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Abstract. We introduce a method that can be used to estimate the
ejection fraction and volume of the left ventricle. The method relies on a
deep and wide convolutional neural network to localize the left ventricle
from MRI images. Then, the systole and diastole images can be deter-
mined based on the size of the localized left ventricle. Next, the network
is used in order to segment the region of interest from the diastole and
systole images. The end systolic and diastolic volumes are computed and
then used in order to compute the ejection fraction. By using a local-
ization network before segmentation, we are able to achieve results that
are on par with the state-of-the-art and by annotating only 25 training
subjects (5% of the available training subjects).
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1 Introduction

The ejection fraction is a measure of the outbound blood pumped from the heart
after each heartbeat. The ejection fraction, and the systolic and diastolic volumes
are important measures that can help cardiologists assess how healthy the heart
is. Manually estimating the end-systolic volume, the end-diastolic volume, and
the ejection fraction from cardiac MRI images is a time consuming process.
A cardiologist or an expert has to manually segment all slices before the volume
can be calculated. We propose a deep and wide convolutional neural network
that can be used to localize the left ventricle from an MRI image. This network
strikes a nice balance between performance and hardware requirement. Then, the
systole and diastole images can be determined based on the size of the localized
left ventricle. Next, the same network can be used to segment the cavity in the
left ventricle. Using the DICOM meta fields, we can compute the volume size.

Left ventricle volume estimation has been an active area of research
[4,9,14,15]. Recently CNNs were used in order to tackle this problem [7,13,27].
For instance, in [27] a U-Net [19] network was used in order to segment the left
ventricle.
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A Convolutional Neural Network (CNN) is a neural network that contains
some layers with restricted connectivity. CNNs were introduced in [3] and
achieved good results on the MNIST data set [12]. The success of CNNs on
the MNIST [12] was reproduced on image classification problems. CNNs can
now produce state of the art performance in many classification tasks and on
challenging datasets such as [1,20]. The success of CNNs is due to many rea-
sons including large training data sets [1,20], powerful hardware, regularization
techniques such as Dropout [6,24], initialization methods [5], ReLU activations
[17], and data augmentation. Since 2012, many networks that can perform image
recognition were introduced [11,22,25]. Recently, CNNs have been used to per-
form detection and localization [2,19,21,23,26].

CNNs typically require large training data sets in order to be successful.
However, cleaning and standardizing the data can help a lot in alleviating this
requirement. We use a dataset of MRI images provided by the National Heart,
Lung, and Blood Institute (NHLBI) [8]. The dataset [8] contains 500 training
studies, 200 validation studies, and 440 testing studies. This dataset includes
the MRI images along with the diastole and systole volumes. The dataset does
not contain the left ventricle segmentation. Therefore, the left ventricle in the
training data should be manually segmented and annotated to be able to train
a CNN that can segment left ventricle. Manually annotating the training data is
a time consuming process. Therefore, we first train a model to localize the left
ventricle which is a much easier task. To perform this step, one image from each
subject is annotated and used to train a localization network. Once trained, this
localization network is used to localize the left ventricle in all the images. Once
the left ventricle is localized, the task of training a model to segment the left
ventricle becomes much easier and requires a very small amount of annotated
training data. For the segmentation, we annotated only 25 training studies out
of 500 training studies (5% of the number of studies). Finally, after segmenting
the left ventricle, the systolic and diastolic volumes can be easily calculated. The
results are reported on the whole testing set, which includes 440 subjects. The
test set was never manually annotated in any way.

In this paper, we divide the task into several steps in order to ensure that
the training process is successful. First, the left ventricle is localized (Sect. 2).
Then, the systole and diastole images for each slice are determined. Next, the
left ventricle segmentation process is described in Sect. 3. Finally, the volume
of the left ventricle is estimated (Sect. 4). In Sect. 5, we present the results. We
conclude our work in Sect. 6. An overview of our proposed solution is shown in
Fig. 1.

2 Localization

The dataset contains (500 training subjects, 200 validation subjects, and 440
testing subjects). Each subject includes 8–16 short axis views (or slices). These
slices provide a view of the heart at different levels. Each slice contains a set
of (30 images or less) spanning one cardiac cycle. We are interested in only
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Fig. 1. Overview: a set of training images (1 per subject) are used to train the local-
ization network. Then, the network is used to predict the localization mask. The local-
ization mask is thresholded using Otsu [18]. Once the left ventricle is localized, we can
determine the systole and diastole images. The left ventricle is segmented by training a
network on only 25 training subjects. After thresholding, the area of the left ventricle
corresponds to the sum of pixel values that are not 0. The volume can be calculated
by multiplying each area by the slice height and summing up the volumes.

two images in each slice (the end-systolic and end-diastolic images). In each
slice, these two images show us when the left ventricle is fully contracted and
expanded, respectively. In order to determine these two phases, we first need to
localize the left ventricle.

We trained a localization network on a set of randomly sampled images from
the training set. We made sure that one image is sampled from each patient.
The architecture of the localization network is described in Fig. 2. As shown in
Fig. 2, the input image is re-sized to (128, 128). Then, it is passed to the net-
work and it goes through a set of convolutional layers. Next, the last layers from
each block -except for the first one- are upsampled and merged. Three types of
merging is done: type 1 involves merging (blocks 2, blocks 3, blocks 4, blocks 5),
type 2 involves merging (blocks 3, blocks 4, blocks 5), and finally type 3 merging
(block 4, and block 5). It is worth noting that type 1 carries more high resolu-
tion information while type 3 carries highly abstract information but with less
resolution (due to downsampling).

Each convolutional layer is followed by rectified linear units (ReLU) activa-
tion [17]. The output layer has a sigmoid activation to ensure that each pixel in
the output mask ranges between 0 (black) to 1 (white). Maxpooling is used in
order to extract more abstract features. We opted for upsampling by repeating
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Fig. 2. Network architecture: this figure shows the architecture of one of the networks
that were used for localization and segmentation of the left ventricle. The input goes
through a set of convolutional layers. Then, the last layer from each block (except for
block 1) are upsampled and merged in a hierarchical fashion in order to get the output
mask in the original resolution.

the units rather than through parametrized upsampling in order to reduce the
training time and GPU RAM consumption. This network strikes a nice balance
between performance and hardware requirement. Indeed, this network was also
tested on a laptop with around 3.5 GB of available GPU RAM.

The only input pre-processing that we did was subtracting the mean input of
each channel and then dividing by the standard deviation. It is worth mentioning
that in order for the left ventricle area to be determined correctly, we resized
all images using the pixel spacing DICOM field. This ensures that each pixel
represents 1 mm. However, when training the localization network, we resized
the input image to (128, 128) because the network can only accept fixed sizes.
Once the network is used to predict the mask, the mask is resized to the original
size where 1 pixel = 1mm. The following equations show how the pixel spacing
is used to resize the image:

wnew = wold × Δs (1)

hnew = hold × Δs (2)

where wold is the old image width, wnew is the new image width, hold is the
old image height, hnew is the new image height, and Δs is the pixel spacing,
respectively.

The output of this step is shown in Fig. 3.
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Fig. 3. Localization sample: first row shows the original images. Second row shows the
localized left ventricle.

3 Determining Images of Interest and Segmentation

Because the size of the left ventricle varies between the end-systolic and end-
diastolic phases, we can determine these phases by the size of the white area in
the masks. For each slice, we consider the image with the smallest mask as end-
systolic and the one with the largest mask as end-diastolic. A neural network
with the same architecture as shown in Fig. 2 can be used to segment the left
ventricle. The network is trained only on the end-sysolic and end-diastolic images
because these are the images that are needed to compute the end-systolic and
end-diastolic volumes.

It should be noted that while the network has a similar architecture to the
localization network, the input size for the segmentation network is smaller
(80 × 80) vs (128 × 128) for the localization network. This is because the input
images are much smaller than the original images. Consequently, the segmenta-
tion network is trained much faster than the localization network. The segmen-
tation network was trained only on 540 images representing 25 subjects. The
training set contains 500 training subjects. We could not use the whole training
set because the process of performing manual segmentation annotation is very
time consuming. Because of the localization process, training the segmentation
network on such a small data is possible as most of the irrelevant pixels are
removed before segmentation.

Figure 4 shows a sample of left ventricle images and the predicted segmenta-
tion masks. These masks were generated by training an ensemble of 10 segmen-
tation networks. The ensemble contains networks similar to the one described in
Fig. 2 but with varying the number of layers and kernel size in each block. We
found that training an ensemble helps a lot since the number of training images
is very low.
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Fig. 4. Segmentation sample: first row shows the left ventricle images. Second row
shows the segmentation mask.

4 Volume Estimation

At this stage, we can calculate the volume because the left ventricle is segmented.
We calculated the volume using the following equation:

V =
N∑

i=0

SAi × SHi (3)

where SAi and SHi are the area and height of the slice i, respectively. The area
of the slice is calculated by taking the sum of all active pixels (nonzero pixels)
in the segmentation mask. SHi is the result of taking the absolute difference of
slice locations from two consecutive slices.

Equation 4 shows how to compute the ejection fraction which is a measure
of the outbound blood pumped from the heart after each heartbeat.

EF = 100 × (VD − VS)
VD

(4)

where VD and VS are the end diastolic and end systolic volumes, respectively.
Because we did not train on the whole training set, we train four linear regres-

sion and random forest models to improve the results of the volume calculation.
The features that are used to train these models include the systole and diastole
volumes along with other features such as average slice height, average slice area,
etc. Next section, we will report the results that we achieved.

5 Results

We trained the model on a computer with titan X (12 GB RAM). It is worth
mentioning that the networks that we described in this paper were also tested
on a laptop with a 3.5 GB of available GPU RAM.
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Table 1. Diastole RMSE comparison with other state of the art solutions. The state
of the art solutions were obtained from [16]

Method Diastolic RMSE (ml)

Tencia Woshialex [13] 12.02

Ours 13.37

JuliandeWit [27] 13.63

Kunsthart [10] 13.65

ShowMeTheMoney 13.2

Table 2. Systole RMSE comparison with other state of the art solutions. The state of
the art solutions were obtained from [16]

Method Systolic RMSE (ml)

ShowMeTheMoney 9.31

Tencia Woshialex [13] 10.19

JuliandeWit [27] 10.32

Kunsthart [10] 10.43

Ours 12.1

Table 3. Ejection fraction RMSE comparison with other state of the art solutions.
The state of the art solutions were obtained from [16]

Method Ejection fraction RMSE (%)

ShowMeTheMoney 4.69

Tencia Woshialex [13] 4.88

JuliandeWit [27] 5.04

Ours 5.97

Kunsthart [10] 6.99

Training the localization network for 500 epochs with learning rate 0.001 can
take around 4.1 h. On the other hand, training the segmentation network for
100 epochs takes only 28 min. Since we trained an ensemble of 10 segmentation
networks, the segmentation training process takes around 5 h. The mean absolute
value error (MAE) we were able to achieve for the end-diastolic, end-systolic, and
ejection fraction are 9.94 ml, 8.42 ml, and 4.47%, respectively. On the other hand,
the RMSE errors are slightly higher (13.37 ml for the diastolic volume, 12.1 for
the systolic volume and 5.97% for the ejection fraction). According to [16], these
values are comparable to the performance of humans in estimating the volumes.
The differences between two humans in estimating the end diastolic, end systolic,
and ejection fraction are: 13 ml, 14 ml, and 6%, respectively. Tables 1, 2, and
3 show a comparison between the results we achieved and the ones achieved
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Fig. 5. Segmentation loss: the training and validation loss while training one of the
segmentation models. There’s a relatively big gap between the training and validation
loss. This indicates that the model is likely overfitting the data.

by other methods. These results are very good considering the fact that the
localization and segmentation CNNs were trained only on a small subset of the
training set. Figure 5 shows the training and validation losses while training one
of the segmentation models. Because of the gap between the two losses, it is very
likely that the model is overfitting the data. This issue is likely because we only
annotated 25 training subjects and used it to train the model. The results are
likely to be improved if we annotate more subjects and train the model again.

6 Conclusion

We introduced a network that can be used to localize a region of interest in
cardiac MRI images. Once the region of interest (left ventricle) is localized,
the systole and diastole images are determined. Next, we segmented the left
ventricle using the CNN we used for localization. Finally, we performed volume
and ejection fraction estimation using the DICOM fields.
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