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Abstract 
Carotid ultrasound imaging is one of the clinical diagnostic procedures that can be employed to 

detect plaque buildup at the carotid artery walls. It is an inexpensive and non-invasive procedure that has 

no known side effects. Yet, the acquired ultrasound images have poor quality and contain a lot of noise. 

Active contouring segmentation techniques (also known as snakes or deformable model) are 

characterized by their robustness to both image noise and boundary gaps. Hence, they are suitable to be 

used to segment noisy poor quality ultrasound images. One of the major issues of active contouring 

methods is their sensitivity to the initial contour that is provided by the user. Unless it is drawn close 

enough to the actual contour, it may lead to unsatisfactory results. Thus, most active contour algorithms 

require considerable user interaction to provide a good initial contour. 

This paper presents an efficient algorithm for extracting carotid artery lumens in ultrasound images. 

It starts by utilizing a rule-based scheme to generate an initial contour for the lumen. This contour is 

refined using a snake scheme, after carefully adjusting its energies. Our algorithm reduces the user 

interaction, as the user is only required to place a seed point inside the region of interest. It is worth 

mentioning that our proposed initial contour generation scheme can be easily integrated as an independent 

module with any active contouring algorithm. 

Sensitivity, precision rate, and overlap ratio are utilized to assess the performance of the proposed 

scheme. The results show that the extracted initial and final contours have a good overlap with contours 

that are manually segmented by an experienced clinician.  

Keywords: Initial contour, active contouring methods, ultrasound image, carotid artery. 
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1. Introduction 

According to the American Heart Association in 2007  [1], stroke is the third leading cause of death, 

ranked behind cancer and heart diseases. On average, in the United States of America, every three to four 

minutes someone dies of a stroke, and each year, about 700,000 people suffer from its effects. The 

estimated direct and indirect cost of stroke in the United States for 2007 is $62.7 billion. 

According to the Heart and Stroke Foundation of Canada in 2006  [2], over 14,000 Canadians die as 

a result of strokes every year, and about 300,000 Canadians suffer from its effects. 

The carotid arteries supply the head and neck with oxygenated blood. Carotid artery stenosis is a 

narrowing in the carotid arteries caused by the build-up of plaque (composed of fatty materials, calcium 

and scar tissues) at the carotid artery walls. This process is called atherosclerosis. When the carotid artery 

is narrowed, blood flow to the brain can slow down or even stop. If blood flow to the brain is stopped for 

longer than a few seconds, brain cells could die due to the lack or oxygen, causing permanent damage. 

Furthermore, plaque causes the blood to flow abnormally, which can cause the blood to clot. Blood clots 

can break apart and drift through the bloodstream where it is susceptible to cause a blockage at another 

location causing health problems 

Strokes are mainly caused by the interruption of blood flow to the brain due to carotid artery 

stenosis. Early detection of plaque build up plays an important role in preventing strokes. Currently, 

carotid angiography is the standard diagnostic technique to detect carotid stenosis. Carotid angiography is 

an invasive imaging modality where the patient is injected with an X-ray dye. Then the carotid artery is 

examined using X-ray imaging. It take about one hour to perform the test, however the patient has to 

remain under observation for 6 hours after the test is performed. In general, carotid angiography is an 

uncomfortable procedure for patients and has some risk factors, including allergic reaction to the injected 

dye, renal failure, the exposure to ionic radiation, as well as arterial puncture site complications, e.g., 

pseudoaneurysm and arteriovenous fistula formation. 



3 

Ultrasound imaging is a non-invasive medical imaging modality. Carotid ultrasound images are 

obtained using a probe that emits ultrasound waves. This probe is moved back and forth over the patient’s 

neck to obtain different views of the carotid artery. The entire process takes few minutes and is 

completely non-invasive. There are no known side effects for using ultrasound imaging. Furthermore, the 

device used in this process is portable and relatively inexpensive. Ultrasound imaging is considered a 

well-established clinical diagnostic technique for detecting carotid artery stenosis. The main problem with 

ultrasound imaging is the fact that it produces poor quality images containing a lot of noise.  

In order to detect carotid stenosis, clinicians typically use a manual process in which the borders of 

the carotid artery in ultrasound images are traced. However, due to the poor quality of ultrasound images, 

it takes a considerable amount of time and effort from clinicians to delineate manually the borders of the 

carotid artery. Furthermore, carotid artery manual segmentation is generally a non-reproducible process 

and its results may greatly vary from one clinician to another, due to their experience and subjective 

judgment. When dealing with a large database of ultrasound carotid artery images, such manual processes 

become impractical. Hence, it takes considerable time and effort from clinicians to extract information 

from these images. Because of this, many researchers attempt to develop automated methods for 

extracting carotid artery boundaries. These methods include texture-based segmentation, edge-based 

segmentation, region-based segmentation, and active contouring.  

2. Related Research  

Hamou et al.  [3] proposed to segment carotid artery contours using histogram equalization and Canny 

edge detection followed by morphological opening as a post processing operation. However, their method 

produces many false segmented regions.  

Abdel-Dayem et al.  [4] proposed a carotid artery segmentation scheme that utilizes histogram 

equalization and median filtering as pre-processing operations followed by uniform quantization to 

partition the artery into three regions: area inside the artery, artery wall and a plaque layer. The method 
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produces many false segmented regions and it may not work well on all images since the quantization 

levels are empirically selected. 

Abdel-Dayem et al.  [5] also proposed another segmentation scheme that utilizes wavelet transforms 

and watershed segmentation in the multi-resolution domain. However, this method requires the user to 

specify an image dependent threshold value to merge regions resulting from watershed segmentation. 

Active contouring (also known as snakes or deformable model) was first introduced by Kass et al. 

 [6]. Active contouring treats the surface of the object as an elastic sheet that stretches and deforms when 

external and internal forces are applied to it. The behaviour of the active contouring model (snake) 

mimics the physical laws that govern real-world objects. A snake is an energy minimization problem, 

where two opposing forces control its behaviour. These forces are the internal force (which imposes the 

smoothness of the snake), and the external force (which guides the snake towards the image features). 

The total energy of the snake is defined as: 
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where Ein, Eex are the internal and external energies of the snake respectively, v(s) is the parametric 

representation of the snake, and s  is a real number between 0 and 1. The snake adjusts itself to fit a 

desired contour by minimizing its total energy in order to reach equilibrium between the two opposing 

forces.  
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where )(sα  is called the first order term, which makes the snake act like a membrane, and )(sβ is called 

the second order term, which makes the snake act like a thin plate. The external energy is a function that 

drive the snake towards the required image features, such as contours. Various internal and external 

energies can be used to drive the snake  [7] [8] [9].  
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The main advantage of active contouring is its robustness to both image noise and boundary gaps. 

Hence, it is widely used in segmenting medical images. However, active contouring has a major 

drawback, due to its great sensitivity to the initial contour that should be provided by the user. Unless the 

snake is drawn close enough to the actual contour, it will converge leading to unsatisfactory results. Thus, 

most active contouring algorithms require considerable user interaction to provide a good initial contour. 

Cheng et al.  [10] utilized a snake model to automatically detect the intimal and adventitial layers of 

common carotid artery. They modified the balloon snake proposed by Cohen  [7], and added spatial 

criteria to enhance the edges of the adventilia. However the snake requires a long time to converge to the 

final contour. 

Mao et al.  [11] used a thresholded Euclidean distance map and morphological operations in order to 

estimate an initial contour for the carotid artery based on a seed point placed by the user. This initial 

contour is then refined using the active contour’s external and internal forces. However, this method is 

very time consuming. Moreover, it requires the seed point to be placed around the centre of gravity of the 

actual contour; otherwise, the method will fail to get a good initial contour. In addition, this method is 

only tested on a very small set of images. 

Loizou et al.  [12] proposed a snake-based segmentation technique for detecting the intima-media 

layer of the common carotid artery wall in longitudinal ultrasound images. The user must first crop the 

area of the carotid artery. The method then applies normalization and speckle noise reduction via a linear 

scaling filter, together with thresholding and morphological operations in order to generate an initial 

snake that is further refined using snake forces. Yet, this method requires considerable user interaction in 

order to correctly crop the area around the carotid artery contour. 

Hamou et al.  [13] proposed incorporating ellipse shape enforcement and a modified Canny edge 

detection into the active contour’s external energy. The user has to place at least three points on the 

carotid artery walls. A least square ellipse fitting technique is used to generate the initial contour that is 

further refined using the internal and proposed external forces. Yet, unless the initial seed points are 

placed exactly on the carotid artery walls, the method will fail to generate a good contour.  
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Moursi et al.  [14] proposed a preliminary algorithm that generates an initial contour for carotid artery 

lumen in ultrasound images. The proposed algorithm reduced the active contour’s sensitivity to initial 

contours by reducing user interactions to just supplying a single seed point anywhere inside the artery. It 

utilizes a rule-based strategy in order to generate a contour that is close enough to the actual lumen edge.  

3. Problem Definition  

Active contouring is characterized by its robustness to both image noise and boundary gaps. Hence, 

it is suitable to be used as a segmentation technique in noisy poor quality ultrasound images. However, 

active contouring methods are very sensitive to the initial contour that is provided by the user. Unless it is 

drawn close enough to the actual contour, it may lead to unsatisfactory results. Thus, most active 

contouring algorithms require considerable user interaction to provide a good initial contour. 

Accordingly, having an accurate initial contour without too much user interaction will have a positive 

impact on the performance of any active contouring algorithm. It will also reduce the massive amount of 

time required for the user to interact to provide the initial contour.  

4. Proposed Method 

In this paper we utilize and improve our preliminary work  [14] to generate a more accurate initial 

carotid artery contour using a single seed point that can be placed anywhere inside the region of interest. 

In addition, we extend the algorithm by incorporating a simple active contouring algorithm to refine the 

generated initial contour. Figure 1 shows the block diagram of our algorithm. 

4.1 Initial Contour Generation 

This stage utilizes a priori knowledge reflecting the fact that the shape of the carotid artery 
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Figure 1: Block diagram of our algorithm. 
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boundaries is an ellipse. It first removes unnecessary borders from the image. Then a connected region 

that is a rough estimate of the carotid lumen is extracted. An additional island removal technique is 

applied to remove islands and noise found inside the extracted connected region. Finally, an ellipse-

shaped initial contour that is very close to the carotid artery boundaries is generated. Figure 2 shows a 

block diagram of our improved initial contour generation algorithm. 

4.1.1 Borders Removal 

Carotid ultrasound images usually have a black border around the actual image. This border 

contains information about the image that facilitates the diagnosis procedure. However, on an automated 

carotid segmentation process, this border may cause some problems, especially when calculating the 

histogram of the image. This step of the algorithm locates this border in carotid ultrasound images in 

order to deal with the actual carotid artery region. To locate the left and right margins, we calculate the 

number of distinct grey levels in each vertical scan line. Since the border area usually has a low contrast 

with very few activities (mainly background, letters, symbols, and lines), it will possess very few distinct 

grey levels in each scan line (not more than three). Hence, by examining the number of distinct grey 

levels from left and from right sides, we can determine the left and right margins where the activity 

begins in the image. Similarly, to identify the top and bottom margins, the same procedure mentioned 

above is performed horizontally. Figure 3 shows a plot for the number of grey levels at each vertical and 

horizontal scan line in an image, where the dotted lines represent the margins of the actual scan of the 

carotid artery. 

4.1.2 Finding Connected Region 

The goal of this stage is to utilize the seed point placed by the user in order to extract a connected 

region that is considered a rough estimate of the carotid artery boundary. Figure 4 shows the block 

diagram of the finding connected region algorithm. To find the connected region we do the following: 
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Figure 2: Block diagram of initial contour determination algorithm. 

(a) (b) 
Figure 3: The number of grey levels at each vertical and horizontal scan line, where the dotted 
lines represent the margins of the actual scan of the carotid artery; (a) original image and (b) a 
plot for the number of grey levels at each vertical and horizontal scan line, as well as the four 
margins. 
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Figure 4: Block diagram of finding connected region algorithm. 
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i) Histogram equalization: Carotid ultrasound images usually have poor contrast. The goal of this step 

is to improve the contrast of the image by increasing the dynamic range of grey levels  [15]. Figure 

5 presents an example of the effect of histogram equalization on a poor contrast image. Figure 5(b) 

shows the histogram of the original image shown in Figure 5(a), where most of the grey level 

values are located at the dark part of the histogram. However, after applying histogram 

equalization, the contrast of the image has improved and the dynamic range of grey levels has 

increased, as shown in Figure 5(c) and Figure 5(d), respectively. 

ii) Thresholding: The main purpose of this step is to partition the image into foreground (containing 

the region-of-interest) and background regions. In this work, an image dependent global 

thresholding scheme is used. The threshold value is calculated as a weighted average of a 101×101 

block centered at the seed point. The more the pixel is closer to the seed point, the higher the 

weight is. Hence, the seed point is given the highest weight. The weights given to each pixel in the 

block is calculated using Gaussian distribution that is sampled with step size= 3
σ . Thus, it will 

take nine steps for the Gaussian distribution to reach 1% of its maximum. After that, the weights 

are set to a constant equals to that 1% value. At the end, these generated weights are normalized. 

The value of the step size used in the Gaussian distribution, as well as the value of the block size,, 

were chosen after careful analysis (See Section  8.1 for details). 

iii) Gap filling: This step removes tiny gaps that are less than six pixels, if any. This is done by 

horizontally and vertically scanning the image with 6×1 and 1×6 masks, respectively, and filling 

any detected gaps on the contour, where a gap is any tiny black area between two white pixels. 

Once a gap is detected, it is filled with white color. Various mask sizes were tested and the best 

results were obtained by using the 6×1 and 1×6 masks (See Section  8.2 for details). 
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iv) Boundary extraction: A region growing scheme, starting from the seed point placed by the user, is 

applied to extract the internal boundaries of the region of interest (carotid artery boundaries in our 

case). The criterion used for region growing is the equality of the grey level value. Figure 6 shows 

an example of the extracted boundary using the proposed region growing scheme. As shown on 

Figure 6(a), the region growing scheme expands the region around the seed point by adding 

neighbouring pixels that have equal grey level (black). Accordingly, the internal boundaries of the 

connected region around the seed point are extracted as shown on Figure 6(b). Hence, all unneeded 

information that was outside the connected region is eliminated from the image. 

 
(a)  (b)  

 
(c)  (d)  

Figure 5: The effect of histogram equalization; (a) original image, (b) histogram of original image, (c) 
original image after histogram equalization and (d) histogram of the image after applying histogram 
equalization. 
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 The extracted connected region represents a rough estimate of the carotid lumen boundaries. Due 

to the poor quality of ultrasound images, the connected region may contain some leaks. Furthermore, 

some islands may appear inside the region of interest. These islands appear either due to noise, or in 

some cases, it may be actual plaque accumulations. 

4.1.3 Island Removal 

Islands inside the extracted connected region may cause problems in our initial contour determination 

algorithm. Hence, we incorporated this step to remove such islands. To do so, we first determine an 

external point outside the connected region. This is done automatically by calculating the following 

locations on the connected region: 

• left edge: represents the x-coordinate of the left most contour point at the connected region, 

• right edge: represents the x-coordinate of the right most contour point at the connected region, 

• upper edge: represents the y-coordinate of the upper most contour point at the connected region, and 

• lower edge: represents the y-coordinate of the lower most contour point at the connected region. 

 Thus, the following points are guaranteed to be outside the connected region and are considered 

candidate external points: (left edge -1, lower edge + 1), (left edge -1, upper edge - 1), (right edge +1, 

lower edge + 1), and (right edge +1, upper edge- 1). Figure 7 shows an example of the candidate external 

seed point 

 

  
(a)  (b)  

Figure 6: Results of the boundary extraction step; (a) image resulting from gap filling step. The seed 
point is placed inside the region of interest and (b) extracted boundary using region growing. 
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points. Some of these points may lie outside the actual image. Hence, our external point is chosen as any 

point among these four candidate external points which lies inside the image.  

After the external point is determined, we apply the same boundary extraction scheme used before, 

but starting from the determined external point. By matching external and internal boundary points, any 

contours inside the connected region (including islands) can be identified and removed leading to an 

island-free connected region. 

4.1.4 Distance Transform 

The algorithm proposed by Felzenszwalb el at.  [16] is utilized to generate the Euclidean distance 

map relative to the edges in the connected region. This distance map determines the Euclidean distance 

from each pixel to the closest point on the contour. The smaller the value of the distance map at a certain 

pixel, the closer to a contour the pixel is, where the value of the distance map at a contour pixel is zero. 

The distance map will be used as an input to the initial ellipse shaped contour generation algorithm. 

Figure 8 shows sample intermediate outputs of the previously discussed steps in our algorithm. 

4.1.5 Initial Ellipse Shaped Contour Generation 

Since we assumed having a prior knowledge reflecting the fact that the shape of the carotid artery 

boundary is an ellipse, our goal in this step is to determine the best horizontal and vertical axis lengths 

that can be used to draw an ellipse that is as close as possible to the carotid artery lumen boundaries. 

 (left edge -1, upper edge - 1) 

(left edge -1, lower edge + 1) (right edge +1, lower edge + 1) 

(right edge +1, upper edge- 1) 

 
Figure 7: The four candidate external points. 
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(a)  (b) 

  
(c)  (d) 

  
(e)  (f)  

  
(g) (h)  

Figure 8: Sample intermediate outputs of various steps of our algorithm; (a) original image, (b) 
boundary removed, (c) histogram equalized, (d) thresholded, (e) gaps filled, (f) extracted connected 
region, (g) islands removed and (h) Euclidean distance map. 
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Centered at the seed point that is provided by the user, we draw an initial circle of diameter 5 

pixels. Then, we gradually increase the vertical axis length, while counting the number of ellipse points 

that touch the contour at each value. The objective here is to determine the best axis length that 

maximizes this number. Once we achieved this objective, we horizontally repeat this process in order to 

determine the best horizontal axis length. Figure 9 shows an example of the process of determining the 

lengths of the ellipse horizontal and vertical axes.  

Axis length determination alone is insufficient to generate a good initial contour, since it requires 

the central point of the ellipse to be located at the center of gravity of the contour. Figure 10 shows an 

example of an ellipse generated using generating initial ellipse shaped contour method when the seed 

point is placed away from the center of gravity of the contour. Thus, in some situations we have to re-

adjust the location of the ellipse central point by moving it towards the center of gravity of the contour to 

make sure that we reached a stable local energy minimum. 

After determining ellipse axis lengths, an ellipse is drawn using these axes. A convergence check is 

then performed to test whether or not we need to adjust the location of the ellipse central point. In order to 

do this, we identify four regions in our ellipse (left, right, upper and lower) as shown on Figure 11 where 

h and k are the horizontal and vertical coordinates of the ellipse central point, respectively, a and b are the 

length of horizontal and vertical axes, respectively. Our convergence check is based on the average 

distance map value for each region, which is calculated as follows:  

n

n

i
∑
== 1

i )(p distance
(region)  distance Average , 

where region can be left, right, upper, or lower; pi is the ith point in the region, distance(pi) is the value 

of the distance map at point pi, and n is the number of discrete points in the region. The farther the 

region from the boundaries, the greater the average distance is. In order to have a good ellipse shaped 

contour that is as close as possible to the carotid artery lumen, each two opposite regions should lie 

almost at the same distance away from the carotid artery boundary. 
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(a)  (b) (c)  

   
(d) (e)  (f) 

 

 

 

 (g)   
Figure 9: An example of the process of determining the lengths of the ellipse horizontal and vertical 
axes; (a) initial circle at the seed point, (b) gradually increase vertical axis, (c) vertical axis that 
maximize the number of ellipse points that touch the contour, (d) initial circle at the seed point, (e) 
gradually increase horizontal axis, (f) horizontal axis that maximize the number of ellipse points that 
touch the contour and (g) the produced ellipse. 

 
bad seed  

point 

 
Figure 10: An ellipse generated using the axis length determination when the seed point is placed 
away from the center of gravity. 
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Figure 11: Dividing the ellipse into four regions (left, right, upper and lower). 
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Our convergence check is done by calculating the difference between the average distances of each 

two opposite regions in the ellipse. If the difference is greater than a certain threshold, we move the 

ellipse central point by one pixel to a location which minimizes that difference as shown in Figure 12. 

In the example shown on Figure 10, the left and upper regions of the ellipse are closer to the 

contour than their opposite right and lower regions, respectively. As a result of this, the ellipse central 

point is moved one pixel to the right and one pixel downwards. 

The threshold value used in the convergence check algorithm has a great effect on the algorithm 

performance. Low threshold values produce more accurate initial contours, as well as decrease the 

algorithm’s sensitivity to the location of the seed point. However, due to the irregularity of some 

contours, low threshold values may cause the algorithm to move the central point to a previously visited 

pixel resulting in entering an endless loop. To prevent this situation, we use a loop prevention technique 

that keeps track of all visited central points by the algorithm and stops the algorithm when a certain 

central point is revisited. 

if (Average distance(left) – Average distance(right)) > threshold then 
move the central point one pixel to the left 

else 
if (Average distance(right) – Average Distance(left)) > threshold then 

move the central point one pixel to the right 
endif 

endif 

if (Average distance(upper) – Average distance(lower)) > threshold then 
move the central point one pixel upwards 

else  
if (Average distance(lower) – Average distance(upper)) > threshold then 

move the central point one pixel downwards 
endif 

endif. 
 

Figure 12: Our convergence check algorithm. 
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We then use the new central point to recalculate the best horizontal and vertical axis lengths and 

repeat the same process. We continue this iterative process until an ellipse that passes the convergence 

check is generated. This would be the resulting contour of our algorithm. Figure 13 shows a pseudo-code 

of the entire Initial Ellipse Shaped Contour Generation step. Figure 14 shows some examples of initial 

contours generated from our algorithm. 

4.2 Active contouring 

After our initial contour is generated, it is refined using the active contouring (snake) energy model. 

We use a discrete snake model at which the continuous snake curve is sampled into discrete snake nodes 

or control points. The internal energy of our snake model is defined as: 

∑
−

=
+ −⋅=

1

0

2
1 ,

n

i
iiin vvE α  

where α is the weight of the elasticity of the snake, n is the number of discrete snake nodes, and vi is the ith 

snake node. This force makes the snake acts like a membrane.  

On selecting our external energy that drives the snake towards the required contour, many factors 

were taken into consideration, including: 

1. Set the ellipse central point to the seed point placed by the user. 
2. Starting with a circle of diameter 5, determine: 

2.1 the best vertical axis length that minimizes the ellipse energy. 
2.2 the best horizontal axis length that minimizes the ellipse energy. 

3. Draw an ellipse using the determined axis lengths. 
4. Do a convergence check to see whether we need to change the 

location of the ellipse central point or not. 
5. If the ellipse central point needs to be adjusted then 

5.1 set the ellipse central point to the new location  
5.2 if the new central point was not previously visited then 

5.2.1 Go to step 2. 
6. Draw the final ellipse-shaped contour from the ellipse central point  

using the determined vertical and horizontal axis lengths. 
 

Figure 13: pseudo-code of initial ellipse shaped contour generation algorithm. 
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Figure 14: Examples of initial contours generated from our algorithm. 

1. The extracted connected region should have a very good overlap with the actual carotid artery 

contour. The only problem in the connected region is the presence of gaps causing the contour to leak. 

Hence, the main purpose of using active contouring is to fill the gaps in the connected region.  

2. Our generated initial contour is very close to the connected region boundaries. Hence, it will quickly 

converge to fit the connected region even when using a simple external energy. 

3. The image representing the extracted connected region is a binary image with almost no noise. 

Accordingly, the external energy of our snake model is chosen as the Euclidean distance map of the 

extracted connected region and is defined as: 
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where n is the number of discrete snake nodes, vi is the ith snake node, and Distance(vi) is the value of the 

Euclidean distance map of the image at point vi. Since our initial contour is so close to the connected 

region, using the Euclidean distance as an external energy is sufficient to generate a refined contour that 

fills the gaps in the connected region.  

The weight of the internal energy, α , should be carefully adjusted to accurately refine the 

initial contour. If a very low weight value is used, the snake will be strongly attracted towards 

the image features. In addition, it would cause the snake to bend forming non-smooth final 

contours. On the other hand, if a very high weight value is used, the resulting contour will be 

more rigid and smooth. However, it may converge away from the required image features, 

generating inaccurate final contours. Various values of α  have been considered. We imperially 

found that at α  = 0.25, the algorithm generates the best performance. 

4.2.1 Snake deformation  

Many techniques can be used to minimize the snake energy. Kass et al.  [6] proposed viewing the 

snake energy as a pair of Euler equations and solving these equations iteratively on the discrete grid. 

Other methods can be used such as gradient descent  [17] and dynamic programming  [18] [19]. Dynamic 

programming is considered a fast and efficient method for quickly directing the snake towards the desired 

contour. Hence, for minimizing the snake energy in our algorithm we use dynamic programming. 

4.2.2 Snake resampling 

During the snake deformation, some snake nodes may either overlap or get too far from each other 

causing problems for the snake convergence. Thus, it is important to re-adjust the resolution of the snake 

model by resampling the snake after each iteration. We use the same resampling technique proposed by 

Lobregt et al.  [9]. 
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Resampling is implemented as a two-pass process. In the first pass, we check to see if the Euclidean 

distance between any two successive nodes is less than a minimum length. If this is the case, the two 

nodes are removed and replaced by the midpoint of the line joining those two nodes. The second pass 

checks to see if the Euclidean distance between any two successive nodes is greater than a maximum 

length. In this case, an additional node is added at the midpoint of the line joining the two nodes. 

In order to prevent the occurrence of oscillation, where the same nodes are repeatedly removed in 

the first pass, then inserted on the second, the by maximum distance should be at least twice the minimum 

distance. Lobregt et al.  [9] proposed the relation between the minimum and maximum distance should be: 

Maximum distance = 1.5 × D, 

and  
Minimum distance= 0.5 × D, 

where D is the desired spacing between the snake nodes. Various values of D have been considered. We 

imperically found that at D = 3, the algorithm generates the best performance. Hence, the values of the 

minimum and maximum distances are chosen as 1.5 and 4.5 pixel units, respectively. 

Figure 15 shows an example of the contours generated using our algorithm compared to contours 

that are manually segmented by an experienced clinician.  

5. Experimental Setup 

To test the accuracy of our algorithm, we obtained two set of images as follows: 

• Dataset 1: consists of 70 ultrasound carotid artery images acquired using a Philips HDI 5000 

ultrasound machine. The resolution of these images is 504×412 pixels. Those images represent 

patients with various levels of plaque on the carotid arteries. 

• Dataset 2: consists of 39 images acquired using Ultramark 9 HDI ultrasound machine and L10-5 

linear array transducer. Images were digitized by a high-speed frame grabber and were saved to 

disk. The resolution of these images is 400×235 pixels. 

In both set of images, the carotid artery lumen boundaries are manually delineated by an 

experienced clinician. 
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(a) (b)  

  
(c)  (d) 

  
(e)  (f)  

Figure 15: Example of the contours extracted using our algorithm; (a) original image, (b) contour 
extracted manually by a clinician, (c) generated initial contour, (d) generated initial contour (black) 
superimposed on the contour extracted manually by a clinician (grey), (e) final refined contour and (f) 
final refined contour (black) superimposed on the contour extracted manually by a clinician (grey). 
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6. Performance Measures 

To measure the accuracy of our extracted contours we compare it with gold standard images using 

three performance measures, namely: sensitivity  [20], precision rate  [21], and overlap ratio  [22]. To 

calculate these measures we first determine some areas on the resulting images, namely: true positive 

(TP), false positive (FP), true negative (TN), and false negative (FN), as shown in Figure 16. 

TP indicates the area which our segmentation algorithm correctly detected as being part of the 

carotid artery. FP is the area which our segmentation algorithm incorrectly detected as being part of the 

carotid artery. TN is the area which our segmentation algorithm correctly detected as not being a part of 

the carotid artery. FN is the area which our segmentation algorithm incorrectly detected as not being a 

part of the carotid artery. Our performance measures are then calculated as follows: 

%  100×
+

=
FNsTPs

TPsySensitivit , 

%  100 ×
+

=
FPsTPs

TPsratePrecision , 

and 

%  100   ×
++

=
FPsFNsTPs

TPsratioOverlap , 

where TPs, FPs, and FNs are the sum of TP, FP, and FN respectively, for all the images in the 

dataset. 

our extracted 
contour 

gold standard 
contour 

FPFN

TN

TP

 
Figure 16: The definition of the true positive (TP), false positive (FP), true negative (TN) and false 
negative (FN) terms. 
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7.  Experimental Results 

To assess the performance of our algorithm, we ran our experiments using both sets of images 

mentioned in Section  5. In order to take into consideration the effect of changing the location of the seed 

point, the TP, FP, and FN for each image are measured as the average values when starting from various 

seed points using a grid of seed points. The size of the grid varies according to the size and shape of the 

carotid artery. Figure 17 shows examples of the seed point grids used in our experiments. 

For our initial contour, using dataset 1, we obtained 82.4% for sensitivity, 89.6% for precision rate, 

and 75.3% for the overlap ratio. Meanwhile, using dataset 2, we obtained of 87.1% for sensitivity, 89.3% 

for precision rate, and 78.9% for the overlap ratio.  

However, after refinement, our final contour shows a great performance improvement. Using 

dataset 1, we obtained 90.5% for sensitivity, 91.6% for precision rate, and 83.6% for the overlap ratio. 

Meanwhile, using dataset 2, we obtained 94.4% for sensitivity, 86.7% for precision rate, and 82.5% for 

the overlap ratio. Table 1 shows the obtained results for both our initial and final contours. 

In terms of the computational time, it takes, on average, 80 milli-seconds (with standard deviation 

of 30 milli-seconds) and 67 milli-seconds (with standard deviation of 37 milli-seconds) to generate a 

single initial and final contours, respectively (using P4 Core 2 Duo processor 2.4 GHZ, 1 GB of RAM, 

and Windows XP operating system). The time varies depending on the size of the carotid artery and the 

location of the seed point.  

 

 

 

 
Figure 17: Examples of the seed point grids used in our experiments. 
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8. Algorithm Analysis 

This section provides analysis of the effect of the various processing steps on the performance of 

our algorithm. To obtain quantitative performance measures in our comparisons, we used 25 images, 

which were randomly selected from both datasets. Each image is tested using a grid of seed points. 

8.1 Thresholding 

The image dependent threshold used in Section  4.1.2 has a great influence on the accuracy of our 

generated contours. A very high threshold value results in over-segmented contours, while a very low 

threshold value results in under-segmented contours. The threshold value is calculated as a weighted 

average of a 101×101 block centered at the seed point. Since the seed point is placed inside the carotid 

artery boundaries, more weights should be given to this area compared to the rest of the image. 

The block size affects our calculated threshold value, increasing this size would add more influence 

of pixels that are far away from the seed point. After examining our datasets, we noticed that the average 

size of the carotid artery is 2500 pixels. Since we want our block to cover both the carotid artery and the 

background, we chose a block size of 101×101. This will make the carotid artery acquire 25% of our 

block while the background acquires 75%. It is worth mentioning that more weights will be given to the 

area around the seed point (where the carotid artery is located).  

The step size used in sampling the Gaussian distribution has a great influence in the calculated the 

threshold value. Larger step sizes would cause the Gaussian distribution to quickly diminish. Thus, the 

contribution of area around the seed point would get lower weights. On the other hand, smaller step sizes 

mean that the Gaussian distribution will take many steps to diminish. Thus, similar weights would be 

Table 1: Initial and final results obtained using our algorithm. 
  Sensitivity Precision rate Overlap ratio 

Initial contour  82.4 89.6 75.3  
Dataset 1 

Final contour  90.5  91.6 83.6 
Initial contour  87.1 89.3  78.9  

Dataset 2 
Final contour  94.4 86.7  82.5  
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given to areas around and far away from the seed point, without giving enough preference to the area 

around the seed point. Figure 18 shows the effect of using various step sizes on the performance of our 

algorithm. It is clear that using large step sizes leads to over-segmented contours (i.e., high sensitivity and 

low precision rate values). As the step size decrease, the sensitivity decreases and the precision rate 

increases. The obtained results show that using 3
σ  as our step size produces the best performance. 

8.2 Gap Filling 

Gaps in the connected region may negatively affect our extracted contours. For example, consider 

the contour shown in Figure 19. The grey area represents the optimal vertical and horizontal axes that 

would be used to draw an optimal ellipse. The few pixels wide regions at the endpoints of these axes are 

called the critical regions. The presence of a gap in the carotid artery boundaries at these critical regions 

may cause the algorithm to produce false initial contours if the user placed the seed point very close to 

this gap.  

Our gap filling procedure helps in eliminating tiny gaps from the extracted connected region. 

Furthermore, it smoothes the resulting contour. Figure 20 shows the effect of gap filling on the 

performance of our extracted contours. Figure 20(a) and Figure 20(b) show the original and thresholded 

images, respectively. Figure 20(c) shows the connected region obtained without gap filling application, 

whereas Figure 20(d) shows the connected region obtained after applying the gap filling procedure, where 

tiny gaps have been filled. Hence, after applying island removal step, as shown in Figure 20(f), some 

contour leaks were eliminated. The contour obtained without applying gap filling is shown in Figure 

20(e). Figure 20(g) shows the final contour, where gaps in the connected region negatively affect the 

performance of the extracted contour. This issue was solved by applying the gap filling procedure as 

shown on Figure 20(h).  
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Figure 18:  Overlap ratio, sensitivity, and precision rate obtained using various step sizes. 
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Figure 19: Critical regions. 



27 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 20: The effect of gap filling procedure in the performance of the extracted contours; (a) original 
image, (b) thresholded image, (c) extracted connected region without applying gap filling, (d) extracted 
connected region after applying gap filling, (e) connected region in (c) after applying island removal, (f) 
connected region in (d) after applying island removal, (g) final extracted contour without applying gap 
filling, and (h) final extracted contour after applying gap filling. 
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In our experimentations, we used 6×1 and 1×6 masks to eliminate horizontal and vertical gaps that 

are less than six pixels wide. Figure 21 shows the effect of using various mask sizes on the average 

overlap ratio, where 6×1 and 1×6 masks produce the best results. 

8.3 Island Removal 

The determination of ellipse axis is based on counting the number of the ellipse points that touch 

the contour. In some situations (depending on the location of the seed point), islands present inside the 

connected region may be incorrectly assumed to be part of the contour, hence blocking the ellipse from 

growing during the axes length determination process and leading to unsatisfactory results. Figure 22 

shows how the presence of islands inside the connected region may cause the algorithm to produce 

inaccurate initial and final contours. However, this problem was solved by using the island removal 

process. 

8.4 Seed point location 

Our algorithm starts with a circle centered at the seed point and has a diameter of five pixels. This 

means that the seed point should be placed at least two pixels away from the carotid artery contour. 

Otherwise, the initial circle will be drawn outside the carotid artery boundary leading to inaccurate 

results.  
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Figure 21: The average overlap ratio obtained using various mask sizes. 
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8.5 Shortcomings 

In some odd cases our algorithm may produce inaccurate contours. This may happen when a large 

gap (more than 6 pixels wide) is present in one of the critical regions of the carotid artery contour (see 

Section  8.2). Thus, gap filling procedure will fail to close this gap and an inaccurate initial contour will be 

generated leading to an inaccurate final contour. Figure 23 shows an example of some odd cases where 

our algorithm fails to produce accurate contours.  

  
(a) (b) 

  
(c) (d) (e) 

  
(f) (g) (h) 

Figure 22: The effect of islands in the accuracy of the extracted contours; (a) histogram equalized image, 
(b) manually extracted contour by a clinician, (c) extracted connected region without applying island 
removal, (d) initial contour without applying island removal, (e) final contour without applying island 
removal, (f) extracted connected region after applying island removal, (g) initial contour after applying 
island removal and (h) final contour after applying island removal. 



30 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 23: Odd cases where our algorithm fails to produce accurate contours; (a) and (b) are manually 
segmented contours, (c) and (d) are extracted initial contours, (e) and (f) are extracted final contours. 
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9. Conclusion 

In this paper we presented a fast and efficient semi-automatic snake-based segmentation technique 

for segmenting carotid artery lumen boundaries in ultrasound images. Our algorithm requires only a 

single seed point to be placed almost anywhere inside the carotid artery boundaries. Hence it reduces user 

interaction. The proposed technique was tested using a total of 109 ultrasound images and the results 

show that the extracted initial and final contours have a good overlap with contours that are manually 

segmented by an experienced clinician. 

Furthermore, the proposed initial contour generation algorithm demonstrates that most of the snake 

nodes are close enough to the carotid artery lumen boundaries. Hence, it can be used as an independent 

module with any active contouring algorithm to produce accurate results. 
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