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Accurate delineation of object borders is highly desirable in echocardiography, especially at the left ventricle. Among other model-
based techniques, active contours (or snakes) provide a unique and powerful approach to image analysis. In this work, we propose
the use of a new external energy for a gradient vector flow (GVF) snake, being the optical flow of a moving sequence (modeling
the mechanical movement of the heart). This external energy can provide additional information to the active contour model
garnering adequate results for moving sequences. An automatic iterative primitive shape prior was also applied in order to further
improve the results of a GVF snake, when dealing with especially noisy echocardiographic images. Results were compared with
expert-defined segmentations yielding acceptable sensitivity, precision rate and overlap ratio performance.

1. Introduction

The assessment of cardiac function has been a major area
of interest in the medical field. Normal heart function
consists of pumping chambers (known as ventricles) which
regulate the systemic and pulmonary circulation systems by
delivering blood to the proper areas. Detection of nonnormal
heart function in the left ventricle (LV), for instance, can
cause systolic dysfunction, being the reduction in the ability
to contract, or diastolic dysfunction, being the inability
to fill efficiently. Along with mechanical functions, various
heart structures may also fail causing cardiomyopathies,
endangering the life of the host individual. Fortunately,
many myopathies are treatable (with medication, implanted
pacemakers, defibrillators, or ventricular assist devices) given
early detection. Echocardiography, imaging the heart using
ultrasound waves, facilitates the ability to do so.

The advent of real time ultrasonography provides the
ability to image an entire LV and surrounding anatomy
within one cardiac cycle (approximately one second). How-
ever, depending on the patient’s “photogenicity” (impacting
factors include and surrounding fatty tissues, calcifications,
gender), these images are most likely marred by speckle
artifacts. Many computer vision techniques attempt to

reduce such speckle noise by means of filtering [1] or
incorporating the speckle effect directly into their algorithms
[2]. Boundary detection techniques are employed in order
to segment the wanted regions for analyses on the heart
structures, such as endocardial borders [3], stress and strain
of the septum wall [4], and wall motility [5] to name a few.

Various computer vision techniques have been intro-
duced to accomplish boundary detection. Kass el al. [6]
first proposed the original active contour model (com-
monly known as a snake or a deformable model). In their
formulation, image segmentation was posed as an energy
minimization problem.

Active contours treat the surface of an object as an elastic
sheet that stretches and deforms when external and internal
forces are applied to it. These models are physically-based,
since their behavior is designed to mimic the physical laws
that govern real-world objects [7]. Since this approach relied
on variational calculus to find a solution, time complexity
was one of the main drawbacks of this original model. Amini
et al. [8] proposed an algorithm for using dynamic pro-
gramming, in order to incorporate soft and hard constraints
into the formulation, improving time complexity and results.
Further improvements to time complexity were proposed
by Williams et al. [9], by using a greedy algorithm while
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Figure 1: Example of gradient vector forces. (a) Standard U-Image.
(b) Gradient Vector Flow of U-Image.

incorporating a simple curvature approximation. Issues with
large capture ranges and concavities are solved by other
advances, which include inflation forces [10], probabilistic
models [11], oriented particles [12], and gradient vector
flows [13]. For the purposes of this study, focus will be placed
on those advances best suited for echocardiographic images.

Since the LV represents one of the most important
heart functions, many semiautomatic techniques attempt to
segment this region from surrounding tissues [3, 14, 15].
Yet, no universally accepted standard exists for segmenting
echocardiographic images.

Papademetris et al. [15] took advantage of a b-splines
parameterized deformable model for segmenting cardiac
regions. The external energy consisted of the standard
intensity term and a markov random field (MRF) texture-
based term. The MRF is based on a combination of gradient,
regional, and curvature data computed from the original
image. Initial contours are manually placed for each 2D plane
and are passed to a shape tracking algorithm. Displacements
are probabilistically computed using a confidence measure-
ment for the entire set. Final displacements are fed into an
anisotropic linear elastic model which is computed vis-à-vis
a Bayesian estimation framework. The manual placement of
the contours makes this technique quite labour intensive.

Felix-Gonzalez and Valedes-Cristerna [14] proposed a
segmentation technique for echocardiographic images using
an active surface model (ASM). The ASM is made up of cubic
splines and is based on a gradient descent procedure. When
using gradient descent, the empirical setting of parameters
is required based on the quality and types of images used.
This makes this proposed technique extremely sensitive to
its input. Furthermore, Felix-Gonzalez et al.’s work was only
tested on two limited datasets.

Leung et al. [16] proposed the use of an active appear-
ance model (AAM) and intensity, based registration for
segmenting multiple 2D image slices. An AAM uses all
the information in an image region covered by the target
object, rather than just that near modeled edges. An AAM
involves the principal component analysis of the various
shapes and textures from several manually segmented 2D
slices for training. The AAM makes use of the training set
to converge the initial set mesh to the best textures on the
image. However, this trained set required several manual

segmentations of the 2D image slices to tune it to the
medium being used.

The gradient vector flow (GVF) [13] snake was intro-
duced as a modification to the original snake model in
order to overcome the capture range and curve concavity
issues. However using the GVF snake on echocardiograms
directly will not provide an adequate solution due to the
complication of speckle noise and the existence of valves
within the heart cavity, inhibiting a proper segmentation.

Zhou et al. [17] proposed the segmentation of MRI
cardiac sequences using a generalized fuzzy gradient vector
flow (FGVF) map along with a relative optical flow field.
Optical flow measurements are computed on the cardiac
sequence being considered, and a maximum a posteriori
probability (MAP) was used as a window for the movement
of the curve. The use of optical flow with GVF provides
promising results; however this technique is used exclusively
on clear MRI data, and hence the presence of speckle noise
on echocardiographic images would require modifications of
this technique. Both GVF and optical flow measurements will
be used in the proposed technique.

In this paper, we propose to utilize optical flow mea-
surements as an external energy of a GVF snake. We will
show that there is ample information in the movement
of tissues within the heart cavity that will provide the
necessary knowledge to segment out the region of interest.
We will further improve the results by providing means of
incorporating an iterative prior knowledge process into the
proposed solution which takes into account the primitive
shape of an object during the active contour evolution cycle.
The rest of the paper is organized as follows. Section 2 will
outline each module of the proposed model. Section 3 will
explain the experimental setup and results, and Section 4 will
contain concluding comments.

2. Description of Model

2.1. Parametric Active Contour Review. A snake is an energy
minimization problem. Its energy is represented by two
forces (internal energy, Ein, and external energy, Eex) which
work against each other. The total energy should converge
to a local minimum—in the perfect case—at the desired
boundary. The snake is defined as v(s) = [x(s), y(s)]T , where
s belongs to the interval [0, 1]. Hence, the total energy to be
minimized, EAC, to give the best fit between a snake and a
desired object shape is

EAC =
∫ 1

0
Ein(v(s)) + Eex(v(s))ds. (1)

The internal energy decreases as the curve becomes smooth
(by incorporating both elasticity and stiffness), whereas the
external energy decreases as approaching the features of
interest, such as image structures or edges.

The internal energy of the active contour formulation is
further defined as

Ein(v(s)) = α(s)
∣∣∣∣dv(s)

ds

∣∣∣∣
2

+ β(s)

∣∣∣∣∣
d2v(s)
ds2

∣∣∣∣∣
2

, (2)
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where α(s) and β(s) are weighting factors of elasticity and
stiffness terms, respectively. The first-order term makes the
snake’s surface act like a membrane. The weight α(s) controls
the tension along the spine (stretching a balloon or elastic
band). The second-order term makes the snake act like a
thin plate. The weight β(s) controls the rigidity of the spine
(bending a thin plate or wire).

A typical external energy formulation to identify edges
for a given image, I(x, y), is

Eex
(
x, y

) = −∣∣∇I(x, y
)∣∣2, (3)

where ∇ denotes the gradient operator. In the case of a
noisier image the edges are further smoothed:

Eex
(
x, y

) = −∣∣∇(Gσ
(
x, y

)∗ I(x, y
))∣∣2 (4)

where Gσ(x, y) is a two-dimensional Gaussian function with
standard deviation σ , and ∗ denotes a convolution operator.
Since the contour may get trapped by the noisy areas of the
image, σ must be large enough to compensate for the image
noise that would interfere with the active contour’s capture
range. The standard snake algorithm also suffers from poor
capture range because initialization and the inability to
capture concavities. These problems are largely solved by the
advent of the GVF snake [13].

The concavity problem exists due to the gradient vectors
in an image generally have large magnitude only in the
immediate vicinity of the boundary and are nearly zero at
points away from the boundary. As such the capture range
of the snake will be quite small. In order to resolve this, the
gradient map is extended to points away from boundaries
using a computational diffusion process. The GVF field is
used as an external energy in the active contour and is
characterized by the vector field z(x, y) = [u(x, y), v(x, y)]T

that minimizes the energy functional [13]:

EGVF =
∫∫

μ
(
|∇u|2 + |∇v|2

)
+
∣∣∇ f

∣∣2 ∣∣z −∇ f
∣∣2
dx dy,

(5)

where f is an edge map derived from the image, μ is the
degree of smoothness of the field, u and v characterize the
direction and strength of the field. Hence, when |∇ f | is
small, the energy will be dominated by the partial derivates,
yielding a slow field. Alternatively, when |∇ f | is large, the
latter term dominates and the function is minimized by
setting z = ∇ f .

The external energy for the proposed scheme will be
generated using a virtual electric field (VEF) [18] of f over the
traditional GVF technique. Traditional GVF field generation
is performed by optimizing the cost function represented
in (5), which is quite a time consuming process. The
VEF is defined by considering each edge pixel as a point
charge within an electric field. This can be accomplished by
convolving the edge map with the following two masks:

gx
(
x, y

) = −c · x
(x2 + y2)3/2 ,

gy
(
x, y

) = −c · y
(x2 + y2)3/2 ,

(6)

where c = (4πε)−1 and ε is sufficiently small constant.
The resulting field yields a vector flow identical to a GVF
field, given the masks are large enough. A smaller mask
size would ignore outlying edges that would have little
impact on the interested features since their range is quite
far. However, since echoardiographic images contain many
features throughout the image, quantizing any part of the
edgemap is not an option. According toPark and Chung
[18], an area of radius 32 around the feature should
provide adequate flow vectors to accurately recreate a GVF
field, without suffering from the high computational cost
associated with vector flow generation. Figure 1 illustrates
gradient vector forces, where Figure 1(b) shows an example
of a vector flow field on the standard U-Image, shown in
Figure 1(a), using 65 × 65 masks generated from (6), which
is identical to the original GVF field.

2.2. Optical Flow Review. Optical flow approximates the
apparent motion of an object over a series of images (or
time). The relationship between the optical flow in the
image plane and the velocities of objects in the three-
dimensional world is not necessarily obvious [19]. For the
sake of convenience, most optical flow techniques consider
a particularly simple world where the apparent velocity
of brightness patterns can be directly identified with the
movement of surfaces in the scene. This implies that objects
maintaining structure but changing intensity would break
this assumption.

Consider an image intensity I(x, y, t) at time t. Time,
in this instance, implies the next frame in an image cine.
Assuming that at a small distance away and some time later
the given intensity is

I
(
x + Δx, y + Δy, t + Δt

)

= I
(
x, y, t

)
+
∂I

∂x
Δx +

∂I

∂y
Δy +

∂I

∂t
Δt

+ higher order terms.

(7)

Given that the object started at position (x, y) at time
t, and that it moved by a small distance of (Δx,Δy) over a
period of time Δt, the following assumption can be made:

I
(
x + Δx, y + Δy, t + Δt

) = I
(
x, y, t

)
. (8)

The assumption in (8) would only be true if the intensity
of our object is the same at time t and t + Δt. Furthermore,
if our Δx,Δy, and Δt are very small, our higher-order terms
would vanish, that is,

∂I

∂x
Δx +

∂I

∂y
Δy +

∂I

∂t
Δt = 0. (9)

Dividing (9) by Δt will yield

−∂I
∂t
= ∂I

∂x

Δx

Δt
+
∂I

∂y

Δy

Δt
, (10)

−It = ∂I

∂x
u +

∂I

∂y
v, where u = Δx

Δt
, v = Δy

Δt
. (11)



4 EURASIP Journal on Advances in Signal Processing

(a) (b) (c)

Figure 2: Example of an optical flow field on a Rubik’s cube rotated image. (a) Cube at time t. (b) Cube at time t + Δt. (c) Optical flow of
image (a) to (b) using Lucas-Kanade method (Originally published inRussell and Norving [22]).
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Figure 3: Generation of primitive priors on the active contour.

Equation (11) is known as the optical flow constraint
equation, where It, at a particular pixel location (x, y), is how
fast its intensity at this location is changing with respect to
time: u and v are the spatial rates of change for any given
pixel (i.e., how fast an intensity is moving across an image).
However, effectively estimating the component of the flow
(along with intensity values) cannot directly be solved in this
form since it will yield one equation per pixel for every two
unknowns, u and v. In order to do so, additional constraints
must be applied to this equation.

Lucas and Kanade [20] and Horn and Schunck [21]
introduced two common methods for solving this problem
using partial derivatives. The former assumes that the flow
field is locally smooth (for a given static window size) and
then solves (11) by means of a least squares approximation
technique. The latter uses a global regularization parameter
which assumes that images consist of objects undergoing
rigid motion, resulting in a smooth optical flow over a
relatively large area. Figure 2 depicts a visual representation
of the optical flow of a simple Rubik’s cube. Notice that
the grayscale image has few shadows, helping to maintain
consistency in the luminance of each pixel, hence yielding
accurate results.

When dealing with noisy echocardiograms, a global
regularization parameter will deal with the speckle better
than the static window. This is due to the speckle noise
remaining relatively static, lacking fluidity, throughout an
image. Hence, the speckle will be “filtered”, since the optical
flow calculations will fail to realize it within the frames.

Optical flow magnitudes will be combined with the
image’s edge maps (Section 2.4) in order to generate the
external energy in (1) of the GVF snake. This would help
to reduce artifacts due to static speckle noise, while also
providing more information for the contour points to track
(i.e., the tissue mass movement).

2.3. Primitive Shape Prior Knowledge. Since we are dealing
with structures that have known shapes and sizes, and
many real world models have been already measured, prior
knowledge information can be directly used to increase
the performance of a segmentation algorithm. Priors based
on shape statistical models require modifications to the
standard active contour model. An iterative solution can be
incorporated directly into any optimization model by using
the proposed framework which we first outlined in Hamou
et al. [23].

Since it is desirable to incorporate shape priors without
directly involving the user for training, automatic shape
detection takes place on the set of discrete snake points
v(s). This is achieved by first generating the least squares
fit polynomial(s) of the current v(s) points. For our left
ventricle application, snake points are divided into an upper
region and a lower region, which will be approximated by
two separate third-order hyperbolas. These hyperbolas will
better suit the shape of the left ventricle during both systole
and diastole, though any shape prior can be represented by
means of simple primitives. Least squares fitting technique
is utilized to estimate the two hyperbolas coefficients. The
axis separating the two regions is computed by taking the
two-thirds upper and one-third lower bounds on all snake
points. This separator can be tuned by shifting it upwards or
downwards (either manually by the user or automatically by
the system) in order to minimize the distance between the
fitted hyperbolas and snake points. Priors are then generated
by joining the fitted primitives to form one solid shape.
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Figure 4: Top-level flow chart of the algorithm.

Primitives are bounded by the furthest easterly and westerly
points by the snake points, in order to prevent the possibility
of a nonconnecting shape.

Once the priors have been generated, its GVF field is
computed. This new field will replace the existing external
energy of the GVF snake for this specific snake iteration.
Figure 3 portrays the process of generating a primitive prior
for the left ventricle of the 4-chamber view image, where two
intersecting hyperbolas are used (default shape for our left
ventricle application).

The fitting of a primitive shape (or a series of primitives
as needed for the left ventricle) to the snake points, v(s),
will help compensate for the noise that inhibits the snake
from migrating past a certain point. It will also help retract
the snake towards the primitive prior when an occluded
border exists, common in many echocardiographic images.
The user can control the number of cycles between any two
consecutive prior calculation cycles (prior step parameter).
This allows for the increase or decrease in the inherent effect
of the prior knowledge to the snake’s convergence cycle.

This primitive prior module is useful in the medical arena
where the specialist or clinician has a clear understanding of
the underlying structure being detected, such as a liver, an
artery, or a heart. They can choose their desired primitive
shape (or series of shapes) before curve evolution takes place.

2.4. Complete System. Figure 4 illustrates a top-level block
diagram of the proposed system. It starts with the calculation
of the optical flow magnitude on the image cines (as
explained in Section 2.2). The estimated optical flow is
preprocessed by median filtering. A Canny edge map of the
filtered optical flow magnitude was generated and added to
the original image edge map following normalization. The
Canny detector was applied due to its use of nonmaximum
suppression that further aids in the filtering of speckle noise.
This result is used to generate the GVF for the snake’s external
energy. GVF snake evolution (as explained in Section 2.1)
iterates to further minimize the energy function until a prior
cycle condition is satisfied (as explained in Section 2.3), at
which the prior cycle is initiated. At the prior cycle, a GVF is
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(a) LK: Blocksize 1× 1 (b) LK: Blocksize 5× 5 (c) LK: Blocksize 15× 15

(d) HS: λ = 0.001 (e) HS: λ = 0.07 (f) HS: λ = 1.00

Figure 5: Optical flow fields on the left ventricle using Lucas-Kanade and Horn-Schunck methods.

generated from the prior and a single optimization iteration
of the snake is executed before returning to the non-prior
original snake iteration. This process is repeated until the
snake is optimized and equilibrium is achieved.

3. Experimental Results

For this study, a series of B-mode echocardiogram cross
sectional videos of the heart have been used to investigate the
proposed snake algorithm. These videos were acquired using
an SONOS 5500 by Philips Medical System. The transducer
frequency was set at 2.5 Mhz in order to insure adequate
penetration of tissue, while maintaining good image quality.
Longitudinal views of the heart, which nicely visualize the left
ventricle, were acquired. The generated videos were treated as
sears of individual images in sequence.

For optical flow calculations, both Horn-Schunck and
Lucas-Kanade were able to represent the motion of the
heart, though Lucas-Kanade showed a greater number of
scatter errors due to its local estimation of regions. As shown
in Figure 5(a), at lower local window sizes, the low-level
structure information was not represented. In Figure 5(b),
where the window size is 5 × 5, noise starts to cloud
the left ventricle structure, and in Figure 5(c), where the
window size is 15 × 15, all information is lost by the noise.
The high amount of speckle inherent to US images made
it difficult to cope. The Horn-Schunck technique, with a
global regularization parameter λ between 0.05 and 0.09, was
able to compensate for the general speckle throughout the

US images while maintaining structural endocardial lining.
Empirically, we found that smoothing greater than this, as
exhibited in Figure 5(d), where λ = 0.001, would start to
erode structural feature borders. Smoothing less than this,
as exhibited in Figure 5(f), where λ = 1.00, would result in
scatter and false flow measurements due to the noise. For this
application, a regularization parameter of 0.07 was selected.

The mask size for generating the GVF field was set to
65 by 65 in order to calculate the point charges and is
then normalized for active contour use. For left ventricle
segmentation, the initial contour was set to be a small oval
(of radius greater than 30 pixels along its minor axis and
60 pixels along its major), which was placed by the user
within the left ventricle of the heart on the first image cine.
Following image in the sequence would grab the previous
segmented left ventricle contour and use it as its initial
contour. Hence each dataset (or set of image sequences) was
only initialized once.

Snake parameters α and β were set to 4.0 and 0,
respectively. β was set to 0 due to the influence of the prior
knowledge component which offsets the curvature, whereas
α was set to 4.0 in order to make sure that the external
and internal energies were neatly balanced. The prior step
parameter was set to 5. By decreasing the value of this
step parameter, greater shape regularity would occur, but it
would take much longer for the snake to reach equilibrium.
Empirically, we found that a prior step parameter of 5 was
balanced enough to maintain the shape regularity of the
snake, without greatly affecting the time complexity.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6: Example of a left ventricle segmentation using the proposed scheme. (a)-(j) Prior formulation steps, where the prior step parameter
is set at every five iterations of energy optimization process. (k) and (l) represent the final segmentation of the left ventricle with and without
utilizing shape priors, respectively.

During our experimentations, we assumed that equilib-
rium is achieved when there is less than 10% movement of
contour points throughout the snake between two consecu-
tive snake evolutions.

Since the proposed model is iterative, other adjustments
can be made during the prior knowledge phase, such
as increasing internal energy weights dependent on the
distance of fitted priors to snake curve and other various
optimizations without upsetting the actual active contour
model, though none were done for the purposes of this
experiment.

Figure 6 shows an example of a left ventricle segmenta-
tion using the proposed scheme. Figures 6(a)–6(j) illustrate
the outcome of the proposed active contour iterations, where
the prior step parameter is set to five iterations (in order
to demonstrate the contour progression over the cycle).
Figure 6(k) represents the final contour when utilizing the
shape priors and the optical flow as an external energy.

Figure 6(l) shows the final contour when utilizing the optical
flow as an external energy exclusively without shape priors.
Examination reveals that the shape priors helped to maintain
shape regularity and properly delineate the left ventricular
endocardial lining, despite being disrupted by the speckle
noise, artifacts, and valves movements.

Experiments were run on eight complete cardiac cycles
from different patients. The performance of the proposed
system was measured by comparing 130 indexed segmented
image cines from the eight cardiac cycles to the manually
delineated segmentations by an expert radiologist, represent-
ing the gold standard used.

Since the images at hand were mainly small segmented
foregrounds (left ventricular surface area) against vast back-
grounds, the system performance would best be measured
by means of its sensitivity, precision rate, and overlap ratio.
Let us consider the following metrics: a true positive pixel is a
pixel that is considered part of the left ventricle by both of the
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Figure 7: Example of segmenting a heart left ventricle. (a) Original left ventricle ultrasound image, (b) expert manual segmentation, (c)
segmentation using standard GVF, (d) segmentation using GVF-optical flow without priors, and (e) segmentation using the proposed GVF-
optical flow with priors.

proposed method and the gold standard. A false positive pixel
is a pixel that is considered part of the left ventricle by the
proposed method but it is not considered as such on the gold
standard. A false negative pixel is a pixel that is not considered
as part of the left ventricle by the proposed method; yet it is
considered to be part of the ventricle according to the gold
standard. The sensitivity is the percentage of the number of
true positive pixels divided by the sum of the number of
true positive pixels, and false negative pixels. In other words,
it classifies how well a binary classification test correctly
identifies a condition. Precision rate is the percentage of the
number of true positive pixels divided by the sum of the
number of true positive pixels and false positive pixels. In
other words, it classifies how accurate the results of the test
when the results are positive. Overlap ratio is the percentage
of the number of true positive pixels divided by the sum of
the number of true positive pixels, false positive pixels and
false negative pixels.

The sensitivity, precision rate, and overlap ratio of the
proposed system on the 130 segmented cines can be seen in
Table 1. This was generated by combining the total metric
aggregates across all 130 cines, and calculating the sensitivity,
precision rate and overlap ratio measures. In comparison,
the standard GVF snake’s on the same dataset yields an
adequate sensitivity this is due to over-segmentation by the
GVF method, since the speckle tends to complicate image
features. When optical flow is added to the GVF model some

of the inherent noise is filtered out (due to the static nature
of the speckle); hence the segmentation results are improved.
By using primitive priors to help the snake’s regularity, results
are further improved (as revealed in Table 1).

Figure 7 illustrates the segmentation of a heart left ventri-
cle using various segmentation schemes. Figure 7(a) shows
the original left ventricle of the heart ultrasound image,
whereas Figure 7(b) shows an expert manual segmentation
of the image shown in Figure 7(a). Figure 7(c) depicts the
final contour using the original GVF snake model (yielding a
sensitivity, precision rate and overlap ratio of 71.9%, 96.3%
and 70.0%, resp.). Figure 7(d) shows the results of using
optical flow GVF without priors (yielding 80.7%, 93.9%,
and 76.7%). Figure 7(e) shows the final contour using our
optical flow GVF snake with primitive priors (yielding a
sensitivity, precision rate, and overlap ratio of 85.2%, 91.9%,
and 79.2%, resp.). Examination of the figure reveals that
the shape priors improve regularity by allowing the snake to
overcome noise artifacts. This allows for proper delineation
of the left ventricular endocardial lining. The standard GVF’s
precision rate is slightly higher in this example, since the
GVF contour results in a severely under segmented region,
hence having very few false positives. In our scheme, the
motion information (optical flow) is used as structural
information in the external energy of the snake. This motion
information ignores much of the speckle, due to its static
nature, preventing feature under segmentation.
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Table 1: Sensitivity, precision rate, and overlap ratio of the
proposed segmentation system.

Sensitivity Precision rate Overlap ratio

Standard GVF snake 90.4% 70.2% 65.3%

GVF snake with optical
flow only

92.8% 76.5% 72.2%

GVF snake with optical
flow and priors

93.7% 80.9% 76.7%

4. Concluding Remarks

In this paper, we have shown that optical flow can be
utilized as an external energy within the GVF active contour
framework. We have demonstrated that an active contour
method is able to make use of the knowledge derived from
the apparent motion of tissue via optical flow measurements.
This strengthens the principle that tissue movement should
be considered within segmentation techniques, where the
data facilitates it.

Furthermore, results were improved by using primitive
shapes, which helped overcome the inherent difficulties
in segmenting echocardiographic images, by maintaining
shape regularity. The proposed prior technique does not
require training samples that are expert delineated; rather
they are built from the current active contour control
points. Furthermore, different primitive priors can be used
depending on the feature of interest to be segmented. Such
segmentations would improve the calculation of various clin-
ical measures by reducing the inconsistencies and variability
between clinicians while simultaneously reducing the time
for clinician interaction.
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