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Abstract— in this paper, we present an image compression 
algorithm called Weighted, Ratio-Based, Adaptive, Lossless 
image Codec (WRALIC). The algorithm utilizes 5 ratio 
predictions. The weight of each prediction is learned during a 
training stage offline, whereas the prediction parameters are 
adjusted using error context. The absolute value of the error is 
encoded. The algorithm does not encode the sign. Instead, it 
attempts to guess the sign of the error from the sign context of 
the pixel. Using the energy and the average errors around a 
pixel, the error is added to an encoding bin. Experimental 
results demonstrate good compression performance compared 
to other state of the art algorithms. 

Keywords— image compression; lossless compression; 
context modeling; adaotive prediction; entropy coding. 

I.  INTRODUCTION 

Data compression is the process of representing an 
information source using fewer bits than the original 
representation would use. Compression can be applied on 
various types of data such as text, speech, image or 
video  [1] [2]. In the field of compression, there are two major 
approaches, namely: lossy and lossless. Lossless compression 
schemes ensure that the exact original information is 
recovered after decompressing the compressed file, but they 
do not provide high compression. Lossy schemes, on the 
other hand, provide high compression at the cost of 
information loss in the original data because they reconstruct 
an approximated replica of the original information after 
decompression. The research presented in this paper is 
focused only on lossless image compression. 

Lossless image compression schemes can be further 
classified into statistical-based, dictionary-based, prediction-
based and context-based methods. Statistical-based methods 
encode each pixel value using its probability of occurrence, 
such as Huffman encoding  [3] and arithmetic encoding  [4]. 
Dictionary-based methods utilize the existence of self-
similarity among image data and encode the current 
sequence of pixel values as a pointer to another part of the 
image that has been already encoded, such as Lempel-Ziv-77 
(LZ77) scheme  [5] and Lempel-Ziv-78 (LZ78) scheme  [6]. 
Prediction-based methods attempt to estimate (predict) the 
current pixel value, using surrounding pixels and encode the 
prediction error, instead of the actual pixel value, such as 
Differential pulse-code modulation (DPCM) scheme  [7]. 
Context-based methods encode current pixel value using 
statistical models built from contexts, such as Context-based 
Adaptive Lossless Image Codec (CALIC) scheme  [8], LOw 
COmplexity LOssless COmpression for Images (LOCO-I) 
scheme  [9], and Prediction by Partial Matching (PPM) 
scheme  [10]. 

Statistical modeling  [11] [12] plays a significant role in 
determining how good a compression algorithm is. Our 
algorithm takes advantage of statistical modeling to achieve a 
relatively high compression rate. 

In this article, a new lossless image compression scheme, 
called Weighted, Ratio-Based, Adaptive, Lossless Image 
Coding (WRALIC), is introduced. The WRALIC algorithm is 
nearly symmetric, i.e., the time and space complexity to 
encode is nearly equal to the time to decode. In addition, the 
WRALIC algorithm is amenable for parallel realization. 

The rest of the paper is organized as follows. Section  II 
provides a general overview about the proposed algorithm. 
Sections  III to  VI explain each component of the codec in 
more details.  Section  VII presents our experimental works 
by showing the bit rates we achieved along with a 
comparison with other lossless compression algorithms 
Finally, Section  VIII concludes this work.  

II. THE ALGORITHM 

WRALIC encodes and decodes an image in a raster scan 
order. While iterating over the image, both the encoder and 
decoder collect statistical information about the nearby 
pixels to improve the encoding performance. It is worth 
mentioning that our algorithm only encodes half of the 
image (each other row of the image). The rest of the rows 
are encoded using any other algorithm. In this work, we 
chose CALIC scheme  [8] to encode the rest of the image 
rows. Figure 1 shows the arrangement of rows that are 
encoded by our proposed scheme and the rows that are 
encoded by CALIC. 

Figure 1. The arrangement of the rows that are encoded by the 
proposed scheme (WRALIC) and by CALIC 
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In WRALIC, there are 5 major encoding and decoding 
stages. These stages are: 
• Initial predictions using neighborhood pattern, 
• Energy quantization and context selection, 
• Getting final prediction, 
• Error sign guessing, and  
• Entropy coding. 
Each of these stages will be elaborated in Sections  III to  VI 
(one stage per Section) 

III. INITIAL PREDICTIONS 

The initial Prediction ܫ௧ is based on five ratio 
predictions. The weight of each ratio prediction is determined 
offline (during a training stage).  

A. The 5 RatioPredictions 

Figure 2 shows the neighbors around the pixel being 
encoded (X). These neighboring pixels are North-West pixel 
(NW), North pixel (N), North-East pixel (NE), West pixel 
(W), South-West pixel (SW), South pixel (S), and South-East 
pixel (SE). 

 

Figure 2. The neighbors of the pixel X being encoded: North-West 
(NW), North (N), North-East (NE), West (W), South-West (SW), 
South(S), and South-East (SE) 

WRALIC uses five prediction rules to predict the value of 
pixel X. These five prediction rules are based on the 
following approximations:  

 
ܹܰ = 	 ݔܹܰ

 (1) 

 
ܹܹܵ = ݔܵ

 (2) 

 
ݔܹܰ =  (3) ܧݔܵ

 
ݔܧܰ =  (4) ܹܵݔ

 ܰ − ݔ = ݔ	 − ܵ (5) 

The above ratios can be re-arranged to look like the 
equations below.  

ܫ  = 	ܹ × ܹܰܰ  (6) 

ଵܫ  = 	ܹ × ܹܵܵ  (7) 

ଶܫ  = 	√ܹܰ ×  (8) ܧܵ

ଷܫ  = ܧܰ√	 × ܹܵ (9) 

ସܫ  = 	ܰ + ܵ2  (10) 

B. Patterns 

The initial prediction ܫ௧ is a weighted sum of the five 
ratio predictions (ܫ, ܫଵ, ܫଶ, ܫଷ, and ܫସ). The five weights 
are determined based on the pattern around the pixel being 
encoded (context) using a training set.  

The context is identified based on a set of 14 comparisons 
between the pixels in the current and the previous blocks. 
Seven of these comparisons are between individual 
immediate neighboring pixels (see Figure 3(a)). Another three 
are based on diagonal comparisons between (NW+SE, 
NWW+S), (NE+SW, N+SWW), and (N+S, NW+SW) (see 
Figure 3(b)). The last four comparisons are based on 
comparing two group of pixels, including, (N + NW, W + 
WW), (W + WW, S + SW), (||NW − SE||, ||NWW − S||), and 
(||NE − SW||, ||N − SWW||). 

(a) 

(b) 

Figure 3. The context is identified based on a set of comparisons 
between the pixels in the current and the previous blocks. 

Each comparison result is either 0 or 1, as shown in (11) 

,ݔ)݁ݎܽ݉ܥ  (ݕ = 	 ቄ 1, ݕ	݂݅ >  (11) ݁ݏ݅ݓݎℎ݁ݐ	0	ݔ

With this arrangement, there are 214
 = 16384 possible 

contexts. 

C. Weighted Average 

The initial prediction, ܫ௧, is determined by (12): ܫ௧ = ܫߠ + ଵܫଵߠ + ଶܫଶߠ + ଷܫଷߠ +  ସ (12)ܫସߠ

The values of the weights 0ߠ,	 	,1ߠ 	,2ߠ 	,3ߠ and	  are 4ߠ
determined offline for each possible context. At the 
beginning of the training process, all weights are set to have 
the same value, i.e., 0.2 = 4ߠ = 3ߠ = 2ߠ = 1ߠ = 0ߠ. Then, the 
algorithm goes over the training images. While looping 
through each training image, the counter of the ratio 
prediction that gives the closest approximation to the current 
pixel is incremented, as shown in (13).  

ݐ݊݁݉݁ݎܿ݊݅  = ௫ܫฮߙ −  ௧ฮ (13)ܫ

NW N NE

W X

SW S SE

NWW NW N NE

WW W X

SWW SW S SE

>? >? >?

>? >? >?
>?

NWW NW N NE

WW W X

SWW SW S SE
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>?
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The symbol	  .denotes the energy in the current block ߙ
Simply, the energy ߙ is a measure of how smooth the current 
block is. In non-smooth areas, the value of ߙ should be large. 
Therefore, there’s a high probability to have a prediction that 
is far from the pixel. Therefore, the increment should be high 
in areas with high frequency. In smooth blocks, the weights 
should be small, as the probability to get a wrong prediction 
here is lower. We will explain how to compute the energy in 
the Section  IV. 

The value ฮܫ௫ −  ௧ฮ is the initial error. If the initialܫ
error is small, then the current weights are ideal. Therefore, 
we don’t want to have a large increase that may change the 
ideal weights. On the other hand, if the error is large, we 
should have a large increment.  

In other words, there’s a linear dependency between an 
increment for a certain weight and the energy. Also, the 
relation between an increment to a certain weight and the 
initial error is also linear. 

IV. ENERGY AND ERROR CONTEXT 

The energy is a measure of how smooth the neighborhood 
is. The smoother the neighborhood, the more accurate our 
prediction will be. The energy value is quantized to 8 bins. 
These 8 bins form our coding contexts. We do entropy 
coding based on estimated conditional probabilities like in 
Xu et al.  [8].  

A. Energy 

The energy is a sum of 3 values: ݀ (horizontal absolute 
changes), ݀௩ (vertical absolute changes), and ݁௪ (previous 
error), where the value of ߙ is calculated according to (17). ݀ = 	 ܧܰ‖ − ܰ‖ + ‖ܰ − ܹܰ‖ + ܧܵ‖ − ܵ‖ + ‖ܵ − ܹܵ‖ (14)݀௩ = 	 ‖ܹܰ −ܹ‖ + ‖ܹ − ܹܵ‖ + 0.5	‖ܰ − ܵ‖ + ܧܰ‖	0.5 − ௪݁(15) ‖ܧܵ = ܹ − ߙ ௧(௩௨௦) (16)ܫ = ݀ + ݀௩ + 2	݁௪ (17)

It is worth mentioning that the energy value ߙ controls the 
amount of increment in (13). In addition, it is used to 
construct the error context, (see Section IV-B) and to 
determine the bin that will be used to encode the final error 
(see Section  VI). 

The energy is quantized using the following levels [9, 18, 
30, 45, 90, 128, and 210]. For example, if the energy is ≤ 9, 
the quantized energy is 0. If the energy is ≤ 18, the quantized 
energy is 1 and so on. 

B. Error Context 

The error context is created by comparing the initial 
prediction ܫ௧ with each neighboring pixel. If the 
neighboring pixel is larger or equal to the initial prediction, 
we append 1 to the context. Otherwise, we append 0. After 
that, we append the quantized energy/2. Therefore, the total 
number of possible error contexts is 27 × 4 (quantized energy) 
= 512 error contexts. 

For each error context, the initial error (how far the initial 
prediction ܫ௧ is from the pixel being encoded) is summed 
during the online learning stage (at the end of each iteration). 
Also, a running count of the pixels that fall under each 
context is kept. Using the running sum with the running 
count of the initial error, the final prediction ܫ is 
calculated (see (18) and (19)). 

(ܥ)߳  =  (18) (ܥ)ݐ݊ݑܿ_݃݊݅݊݊ݑݎ(ܥ)݉ݑݏ_݃݊݅݊݊ݑݎ

ܫ  = ௧ܫ +  (19) (ܥ)߳

V. ERROR SIGN GUESSING 

A. Encoding the Absolute Error 

Instead of encoding the error with its sign, we encode the 
absolute error. In order to do that, we create a sign context 
that can help us determine the sign of the error. This context 
cannot predict the sign correctly all the time. However, using 
the sign context, we can create a skewed distribution, which 
is great for encoding.  

To illustrate, the number of negative errors is usually 
similar to the number of positive errors. Since the probability 
of both types of errors is almost the same for each sign, we 
know from information theory that the arithmetic encoder 
will not perform well due to the high uncertainty.  

Using sign contexts, we don’t have to encode the sign of 
the error. Instead, we encode whether the encoder was able to 
guess the correct error sign or not. The probability 
distribution of our guessing success or failure is skewed. This 
leads to better entropy Encoding. 

B. The Sign Error Context 

Given the final prediction ܫ  , we construct a context 
in a similar manner to the way we did it in Section  IV.B, 
where, we constructed a context using ܫ௧ and used the 
context to calculate the average error for each context. Here, 
we construct a context in the same manner but using ܫ.  

For each context of the 512 sign contexts, the encoder 
and decoder keep 2 running counts of the positive and 
negative errors. This is done during the online learning 
stage, which comes after encoding the pixel. Both the 
encoder and decoder keep track of the number of positive 
and negative errors for each sign context. This is illustrated 
in Figure 4. 

Figure 4. A flowchart of the content of the Sign Context. During 
the learning stage (after encoding the pixel), if the error is positive, 
the counter of positive errors is increased for this context. 
Otherwise, the counter of negative errors for this sign context is 
increased. 

When encoding the pixel, if the sign of the current error 
is the same as the dominate sign of the context, success (0) is 
encoded. Otherwise, the encoder encodes failure (1).  

As shown in Figure 5, in addition to encoding the sign 
guessing result, a counter for success and failure is 

Error>0

SignContext
[signContextIndex].pos ++

SignContext
[signContextIndex].neg++

Error<0

Yes
No

Yes

Error = 0; no need 
to encode sign

No
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incremented for each sign context. This is important for the 
next stage, which is entropy encoding. The result of sign 
guessing will be added to one of 6 bins depending on the 
context probability of success. This leads to better 
compression results because we are grouping symbols by 
their probability distribution.  

Figure 5. A flowchart of how both the success and failure 
counters are being incremented during the online learning stage. If 
the error is positive and the number of positive errors for this 
context is more than the negative errors, the encoder increments the 
“success” counter. Similarly, if the number of negative errors for 
this context is more than the positive and the current error is 
negative, the success counter is incremented. Otherwise, the 
encoder increments the “failure” counter. 

VI. ENTROPY ENCODING
 

We use an adaptive arithmetic encoder to encode 
prediction errors and sign guessing data. Depending on the 
context of the errors being encoded, the error can go into one 
of 16 encoding bins. In addition , the sign guessing of the 
error can get to one of 6 sign guessing bins. Each bin is 
encoded using a separate arithmetic encoder.  

As per Section  IV, there are 8 possible energy levels. We 
combine these 8 possible levels with average errors around 
the pixel being encoded to end up with 16 possible error 
bins. The errors around the pixel being encoded are: ||NN - 
INN||, ||NNW - INNW||, ||NNE - INNE||, and ||W - IW||. We take 
the average of these errors and depending on the energy 
level, we decide to which error is added to.  

The encoding bins are: binL0, binL1, binL2, binL3, 
binL4, binL5, binL6, binL7, binH0, binH1, binH2, binH3, 
binH4, binH5, binH6, and binH7. Each bin corresponds to 
an energy level. For each energy level, there are two 
possibilities, depending on the value of the average error 
around the pixel being encoded. The threshold values for 
each energy level are determined (20). These values are 
tuned empirically: 

 

N0 = 1;   N1 =  1 

N2 = 5;   N3 =  6 

N4 = 8;   N5 =  9 

N6 = 15;   N7 = 15 (20)

For Example, if the energy level of the neighborhood of 
the pixel is 4, the average error around the pixel is 
calculated. If this value is less than N4, i.e., less than 8, the 
error is added to binL4. Otherwise, it is added to binH4. 

As mentioned in Section  V, the encoder only encodes the 
absolute value of the error. The sign is not encoded. Instead, 
the encoder encodes whether we were able to guess the sign 
of the error (0) or not (1). The probability distribution of the 
guessing is skewed towards successful guessing (more 0s).  

To improve the performance of the arithmetic encoder, 
we divide the sign guessing into 6 bins. The division is 
based on the success probability of each context. This 
algorithm is summarized in Figure 6. The decision 
boundaries (66%, 57%, 50%, 43%, 34%) are set empirically. 

VII. RESULTS AND EXPERIMENTS 

For the sake of compression performance evaluation, the 
proposed method is tested on the Kodak image set, which 
contains 24 grey-scale images (9437544 bytes in total). 
FIGURE 7 shows the Kodak image set with the compression 
performance of WRALIC. In order to demonstrate the 
compression performance of WRALIC, we compare it with 
some other lossless compression techniques, where each 
image is compressed separately and the total size of 
compressed files of each method is reported. Table 1 lists the 
compression results achieved by WRALIC, JPEG-LS  [9], 
PAQ  [13], CALIC  [8]. Our Algorithm outperforms JPEG-
LS. In addition, we achieve a bit rate that is slightly better 
than the one achieved by CALIC. However, PAQ achieves a 
better compression rate. Yet, the execution time of PAQ is 
very high. The execution time for WRALIC (implemented 
using Python) is on average 9 seconds on a machine with 
2GB memory. Currently, we are working on implementing it 
using C and further optimizing the code to achieve faster 
execution. 

posCounter >
negCounter

AND
Error>0

posCounter = SignContext[signContextIndex].pos
negCounter = SignContext[signContextIndex].neg

posCounter < 
negCounter

AND
Error<0

SignContext[signContextIndex]
.success ++

Encode 
Success

SignContext[signContextIndex]
.Failure++

Yes No

Yes

No

Encode Failure

Figure 6. Flowchart of the entropy coding of the sign of the error. 
The sign guessing is added to an encoding bin depending on the 
sign context success probability. 

No

successCounter = SignContext[signContextIndex].success
failureCounter = SignContext[signContextIndex].failure

Total = successCounter + failureCounter
Success = successCounter/Total

Success 
>50%

Success
>57%

Success
>43%

Success
>66%

Success
>34%

bin0 bin1

bin2 bin3

bin4 bin5

Yes

Yes

Yes

Yes

YesNo

No

No

No
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Kodak01(768×512) 

Bit rate: 5.17 
Kodak02(768×512) 

Bit rate: 3.90 
Kodak03(768×512)

Bit rate: 3.35

  
Kodak04(512x768) 

Bit rate: 4.03 
Kodak05(768×512) 

Bit rate: 4.99 
Kodak06(768×512)

Bit rate: 4.50

  
Kodak07(768×512) 

Bit rate: 3.51 
Kodak08(768×512) 

Bit rate: 5.19 
Kodak09(512x768)

Bit rate: 3.83

  
Kodak10(512x768) 

Bit rate: 3.85 
Kodak11(768×512) 

Bit rate: 4.31 
Kodak12(768×512)

Bit rate: 3.73

  
Kodak13(768×512) 

Bit rate: 5.87 
Kodak14(768×512) 

Bit rate: 4.80 
Kodak15(768×512)

Bit rate: 3.75

  
Kodak16(768×512) 

Bit rate: 3.99 
Kodak17(512x768) 

Bit rate: 4.00 
Kodak18(512x768)

Bit rate: 4.97

  
Kodak19(512x768) 

Bit rate: 4.39 
Kodak20(768×512) 

Bit rate: 3.01 
Kodak21(768×512)

Bit rate: 4.44

  
Kodak22(768×512) 

Bit rate: 4.45 
Kodak23(768×512) 

Bit rate: 3.38 
Kodak24(768×512)

Bit rate: 4.50

Figure 7. Compression Bit Rate (bits/pixel) for Kodak standard 
images 
 

Table.1. The performance of WRALIC against other 
algorithms. Bit Rats (bits/pixel). Sizes in bytes.  

Original Size 
Compressed 

Size 
Bit Rate 

WRALIC 9,437,544.00 5,012,001.00 4.25 

JPEG-LS 9,437,544.00 5,120,281.00 4.34 

PAQ 9,437,544.00 4,726,326.00 4.01 

CALIC 9,437,544.00 5,020,278.00 4.26 

VIII. CONCLUSIONS 

We have presented an image context-based coding 
algorithm that achieves a good bit rate. The method utilizes 
five ratio predictions. Instead of encoding the sign of the 
error, we try to guess the sign. The probability distribution 
of the guessing is skewed. Therefore, we achieve more 
compression by encoding the guessing of the sign rather than 
the sign of the error. We perform entropy encoding by 
encoding the absolute error in one of 16 bins. The average 
error around the pixel plays a significant role in determining 
the error encoding bin.  

We have also compared our algorithm to other state of 
the art algorithms. Based on our experiments, we found that 
WRALIC achieves an excellent bit rate. Its performance is 
less than PAQ; however, WRALIC is much faster than PAQ. 
Yet, we still have more room to further optimize our 
implementation. Currently, we are doing so. 

Since we are encoding only half of the image, we have 
access to pixels below the pixel being encoded. If we were 
able to encode the whole image in this algorithm, we would 
end up with a bit rate that is better than most state of the art 
algorithms. This is because having access to the row below 
the pixel being encoded improves pixel predictions. 
However, encoding the whole image is not possible because 
the decoder will not be able to decode the image. The result 
of this tradeoff is a slight improvement in performance over 
state of the art algorithms. 
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