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Abstract. We introduce a deep neural network that can be used to
localize and detect a region of interest (ROI) in an image. We show
how this network helped us extract ROIs when working on two separate
problems: a whale recognition problem and a heart volume estimation
problem. In the former problem, we used this network to localize the
head of the whale while in the later we used it to localize the heart
left ventricle from MRI images. Most localization networks regress a
bounding box around the region of interest. Unlike these architecture,
we treat the problem as a classification problem where each pixel in
the image is a separate class. The network is trained on images along
with masks which indicate where the object is in the image. We treat
the problem as a multi-class classification. Therefore, the last layer has
a softmax activation. Furthermore, during training, the mutli-class log
loss is minimized just like any classification task.
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1 Introduction

A Convolutional Neural Network (convnet or CNN) is a special type of neural
network that contains some layers with restricted connectivity. Such networks
were introduced a long time ago [5] and achieved excellent results on the famous
MNIST data set [9]. However, it took them few years to outperform the state of
the art methods in visual recognition challenges. Currently, CNNs can produce
the state of the art performance in many classification tasks. Such a success
is driven by the availability of large training data sets [3,13], powerful hard-
ware, regularization techniques such as Dropout [7,17], initialization methods
[6], ReLU activations [10], and data augmentation. Since 2012, many networks
that can perform classification were introduced [8,15,18].

Typically, CNNs have been used for classification tasks. However, they can
also be used for detection and localization [4,12,14,16,19]. A common way to
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localize an object in the image is to treat the problem as a regression task.
In this setting, a bounding box center (or top left corner) is regressed along
with the height and width of the bounding box. In this paper, we propose an
architecture that treats the problem as a classification task. Pixels are classified
as to whether they are inside the bounding box or not. The network is trained
on the images and on masks. The mask of one image has the same size as the
image and indicates where the bounding box is (or the pixels that belong to the
target object are). We experiment with two types of images: right whale aerial
images and heart MRI images.

The localization we describe in this paper helped us improve the classifica-
tion performance on these data sets. In general, we find localization to be very
helpful when the number of training images is very small. This is because local-
izing a region of interest reduces the number of degrees of freedom by removing
background pixels that are unrelated to the classification task. This also reduces
the amount of time needed for training the classifier. Furthermore, removing
background pixels and training a classifier to classify only the region of interest
is very important when the amount of RAM in the GPU card is limited. Image
subsampling can be used to reduce the size of the image in order to fit it in
the GPU RAM. However, subsampling may not be suitable in images where the
region of interest (ROI) is very small with respect to the image size. This is
because image subsampling may shrink the ROI to a point where it is difficult
for the classifier to learn useful features. On the other hand, localization can
reduce the input image size by extracting the ROI and removing the unrelated
background pixels.

Image
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Fig. 1. Model overview: A set of training images along with masks are used to train the
network. Once the network is trained, it can be used to predict a mask which identifies
the location of the region of interest. Finally, this predicted mask is thresholded (using
otsu [11]) and used to crop the image.

Figure 1 shows an overview of the method. Training images and correspond-
ing masks are used to train a neural network. Once the network is trained, the
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network can be used to predict masks. Once the predicted mask is thresholded,
it can be used to find the region of interest in the original image. In Sect. 2,
we introduce the architecture of the network. We describe how we trained the
network in Sect. 3. In Sect. 4, we present our experimentation with two data sets:
a north american right whale data set and short axis heart MRI data set. We
conclude our work in Sect. 5.

2 Architecture

The architecture of the localization network (shown in Fig. 2) is similar to many
classification networks. The main difference is the last layer, which is a flattened
2D mask predicted by the network. The training images along with their corre-
sponding masks are re-sized to a certain size. In general, we resize the images by
taking the mean of the width and height of images in the data set. We resized
the images to 128 x 128 and 112 x 224 for the MRI images and the whale images,
respectively. The input image and the corresponding mask should have the same
size. Furthermore, the last layer is a fully connected with height x width neurons.
Reshaping the output layer to 2D produces the predicted masks. The network
parameters are summarized in Table 1.
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Fig. 2. Localization architecture: The input of the architecture is an image of size
128 x 128 for the Heart MRI images (described in this Figure.) Note that for the whale
images (not shown in this Figure), we used a different input size 112 x 224. Besides the
difference in input size, the number of layers and other parameters are the same for both
data sets. In this figure, the output of the network is a layer with 128 x 128 = 16384
possible classes. The output layer is simply a flattened mask and reshaping this layer
gives us back the predicted mask. The pixels with the highest intensities represent the
location of the region of interest.

Each convolutional layer is followed by ReLU activation [10]. The output layer
has a softmax activation to ensure that the sum of all pixels in the predicted
mask is 1 and that the value of one pixel is between 0 and 1. Maxpooling is used
to detect features at different scales. The network is regularized with a 50 %
dropout rate.

The most important layer in this network is probably the output layer. It
is crucial to design the network such that the number of parameters in the last
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Table 1. Localization network architecture: this tables shows the type of layer, the
kernel size, shape of the layer, and the number of parameters in each layer.

No | Type kernel | Shape Parameters
1 | Convolution | (7,7) | (16, 128, 128) | 800

2 | Convolution | (7,7) | (16, 128, 128) | 12,560

3 | MaxPooling | _ (16, 64, 64) |0

4 | Convolution | (5,5) | (32, 64, 64) 12,832

5 | Convolution | (5,5) | (32, 64, 64) |25,632

6 | Convolution | (5,5) | (32, 64, 64) | 25,632

7 | Convolution | (5,5) | (32, 64, 64) |25,632

8 | MaxPooling | _ (32,32,32) |0

9 | Convolution | (5,5) | (64, 32, 32) |51,264
10 | Convolution | (5,5) | (64, 32, 32) | 102,464
11 | Convolution | (5,5) | (64, 32, 32) | 102,464
12 | Convolution | (5,5) | (64, 32, 32) |102,464
13 | MaxPooling | - (64, 16, 16) |0

14 | Convolution | (5,5) | (128, 16, 16) |204,928
15 | Convolution | (5,5) | (128, 16, 16) |409,728
16 | Convolution | (5,5) | (128, 16, 16) | 409,728
17 | Convolution | (5,5) | (128, 16, 16) | 409,728
18 | MaxPooling | _ (128, 8,16) |0

19 | Convolution | (5,5) | (256, 8, 8) 819,456
20 | Convolution | (5,5) | (256, 8, 8) 1,638,656
21 | MaxPooling | - (256, 4, 4) 0

23 | Flatten - 4096 0

24 | Dropout - 4096 0

25 | Dense - 16384 67,125,248

layer is as large as possible but also appropriate for the GPU RAM available.
Since the output layer is fully connected, it has the largest number of parameters
in the network. It is important to make sure that the number of pixels in the
input image and the input mask equals the number of units in the output layer.

3 Training and Localizing

The network is trained on two types of images: north atlantic whale images
[2] and heart MRI images [1]. We minimize the mutli-class logloss (categorical
cross-entropy). Initially, the learning rate is set at a relatively high value 0.01 and
gradually reduced if the validation loss does not improve. Because the last layer in
the network is a softmax layer, the pixels of the predicted mask are probabilities.
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Therefore, it is crucial that pixels of the input mask are also probabilities (sum
up to 1 and their range is between 0 and 1). Therefore, we standardize each pixel
in the input mask by Eq. 1:

B pizel;;
7] W
Yot ijl pixel;;

where y;; is the normalized pixel value such that y;; € [0, 1] and Eil ZJM; Yij =
1, pizel;; is the pixel value at row i and column j.

Once the training is complete, the output layer is reshaped to have a 2D
shape. Then, this reshaped layer (our predicted mask) can be thresholded using
otsu. The image is thresholded as shown in Eq. 2:

(1)

Yij

1, if I(z,5) > thresholdotsy

0, otherwise,

I(i7j)thresholded = { (2)
Then, the predicted mask is resized back to the original size of the image.
Finally, the predicted mask can be used to extract the region of interest from
the original image.
During training, the images are transformed in order to alleviate overfitting.
These transformations are summarized in Table 2.

Table 2. Data augmentation: Random transformations along with parameters. These
transformations are applied randomly to each image before sending it to the GPU.
Important note: the same transformation should be applied to both the image and
corresponding mask.

Transformation Parameters

Horizontal Flip Randomness = 50 %

Vertical Flip Randomness = 50 %
Horizontal Shift | Up to 20 % of width
Vertical Shift Up to 20 % of height

Gaussian Blurring | Up to o =1

It is very important to note that the same transformation should be applied
to both the image and corresponding mask. Otherwise, the network will never
converge and the training will fail. It is worth mentioning that the network can
also learn the object scale if there is a variation in scale in the training data. If
there is no scale variation in the training data and scale learning is desired, the
training images and masks can be transformed to simulate scale variations.

4 Experiments

All experiments were ran on a laptop with GTX980M graphics with 4 GB RAM.
Training the localizer takes around 160s per epoch (around 4.5h to train 100
epochs).
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Figure3 shows the multi-class logarithmic loss (also known as categori-
cal cross-entropy) progress while training for both the training and validation
images. The equation for this metric is:

N

M
1
logloss = - Z Z yijlog(pis) (3)
i=1 j=1
where N is the number of images in the data set, M is the number of pixels in the
mask. y;; is a pixel in the true input mask ¢. y;; has a 0 value if it corresponds to
the background and a higher value if it is inside the ROL. p;; is the corresponding

predicted pixel value.
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Fig. 3. The loss curves when training the network to localize the left ventricle in heart
MRI images. Since the validation and training losses are very close to each other,
increasing the capacity of the network is likely to improve results at the expense of
longer training time. (Color figure online)

Since the validation and training losses are very close to each other, increasing
the capacity of the network is likely to improve results at the expense of longer
training time. It is worth mentioning that using an architecture similar to the
Oxford Visual Geometry Group (VGG) net [15] can usually lead to better results
at the expense of time. The VGG [15] architecture is a very deep network with
small kernel sizes and it is usually used for classification. Modifying our network
architecture to be similar to VGG can lead to better results at the expense of
longer training times. Since localization is usually a preprocessing step before
classification, we opted for an architecture that can converge fast and produce
good results within a decent amount of training time. If better localization results
are desired, the network can be made deeper with smaller kernel sizes.

It may be difficult to understand how good the localizer is by analyzing
the log loss progress. The lower the loss, the better the localizer. However, it
may not be clear how good the localizer is. Figure 4 shows how the performance
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Fig. 4. This figure shows how the network performance in tracking the location of the
left ventricle improves as it is being trained. The same image is shown across different
epochs. Due to data augmentation, the true (and predicted) location of the left ventricle
changes. At epoch 0, the network predicts the location of the left ventricle to be in the
middle of the image. Later, the network gradually becomes capable at predicting the
location of the left ventricle.

of the network improves while training. Figure4 shows only one image from
the validation set but due to data augmentation, the true location of region of
interest changes during each epoch. At the beginning of training, the network
predicts the region of interest to be in the middle. Gradually, we can see that
the network is starting to predict the correct location and size of the region of

interest.

Fig. 5. A random sample of MRI images showing the heart. In the lower row, the left
ventricle is localized and cropped.

Figures 5 and 6 show the result of localizing the left ventricle in MRI images
and the right whale heads in right whale images. The performance of this network
seems to be very robust. When scanning the validation set for wrong localization,
we could not find any examples where the network completely returned the wrong
region of interest. However, for the MRI images, we did notice that when the left
ventricle is very small and at end-systole, some regions of interest were larger

than they should be.
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Fig. 6. A random sample of right whale images along with the resulting head crops.
These head crops can be passed to a right whale classifier to recognize the whale.

5 Conclusion

We introduced a network that can be used to localize a region of interest. Unlike
many localization networks, we do not regress a bounding box. Instead, the
network is trained using the training images and the corresponding masks. The
network predicts a mask, which is then thresholded and used to extract the region
of interest from the original image. It is worth mentioning that this network can
learn a region of interest of any shape (rectangle, triangle, circle, etc.). It can
also be used for supervised segmentation of an arbitrary shaped object.
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