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Abstract 
 

One of the most severe manifestations of poor 
quality of software products occurs when a customer 
“escalates” a defect: an escalation is triggered when a 
defect significantly impacts a customer's operations. 
Escalated defects are then quickly resolved, at a high 
cost, outside of the general product release 
engineering cycle. While the software vendor and its 
customers often detect and report defects before they 
are escalated it is not always possible to quickly and 
accurately prioritize reported defects for resolution. As 
a result, even previously known defects, in addition to 
newly discovered defects, are often escalated by 
customers.  Labor cost of escalations from known 
defects to a software vendor can amount to millions of 
dollars per year. The total costs to the vendor are even 
greater, including loss of reputation, satisfaction, 
loyalty, and repeat revenue.  The objective of 
Escalation Prediction (EP) is to avoid escalations from 
known product defects by predicting and proactively 
resolving those known defects that have the highest 
escalation risk. This short paper outlines the business 
case for EP, an analysis of the business problem, the 
solution architecture, and some preliminary validation 
results on the effectiveness of EP. 
 
1. Introduction 
 

Escalations of software products occur when1 a 
customer service case is “escalated to a local manager, 
Customer Service Manager (CSM), or designee”, when 
“customer situations require management attention, 
continuous effort, and have an existing action plan 
which provides customer relief”, or in case of “Critical 
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situations which have substantial business or financial 
impact to [the vendor] or the customer.”  Product 
defect escalations are costly to the vendor as well as 
the customer, and associated labor costs can amount to 
millions of dollars each year. In addition, product 
defect escalations generally result in loss of reputation, 
satisfaction, loyalty and repeat revenue.   

The objective of Escalation Prediction (EP) is to 
avoid such escalations from known product defects 
using data mining technology [1, 2]. If a software 
vendor can accurately predict the escalation risk of 
known defects, escalations can be prevented by fixing 
high-risk defects before customers escalate them. 
Accuracy, precision and recall are the common 
measures of assessing the performance of a prediction 
model. To some extent, they reflect the return on 
investment (ROI) of fixing predicted escalations. For a 
given predictive model, one can use historical data, 
known as a “hold-out data set” [3], to measure 
precision as the ratio of predicted escalations which in 
fact were escalated, and recall as the ratio of actual 
escalations that were predicted by the model. If we 
assume that an escalation has a specific cost X whereas 
fixing a defect has another, smaller, cost Y, we can 
express the “net profit”, or the ROI in terms of 
precision and recall, and find their optimal values to 
maximize ROI. 

 
2. Solution Architecture 
 

The diagram (refer to Figure 1) illustrates the 
Escalation Prediction Solution Architecture.  Data is 
captured periodically from the vendor’s Online 
Transaction Processing (OLTP) systems providing 
defect and escalation information. Data is captured 
weekly and stored indefinitely in a datamart. While the 
information in the OLTP systems continues to change 
from moment to moment, the weekly snapshots in the 



datamart remain constant so as to provide the historical 
data required for training predictive models. 

 
Figure 1. 

 
The historical snapshot data is then augmented 

within the SPSS Clementine data-mining tool.  Derived 
fields, historical information, and statistics are added to 
yield the set of available input fields: 1) data fields 
which come directly from the defect tracking system 
(e.g., priority, hardware platform, and customer 
company), 2) fields which are derived from individual 
source records (e.g., the source fields “user type” and 
“user role” are concatenated to derive “user type and 
role”), 3) fields capturing the history of bugs (e.g., a 
field containing the sequence states of the bug over the 
last 12 weeks), 4) escalation statistics for previous time 
periods (e.g., the percentage of bugs escalated by each 
customer company during the previous fiscal quarter), 
and 5) unsupervised learning techniques are used to 
cluster the data, and the resulting cluster membership 
data is available as additional inputs for modeling.   

The next step is to train and validate predictive 
models.  Training involves selecting a subset from 
among about 200 possible input variables, and setting 
up rule induction or neural network training parameters 
[4, 5] in Clementine.  Generated models are then 
validated against historical data.  The available data is 
split into two disjoint sets for training and validation so 
that the validation of the model is performed only 
against defects the model “has not seen” [6]. 

Once one or more satisfactory models have been 
found the most appropriate model is selected and run 
against the most recent snapshot of defect data.  The 

predicted escalations are then reported to the product 
group for evaluation and proactive resolution. 

The product group provides feedback to allow for 
ongoing improvement of the overall escalation 
prediction and prevention effort. Results of the overall 
program are also tracked in terms of actual precision 
and recall, as well as run rates of escalations from 
known defects. 
 
3. Preliminary Results 
 

The following charts show validation results.  Our 
goal was to assess whether our models could predict 
escalation risk accurately so that bugs that were later 
escalated would receive high-risk scores.  The EP 
model used here is based on neural networks. The data 
used for validation is historical data with known results 
from the live product development process from 
9/15/2003 to 10/13/2003. 

 
Figure 2. 

Figure 3. 



Figure 2 shows the three-trailing-months average of 
Escalations from Known Defects against one large 
software product.  The run rate ranges from 14 to 18 
per month.  This chart will be used to track the run rate 
of escalations from known defects over time.  Our goal 
is to prevent such escalations, and to push the trend 
line as close to zero as we can.  So far, this chart does 
not show evidence of run rate reduction because the 
product group has piloted EP for just one month. 

Figure 3 shows validation results from an EP run.  
One of the outputs of the model is the “confidence” the 
model has in predicting that a given defect will be 
escalated.  In essence, confidence translates into an 
“escalation risk level” assigned by the model. If the 
model works as desired, then defects with greater risk 
level will have a greater probability of becoming 
escalated.  The histogram shows the risk level assigned 
to defects on the X axis, and on the y axis it shows the 
proportion of escalated vs. not escalated defects.  
Escalations are shown in dark gray and non-escalations 
in light gray. As the chart shows, the EP model 
successfully sorted defects, which later became 
escalated into the high end of the 'confidence' or EP 
Risk Level. 

Based on the above information, we can calculate 
the probability of an escalation based on the risk level.  
To do so, we divide the number of escalations by the 
number of defects at each risk level.  We consider 
probabilities of escalations for defects, which have “at 
least a given risk level”, rather than for only defects 
“exactly a given risk level”. This approach allows us to 
more easily see the trend of escalation probability with 
increasing risk level.  

Figure 4. 
 
Figure 4 shows that risk level 9 defects have a 

greater than 70% probability of becoming escalated.  

Escalation probabilities decline with declining risk 
level, to 60% for “risk level 6 and greater”, 40% for 
risk level 5 and greater, 20% for risk level 4 and 
greater, and finally 1% for risk level 0 and greater.  
“Risk level 0 and greater” effectively means “overall 
escalation probability, independent of risk level”. This 
figure is a quantitative assessment of how Escalation 
Prediction allows the vendor to focus on the “vital 
few” while expending less energy on the “trivial 
many”. 
 
4. Conclusions 
 

In this short paper, we have made a business case 
for predicting and preventing escalations from known 
product defects.  While the labor cost of escalations 
from known product defects is significant, the total 
cost is even greater, including loss of image, customer 
satisfaction, loyalty and repeat revenue.  By applying 
predictive technologies that have been used 
successfully to similar problems in the financial 
services industry software vendors can proactively 
resolve known product defects with the greatest risk of 
escalation. An escalation prediction solution has been 
set up and tested, and is currently deployed at Sun. The 
solution has been deployed for only a small number of 
weeks. Preliminary results provide evidence that we 
can indeed predict escalations. We plan to continue to 
improve the effectiveness of the program and track its 
results. 
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