found, the predictive accuracy cannot be usedas a suitable evaluation criterion for the data miningprocess. One reason is that classi�cation errors mustbe dealt with di�erently: having false positive errors(recognizing buyers among non-buyers) is actually thegoal, while false negative errors (recognizing non-buyersamong existing buyers?) are not desired. Another rea-son is that the predictive accuracy is too weak for thepurpose of customer targeting. Binary classi�cation canonly predict two classes, buyers and non-buyers, and itdoes not make a �ner distinction among the predictedbuyers or non-buyers. This does not provide enough
exibility in choosing a certain percent of likely buy-ers for promotion (e.g., we may want to promote to30% of customers, but the programs only predict 6%as likely buyers). In addition, it does not provide anopportunity for using di�erent means of promotion onthe chosen customers. For example, we may want tomake personal calls to the �rst 100 most likely buyers,and send personal mail to the next 1,000 likely buyers,etc.The third problem is that when we split the wholedataset into training and testing sets with equal sizes,the training set with a large number of variables can



To appear, KDD-98 (http://www-aig.jpl.nasa.gov/public/kdd98/). Plenary Presentation. 3Table 1: A comparison between direct mail campaign and mass mail campaign.Mass mailing Direct mailingNumber of customers mailed 600,000 (20%) 120,000Cost of printing, mailing ($0.71 each) $426,000 $85,200Cost of data mining $0 $40,000Total promotion cost $426,000 $125,200Response rate 1.0% 3.0%Number of sales 6,000 3,600Pro�t from sale ($70 each) $420,000 $252,000Net pro�t from promotion �$6,000 $126,800be too large for certain learning algorithms. We mustchoose e�cient learning algorithms for these datasets.5 SolutionsTo solve the second problem (of inadequacy of bi-nary classi�cation algorithms), we require learning al-gorithms not only to classify, but also to classify with acon�dence measurement, such as a probability estima-tion or certainty factor. This allows us to rank trainingand testing examples. The ranking of non-buyers (frommost likely to least likely buyers) makes it possible tochoose any number of likely buyers for the promotion.It also provides a �ne distinction among chosen cus-tomers to apply di�erent means of promotion. There-fore, we need learning algorithms that can also produceprobability estimation or certainty factors. We will dis-cuss such algorithms that we used in Section 5.1.Since we will use learning algorithms that can pro-duce probability and thus can rank examples, we shoulduse the lift instead of the predictive accuracy as the eval-uation criterion. Lift analysis has been widely used indatabase marketing previously (Hughes, 1996). A liftre
ects the redistribution of responders in the testingset after the testing examples are ranked. Clearly, ifsome regularities are found, the ranking of testing ex-amples from most likely to least likely buyers wouldresult in a distribution in which most existing buyersappear in the upper part of the ranked list. Section 5.2discusses the lift analysis in more detail.Presumably, since we apply learning algorithms thatrank testing examples and we use lift as the evaluationcriterion, we do not need to care much about the imbal-anced class distribution in the training set | the �rstproblem mentioned in Section 4 | as long as the learn-ing algorithms produce suitable ranking of the testingexamples even if all of them are predicted as negative.Section 5.3 shows that a certain class distribution oftraining examples produces the best lift, compared toother distributions. As a bonus, it also dramaticallyreduces the size of the training set, which is the thirdproblem mentioned in Section 4.5.1 Data Mining AlgorithmsAs discussed earlier, we need to use learning algorithmsthat also produce probability in order to rank the test-

ing examples. Several types of learning algorithmssatisfy this condition: Naive Bayes algorithm, near-est neighbour algorithm, and neural networks. Due toe�ciency considerations, we choose Naive Bayes algo-rithm, which makes a conditional independent assump-tion: given the class label, the attribute values of anyexample are independent. This assumption is almostcertainly violated, but Domingos and Pazzani (1996)showed that it may not a�ect the classi�cation deci-sion. Details of the Naive Bayes can be found in (Lan-gley, Iba, & Thompson, 1992), and we will not repeatit here.Decision tree learning algorithms such as C4.5 (Quin-lan, 1993) normally only classify examples. We modifyC4.5 slightly so that it also produces a certainty factor(CF) for its classi�cation. Basically, the classi�cationof each leaf is determined by the majority class in thatleaf. The certainty factor of examples in a leaf is theratio of the number of examples of the majority classover the total number of examples in that leaf. Thismethod was used in the program consult that comeswith the C4.5 package (Quinlan, 1993).We do not apply Naive Bayes and C4.5 with CF di-rectly on the datasets we have. Recent results showthat using an ensemble of classi�ers often improves thepredictive accuracy by reducing the variation error ofunstable classi�ers (Domingos & Pazzani, 1996; Quin-lan, 1996). Bagging (Breiman, 1996) and ada-boosting(Freund & Schapire, 1996) are two common methodsof ensembling classi�ers. We use ada-boost applied tothe Naive Bayes (Elkan, 1997) and to C4.5 with CFas our learning algorithms.1 Basically, ada-boost main-tains a sampling probability distribution on the train-ing set, and modi�es the probability distribution aftereach classi�er is built. The probability of examples withan incorrect prediction by the previous classi�er is in-creased, so these examples will be sampled more heavilyin the next round of boosting, to be learnt correctly.However, the original ada-boost (Freund & Schapire,1996) was designed to work with binary classi�ers(without CF or probability). Since classi�ers requiredfor direct marketing also produce probability, we can1The algorithms used in this paper are for non-commercial purpose.



To appear, KDD-98 (http://www-aig.jpl.nasa.gov/public/kdd98/). Plenary Presentation. 4make use of the probability in ada-boost. Therefore,ada-boost was modi�ed at several places to work bet-ter with classi�ers with CF. For example, the amount ofupdate in probability of training examples is calculatedfrom the di�erence in probability of the prediction, giv-ing a more graded e�ect than just correct or incorrectpredictions (Elkan, 1997).The original Naive Bayes only produces a classi�ca-tion after weighing predictions from all classi�ers. Wemodify this to produce probability of the prediction bycombining probabilities of predictions from all classi-�ers.5.2 Lift Index for EvaluationAs we discussed in the beginning of Section 5, we shoulduse the lift instead of the predictive accuracy as theevaluation criterion. After the learning algorithm ranksall testing examples frommost likely responders to leastlikely responders, we divide the ranked list into 10 equaldeciles (could be more partitions), and see how the orig-inal responders distribute in the 10 deciles. If regular-ities are found, we will see more responders in the topdeciles than bottom deciles (Hughes, 1996). Table 2is an example of the lift table. In this example, thetesting set has a total of 100,000 examples (thus eachdecile has 10,000), with a total of 1,000 positive ex-amples. Clearly, this lift table shows a distribution inwhich more responders are gathered in the top decilesthan bottom deciles.Given such a lift table as in Table 2, how can we eval-uate a learning algorithm? In KDD-97-Cup Competi-tion, two measurements are used. One is the numberof responders in the top decile (top 10%); in the aboveexample, 410. This re
ects the ability to locate a smallnumber of highly likely buyers. The other is the totalnumber of responders in the top 4 deciles (top 40%); inthe above example, it is 410+190+130+76 = 806. Thisre
ects the ability to locate a large number of likely re-sponders in a larger rollout. These two measurementsare used separately in evaluating data mining tools inthe KDD-97-Cup Competition.We feel that this may not be a suitable way of mea-suring learning methods. First of all, the two measure-ments may not be correlated. More importantly, whenusing the number of responders in the top X decilesas the measurement, the distribution within the top Xdeciles and within the rest of the deciles can be skewed.For example, if the distribution of the top 4 deciles is0, 0, 0, and 806, it will give the same score of 806, butthat is clearly undesirable. It would be best to use justone number to measure the performance of learning al-gorithms based on the whole lift table.We decide to use a weighted sum of the items in thelift table. Assuming the 10 deciles in the lift table (fromtop) are S1, S2, ..., S10, then we de�ne the lift index asSlift = (1� S1 + 0:9� S2 + :::+ 0:1� S1)=Pi SiIn the above example, the lift index is Slift = (1�410+0:9� 190 + :::+ 0:1� 26)=1000 = 81:1%.It turns out that such a lift index Slift converges to
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Lift Figure 1: A cumulative lift curve.the ratio of the area under the cumulative lift curve(AUC), which is illustrated in Figure 1. If the distribu-tion of the buyers in the 10 deciles is random (no regu-larity is found), then the cumulative curve would con-verge to the diagonal line, and Slift would be 55% (butconverges to 50% with more partitions). In the bestsituation when S1 = Pi Si < 10%, Slift = 100%. Inthe worse case when S10 =Pi Si (and rest of Si = 0),Slift = 10% (but converges to 0%). That is, the liftindex has a nice property that it is independent to thenumber of the responders. It will be 50% for the ran-dom distribution, above 50% for better than random,and below 50% for worse than random distributions.The cumulative lift curve as in Figure 1 has a closerelation with the ROC (receiver operating character-istic) curves, which have been widely used previously(see, for example, Hanley & McNeil, 1982). To obtainan ROC curve, positive and negative cases are mixedrandomly �rst, and then presented to a decision makerwho rates each case, normally ranging from de�nitelynegative (0) to de�nitely positive (1). The ROC curveis then obtained by considering broader and broaderranges for positive cases (i.e., greater than 0.95 as pos-itive, greater than 0.9 as positive, greater than 0.8 aspositive, etc.): the x axis is the rate of false positive(over all negative cases), while the y axis the rate oftrue positive (over all positive cases). The ROC curvelooks similar to the cumulative lift curve, except theformer lies slightly above the latter (except at (100,100)). For any point (p; q) where p < q on the ROCcurve, the corresponding point on the lift curve wouldbe (q�X%+ p� (1�X%); q), where X is the percentof positive cases in the dataset. Thus, the lift curve isslightly under the ROC curve when p < q. Therefore,



To appear, KDD-98 (http://www-aig.jpl.nasa.gov/public/kdd98/). Plenary Presentation. 5Table 2: A typical lift table.10% 10% 10% 10% 10% 10% 10% 10% 10% 10%410 190 130 76 42 32 35 30 29 26the lift index we proposed is also closely related to thearea under the curve (AUC) index of the ROC curves.However, the cumulative lift curves and the lift in-dex have better intuitive meanings for direct market-ing. Thus, we use the lift index as the sole criterion inevaluating and comparing learning methods in the restof the paper.5.3 Mixture of Training SetNow we have two learning algorithms (ada-boostedNaive Bayes and ada-boosted C4.5 with CF) thatalso produce probability. We split randomly all threedatasets described in Section 3 into training and test-ing sets with equal sizes, and use the training set forlearning. The learned results are used to rank the test-ing examples. We then calculate the lift index on theranked testing examples to evaluate and compare learn-ing algorithms. We repeat this 10 times for each datasetto obtain an average lift index.Since we now rank testing examples, the imbalancedclass distribution in the training set (the �rst problemdescribed in Section 4) may no longer be a problem,as long as the ranking is preserved. To test this possi-bility, we keep all positive examples in the training set,but add di�erent numbers of negative examples to formnew training sets. Similar methods of reducing nega-tive examples have been studied previously (Kubat &Matwin, 1997; Lewis & Catlett, 1997). The results ofapplying boosted Naive Bayes are shown in Table 3. Re-sults with boosted decision trees are similar and thusomitted here.It is interesting to see that for all three datasets, thebest lift index is obtained when the positive and nega-tive examples are about equal in number (the di�erencewith more negative examples is not statistically signi�-cant). If only 1% of training examples are positive (re-sponders), we only need to use another 1% of the nega-tive examples (non-responders) to form a new trainingset. This naturally reduces the size of the training setdramatically.A more careful look at the probability distributionof testing examples reveals why this is the case. NaiveBayes (and C4.5 with CF) does not produce true proba-bilities. However, with equal class distribution in train-ing set, the probabilities of testing examples are evenlydistributed between 0 and 1, thus reducing mistakes inranking. If the class distribution is unequal, the proba-bility distribution may be skewed within a narrow rangein one end. Thus, errors in probability estimation af-fects the ranking more easily, causing a lower lift index.While the best lift index is obtained when the ra-tio of positive and negative examples is about 1/1, the

error rates (not shown here) drop dramatically fromabout 40% with 1/1 ratio to 3% with 1/8 ratio in onedataset. This veri�es that the error rate is not suitablefor obtaining the best lift in the extremely imbalanceddatasets.However, it seems undesirable to use only 1% of thenegative examples, throwing away information in therest of the negative examples. One possibility is to over-sample with replacement the existing positive examplesto a few times (2x, 5x, 10x, 20x) of the original size,while keeping the same numbers of negative examples.2This way, we naturally increase the information on neg-ative examples in the training set while still keepingnumbers of positive and negative examples the same.Table 4 lists the average lift index with boosted NaiveBayes on the three datasets.It is surprising to see that oversampling does not pro-vide any signi�cant improvement using the Naive Bayesalgorithm. This is because Naive Bayes is a global al-gorithm, unlike local algorithms such as C4.5, whichcan carve the instance space locally to �ner partitionswith more training examples. It has been observed pre-viously that Naive Bayes does not scale up well (Ko-havi, 1996). In addition, one must also remember thatoversampling positive examples does not really increaseinformation.It might be expected that the local algorithm C4.5(with CF) may perform better with larger training sets.It does, but only slightly (statistically signi�cant). Ta-ble 5 illustrates the average lift index using C4.5 withCF on the three datasets. Clearly, the best results fromC4.5 are similar to the ones with Naive Bayes withoutoversampling. This makes both Naive Bayes and C4.5attractive algorithms that are also e�cient to apply tolarge datasets.6 Discussions and SummaryWe must not lose the big picture of doing data mining,which is to improve the ROI (return of investment) ornet pro�t. In the example of the direct mail campaignusing data mining as illustrated in Table 1, if we ob-tain a lift curve as in Figure 1, we can plot a curve ofnet pro�t as in Figure 2. As we can clearly see, if weonly mail to some top small percent of customers, eventhough the relative lift is higher, the total number ofresponders would be too small. If we mail to too manycustomers, the gain in response will not be justi�ablefor the printing and mailing cost. Therefore, there is2Since there are enough negative examples, we samplethem without replacement. This approach was used in (Sol-berg & Solberg, 1996).



To appear, KDD-98 (http://www-aig.jpl.nasa.gov/public/kdd98/). Plenary Presentation. 6Table 3: Average lift index on three datasets with di�erent numbers of negative examples using boosted Naive Bayes.Positive/negative Bank Life Insurance Bonus Program1/0.25 66.4% 72.3% 78.7%1/0.5 68.8% 74.3% 80.3%1/1 70.5% 75.2% 81.3%1/2 70.4% 75.3% 81.2%1/4 69.4% 75.4% 81.0%1/8 69.1% 75.4% 80.4%Table 4: Average lift index on three datasets with di�erent numbers of oversampled positive examples and uniquenegative examples using boosted Naive Bayes.Positive/negative Bank Life Insurance Bonus Program1x/1x 70.5% 75.2% 81.3%2x/2x 70.5% 75.3% 81.4%5x/5x 70.6% 75.2% 81.6%10x/10x 70.6% 75.2% 81.8%20x/20x 70.6% NA 81.8%an optimal percent that can bring us the maximumnetpro�t. Of course, such optimal cut-o� points dependcritically on many factors in the whole process of directmarketing using data mining: cost of mailing, cost ofdata mining, pro�t per sale, lift curve, etc. Some ofthese factors depend on each other, making the strate-gic decision on data mining non-trivial. For example,more data mining e�ort (also more cost) may improvethe lift index, but too muchmay not be worthy of doing.
0 20 40 60 80 100

Percent seleted in direct mailing

0

50

100

150

N
et

 p
ro

fi
t 

(i
n 

$1
00

0)

Figure 2: Net pro�t in direct mailing.To summarize, we have used Naive Bayes and C4.5with CF on three datasets for direct marketing fromdi�erent sources. Several common problems emerged,
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