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NORTH ATLANTIC RIGHT WHALE

LOCALIZATION AND RECOGNITION USING VERY DEEP

AND LEAKY NEURAL NETWORK

ABDULWAHAB KABANI and MAHMOUD R. EL-SAKKA

Abstract. We describe a deep learning model that can be used to recognize individ-

ual right whales in aerial images. We developed our model using a data set provided

by the National Oceanic and Atmospheric Administration. The main challenge we
faced when working on this data set is that the size of the training set is very small

(4,544 images) with some classes having only 1 image. While this data set is by far
the largest of its kind, it is very difficult to train a deep neural network with such

a small data set. However, we were able to overcome this challenge by dividing this

problem into smaller tasks and by reducing the viewpoint variance in the data set.
First, we localize the body and the head of the whale using deep learning. Then,

we align the whale and normalize it with respect to rotation. Finally, a network is

used to recognize the whale by analyzing its callosities. The top-1 accuracy of the
model is 69.7% and the top-5 accuracy is 85%. The solution we describe in this

paper was ranked 5th (out of 364 teams) in a challenge to solve this problem.

1. Introduction

The North Atlantic right whales [6] is an endangered species with around 450
whales left. Historically, right whales have been subject to harsh hunting since the
17th century. Some researchers believe that the name ‘right whale’ comes from the
fact that this is the ‘right’ type of whale for hunting. These whales were considered
to be ideal for hunting for many reasons such as their tendency to live close to
the shore, being rich in whale oil, and the fact that their bodies float when killed.
Despite becoming protected species in 1949, the population is still endangered with
being entangled in fishing gear, and collision with ships accounting for around 50%
of deaths.

Right whales can be recognized by studying the callosity pattern on their heads.
Manually classifying whales is a very time consuming process and automating this
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process can help scientists focus on their conservation efforts. We used a unique
data set provided by the National Oceanic and Atmospheric Administration [6,17]
to develop a model that can automatically recognize individual whales by analyzing
the callosity pattern on their heads. The solution we describe in this paper was
ranked 5th (out of 364 teams) in a Kaggle challenge [17] to solve this problem.

When working on this problem, we faced several challenges. First, the size of
the training set is very small while the number of classes (individual whales) is
large. Second, there is a huge variation in the clarity of each image. Finally, the
size of each image is very large making it very difficult to load these images into
the GPU.

To overcome these challenges, we first localize and normalize the body with
respect to rotation. After that, we localize the head of the whale. Finally, the
whale is recognized using the callosity pattern on its head. These steps reduce the
image size and ensure that we can fit the data into the GPU.

In this paper, we will start by talking about deep learning in Section 2. We
will describe the approaches taken by other teams in Section 3. General overview
and information about the data that we used will be presented in Section 4. Sec-
tions 5 and 6 present the methods we used to localize the head of the whale. In
Section 7, we present the model that we used to recognize the whales. The results
are introduced in Section 8. Finally, we conclude our work in Section 9.

2. Deep learning background

Deep Learning involves training models that consist of several layers of abstrac-
tion. In other words, each layer builds on the abstraction in the previous layer by
applying non-linear transformation (or a linear transformation, if desired). Train-
ing the network requires optimizing the parameters of all the layers in the network.
This can be done by optimizing an objective function (error or loss function). Us-
ing stochastic gradient descent, the objective function is optimized by updating
the parameters at each layer by taking small steps.

A Convolutional Neural Network (convnet or CNN) [14] is a special type of neu-
ral network that contains some layers with restricted connectivity. This restriction
results in a behavior similar to convolution in signal processing.In convolution, an
image is convolved with a kernel of certain size and weights. The restriction of
connectivity in convolutional layers produces a similar behavior with the exception
that the kernel weights are learned during training rather than defined by user in
most signal processing applications.

CNNs performed really well in the problem of digit recognition where they
achieved state of the art performance on the famous MNIST data set [26]. In gen-
eral object recognition problems, CNNs achieved excellent results in many com-
petitions such as the ImageNet large scale classification challenge [13,21]. Several
models [1, 7, 16] achieved excellent results in this competition. The success was
possible thanks to the development in computing power, regularization techniques
such as Dropout [11, 19], initialization methods [25], ReLU activations [24], and
data augmentation.
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3. Related work

The National Oceanic and Atmospheric Administration [6] ran a competition on
Kaggle [17] to automate the recognition of right whales from aerial survey images.
Each right whale has a unique callosity pattern on its head. These callosity pattern
can be used to identify right whales just like a fingerprint pattern can be used
to identify humans. The number of training images is very low (4,544 images)
while the number of testing images is 6,925 images. Deep learning has been very
successful in recent years with visual recognition problems. However, it was very
difficult to make it work for this type of data. This is mainly because the size of
the data is very small. Anil Thomas from Nervana Systems [2] suggested locating
the bonnet and the blow hole on the whale. The solution which is based on
a deep learning library called Neon [20] used these two points, extracting a patch
that contains the whale’s head. This approach proved to be very effective. First,
it made the training process much faster because the training is being done on
smaller images. Second, these head patches are better than the original images
for training a deep learning model. This is mainly because training on these head
patches made the model focus only on the most discriminative features (the head
callosities) and ignore unimportant features such as features from the surrounding
water.

To our knowledge, most of the solutions (including the solution described in
this paper) that ranked at the top on the competition’s leaderboard followed this
idea that was proposed in [2]. The team that was ranked in the second position
[9] used a similar multi-stage approach. First, the head is localized by regressing
a bounding box. Then, the head is aligned in an approach that is loosely inspired
by a human face alignment approach that was introduced [27]. This team used
a classifier that is an ensemble of deep neural networks with different variations of
the VGG-Net [16] and ResNet [15].

The DeepSense.io team [22] that ranked first also used a multi-stage approach.
This team produced a solution [22] that involves localizing the head of the whale
and aligning it afterwards. They report that aligning the head of the whale is very
important to achieve good results. Their final solution is based on combining the
predictions of different deep learning models.

4. Method overview

An overview of our method is presented in Figure 1. While the main task is to
recognize the individual whales IDs, we could not do that directly on the original
images. This is because the original images are huge and fitting them in the GPU
during recognition is not feasible.

We divided the problem into smaller tasks (as shown in Figure 1). First, two
models are trained to localize the bonnet and the blow hole, respectively. Then,
using these points, the body of the whale is localized and rotated so that the body
has angle=0 with the x axis and the head is pointing east. After that, a model is
trained to localize the head of the whale. Finally, a model is trained to produce
a probability distribution over all possible whales.
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Figure 1. The overview of the method: First, two models are trained to localize the bonnet

and the blow hole, respectively. Then, using these points, the body of the whale is localized
and rotated so that the body has angle=0 with the x axis and the head is pointing east. After

that, a model is trained to localize the head of the whale. Finally, a model is trained to produce
a probability distribution over all possible whales.
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Figure 2. A random sample of images: These images were captured during several aerial surveys
and under different lighting and environmental conditions (note images A1, B2, B4, C4). In
addition to these variations, there are many other obstacles, which make these images very

challenging. For instance, for many whales the head is not clear because the whale is blowing
water as in images C1 and C3. Some images contain more than two whales as in images C2
and B3. In images A2 , C3, and B4, the foreground/background contrast is very low. Water

reflection can make recognition very difficult as in image C4. The size of the whale with respect

to the background (such as the one in image B2) is another challenge.

5. Body localization

In this section, we describe how we trained a model to localize the body of the
whale and normalize it with respect to rotation. The trained model will be able
to take the original image as input and produce an output where the image is
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cropped and the whale is facing east. This is very important in order to train the
classification model (presented in Section 7). Figure 2 shows a random sample of
the input images that we pass to the model in order to localize the whale body.

This is a very important step for many reasons. First, localizing the body and
the head (in Section 6) helps the model focus on the important features on the
whale body rather than on features in the surrounding water. Because there are
many classes with very few training images, focusing on the important features in
the image (the callosities on the top of the head) is essential to alleviate overfitting.

Second, rotating the body so that the angle between the body and the x axis
is 0 is important because it helps in extracting head crops with minimum amount
of surrounding water. Otherwise, if the whale body has different orientation, ex-
tracting head crops may include a lot of surrounding water. For example, Figure 3
shows two head crops, one crop is for a whale that has 0 degrees angle with the
x axis and another with around 135 degrees angle. It is clear that the one in the
latter crop contains far more water.

Figure 3. Comparison between two head crops. The one on the left is taken from an image
where the angle of the body of the whale with the x axis is 135 degrees. On the other hand, the

one on the right is the result of normalizing the angle of the body so that it is 0 degrees. The

figure also shows the locations of the bonnet and the blow hole. Two localizations models are
trained to recognize the bonnet and the blow hole, respectively. Then, using these two points,

we can calculate the angle with the x axis and rotate the whale accordingly.

To be a able to localize the body, we train two models: one will be used to
recognize the bonnet (shown in Figure 3 as a red point) and the other is used
to recognize the blow hole (shown in Figure 3 as a blue point). Using these
two points, we can easily calculate the angle between the body and the x axis
and rotate the body accordingly. This simple and powerful idea was originally
introduced in [2] and we found it to be very helpful. In [2], two points are used
to train two convolutional autoencoders. After that, the head was extracted and
rotated. We use a similar approach. However, rather than training a convolutional
autoencoder, we trained a deep neural network with the units in the output layer
corresponding to individual pixels in the masked image. Figure 4 shows a summary
of the body localization stage.

Each mask is used to train a deep neural network. The mask and the image
are re-sized to size 128 (height) × 192 (width).The labels (ground truth) for this
network are the elements-wise multiplication of the resized mask with the gray
scale image.

To train a neural network to localize the interest point (bonnet or blow hole),
the re-sized original image is used as input and the predicted output of the network
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Figure 4. Body Localization Overview: In order to locate the body, the bonnet and blow hole

masks are re-sized to 128 × 192. Also, the original image is re-sized to 128 × 192 and converted

to gray scale. Each of the two masks is multiplied with the gray scale image to produce masked
images. Each of these masked images are passed into two networks to train a network to predict

the location of the interest point (bonnet or blow hole). The network is used to predict the

location of the interest points. These interest points are used to rotate the whale and localize
the body.

is the masked image. The architecture of the network we used for training is shown
in Figure 5.
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Figure 5. Localization architecture: the same architecture is used to localize the bonnet and
blow hole, and later the head (in Section 6). The input of the architecture is an image of size
128 × 192. The output of the network is a layer with 128 × 192 = 24576 possible classes. The
output layer is simply a flattened mask and reshaping this layer gives us back the predict mask.

The pixels with the highest intensities represent the location of the interest point.

The loss function we minimize is the categorical cross-entropy (or mutli-class
logloss). The learning rate was initially set at 0.01 and reduced automatically
if the validation loss does not improve after 10 epochs. The activation for each
convolutional layer is ReLU [24] while the activation for the output layer is softmax.
Softmax activation ensures that each pixel in the predicted mask is in the range of
(0,1) and the pixels sum up to 1. In other words, it is a measure of certainty that
a certain pixel in the predicted mask corresponds to the location of the interest
point. The dropout rate is 50% and the max-pooling is done over size (2,2).

Because the last layer in the network is softmax, pixels in the predicted mask
are probabilities that range between 0 and 1 and that sum up to 1. It is very
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important to ensure that the ground truth (the labels) follow the same rules. In
order to do that, we rescale the true mask (or the true labels) by dividing each
pixel by the sum of the mask as shown in Equation (5.1):

yij =
pixelij∑H

i=1

∑W
j=1 pixelij

(5.1)

where pixelij is the pixel value at row i and column j. yij is the normalized pixel

value such that yij ∈ [0, 1] and
∑H

i=1

∑W
j=1 yij = 1.

Once the two models that predict the bonnet and the blow hole are trained,
they can be used to predict the locations of bonnet and the blow hole. For each
mask, the pixel with the highest intensity is considered to be the one where the
model predicts the interest point to be. To make the prediction more robust, we
take the mean location of the top 5 pixels with the highest intensities.

To localize the body and rotate it, we first enlarge the mask from the size
128 × 192 to the original size. The top 5 pixels with the highest intensities are
averaged for each of the two masks. Then, the angle of the whale with respect to
the x axis is estimated by Equation (5.2).

θ = tan−1

(
ybonnet − yblowHole

xbonnet − xblowHole

)
, (5.2)

where ybonnet and xbonnet are the predicted coordinates of the bonnet on the y and
x axes. As discussed earlier, this point is the result of averaging the coordinates
of the top 5 pixels with the highest intensities in the bonnet predicted mask.
The same thing applies to the yblowHole and xblowHole which are the predicted
coordinates of the blow hole.

The image is rotated around the estimated center of the whale head, which is
given by the equation:

xheadCenter = 0.5× (xbonnet − xblowHole)

yheadCenter = 0.5× (ybonnet − yblowHole)

The image is cropped from the center of the head and the size of the crop is
4 × distance along the x axis and 2 × distance along the y axis. The distance
value is the distance between the blow hole and the bonnet. Figure 10 in Section
8 shows a sample of images produced using the information we described in this
section. As shown in Figure 10, the resulting images all show the whale bodies
localized and pointing in the same direction.

6. Head localization

Once the body is localized and rotated so that it is pointing east, we are ready to
localize the head of the whale. A head mask is used to train a network to localize
the head. The mask and the input image (the whale body image we produced
in Section 5) are re-sized to size 112 (height) × 224 (width). The labels (ground
truth) for this network are created by multiplying (element-wise) the re-sized mask
with the gray scale image.

The architecture of the network we used for training is the same one we used in
the previous section (shown in Figure 5). The only difference is that the body size
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Figure 6. Head Localization Overview: In order to locate the head, the head mask is re-sized

to 112 × 224. Also, the body image is re-sized to 112 × 224 and converted to gray scale. The
mask is multiplied with the gray scale image to produce masked images. The masked image is

passed into a network to train it to predict the location of the head. This network is used to

predict the location of the head.

of the input image and the mask is different. Therefore, the number of parameters
at each layer is different.

As shown in Figure 6, the whale body image is converted into gray scale. The
head mask and the gray scale images are multiplied and passed to the model
for training. Then, the model is trained to predict the head mask. Finally, the
predicted mask is re-sized to have the same size as the whale body image. Then,
the predicted mask is thresholded and converted from gray scale image into binary
image. The coordinates of the largest rectangle in this binary image are used to
crop the head from the body image.

We used multiple thresholding methods to convert the gray scale mask into
binary mask. For instance, we thresholded the head masks using Otsu [18]. The
image is thresholded as shown in Equation (6.1):

I(i, j)thresholded =

{
1, if I(i, j) ≥ thresholdOtsu

0, otherwise,
(6.1)

In addition, we use another method to threshold the head mask according to
Equation (6.2):

I(i, j)thresholded =

{
1, if I(i, j) ≥ µOtsu

0, otherwise,
(6.2)

where µOtsu is the mean of all pixels that are higher than the ostu threshold.
In other words, Equation (6.2) produces smaller head crops than Equation (6.1).
During each epoch while training the recognition model (in Section 7), we will
train on random sample from head crops produced using the Otsu method and
the high mean method. We find this to be an effective data augmentation tool to
reduce overfitting.

The model extracted crops of the head where all heads are normalized with re-
spect to orientation (east) and rotation (angle = 0), translation, and scale. Figure
11 (in Section 8) shows a sample of head crops produced using the information we
introduced in this section. The callosity patterns shown in Figure 11 are unique
to each individual whale and can be used to identify a whale. These head images
are passed to the recognition model (presented in Section 7).
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Figure 7. Recognition Architecture: the input to the network is an image showing the callosities

of the whale. The output size is 447 corresponding to 447 unique whale IDs.

7. Recognition

Now that the head is extracted from the original image, it is time to train a model
to recognize the individual whales. Right whales can be recognized by the callosi-
ties on the top of their heads. It is estimated that there are 450-500 north Atlantic
whales remaining. However, the dataset only contains 447 individual whales. The
network we trained can predict the ID of the whale by examining the callosities.
This is very similar to the face recognition problem where the ID (or name) of the
person is recognized by examining the facial features.

The network we used for training is described in Figure 7. Driven by the suc-
cess of the VGG architecture [16], we opted for a similar architecture where the
convolutional filter is small (3,3) and the network is very deep. The small convo-
lutional filter helps in regularizing the network because each neuron is connected
to a small number of neurons in the previous layer. We did not use any fully
connected except for the output layer. Normally, the dropout rate is set at 50%.
However, for this problem we set the dropout rate to a relatively high value which
is 95%. We noticed that setting this value to lower than 75% leads to overfitting
after only 10-20 epochs.

The image is padded by 1 pixel to ensure that the spatial resolution does not
decrease except after the pooling layer. We used a (2,2) max pooling to sub-sample
the response and detect more abstract features. The activation function we used
is the leaky rectification (with leakiness=0.3) [3,4] which ensures that the gradient
is not 0 for negative pre-activation. The activation in the output layer is softmax
which ensures that the output produced is a probability (between 0 and 1, and all
classes sum up to 1). All layers were initialized randomly.

It is worth mentioning that there is some variation in the aspect ratio of the
head images. However, the network expects all input images to be of the same size
(in our case, it is 256×256). In order to avoid distorting the callosities image when
resizing the image, we pad the image so that the image size becomes width×width.

Given the small size of the training set, it is essential to augment the data to
alleviate overfitting. Table 1 shows the list of random augmentation we used along
with their parameters.

The network was trained for 520 epochs. During each epoch, a random sample
of training images is created from different sources. For instance, for each epoch
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Table 1. Data augmentation: Random transformations along with parameters. These transfor-

mations are applied randomly to each image before sending it to the GPU.

Transformation Parameters
Rotation Angle between -20 and +20

Horizontal Flip Randomness=50%
Vertical Flip Randomness=50%

Horizontal Shift Up to 12 pixels
Vertical Shift Up to 12 pixels

Gaussian Blurring Up to σ = 1
Contrast Rescaling Randomly stretch/shrink intensity

we randomly choose head crops images which were created using the Otsu thresh-
olding method. In addition, we combine them with randomly chosen head crops
created using the high mean method (described in Section 6).

The learning rate was initially set at a very low value of 0.003. While training,
the validation is continuously being evaluated. If the validation loss does not
improve after 10 epochs, the learning rate is automatically reduced by 50%.

8. Implementation and results

In this section, we describe how the model was implemented and the results. The
data is hosted on Kaggle [17]. The size of the data is very small with respect to
the number of labels. The size of the training set is 4544 images. For the training
set, both the images and the labels (individual whales IDs) are provided. On the
other hand, for the testing set, only the images are provided without the labels
and the size of this set is 6925 images. In order to perform validation locally, we
extract a validation set from the original training set. The size of the validation set
is 10% of the training set (452 images). Therefore, the training set size is reduced
to 4092.

The number of whales in each individual whale varies significantly from whales
with 1 training image up to 47 training images. Figure 8 shows a summary of
the number of whales with a certain number of images. For instance, there are
24 whales (or classes) with only 1 training image and 29 whales with 2 training
images. On the other hand, there is 1 whale with 47 training images. The average
number of training images in each class is 10 training images.

We developed our model on a laptop equipped with GTX980M (4GB) graphics
card. The code was developed using Theano [5, 12] which is a python library for
optimizing and evaluating mathematical expressions in multidimensional arrays.
We also used keras [8] which is a highly modular library to train neural networks
on GPUs or CPUs.

In order to pre-process the image data and to perform geometric transforma-
tions, we used scikit-image [23] and openCV [10]. The networks were trained in
batches of size 32 images. This is the largest batch size we could fit in the GPU
memory. The CPU performs data augmentation on each batch before sending it
to the GPU for training.
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Figure 8. A summary of the number of whales with a certain number of images. There are 24
whales (or classes) with only 1 training image and 29 whales with 2 images. On the other end of

the chart, we can see that there are few classes with a relatively high number of training images.

For instance, there is one whale with 47 training images.

Training each of the three localization networks took around 9 hours. On the
other hand, training the recognition network took around 50 hours. Therefore,
the total training time for all the networks is 9 + 9 + 9 + 50 = 77 hours.

The metric used by the server to evaluate the predictions is the multi-class
logarithmic loss (also known as categorical cross-entropy). The equation for this
metric is:

logloss = − 1

n

N∑
i=1

M∑
j=1

yij log(pij)

where N is the number of images in the predictions file (or the number of images
in the test set), M is the number of labels (the total number of individual whales).
yij is a mapping from the image i to the true label j (for example, yij is 1 if the
image i belongs to the whale j and 0 if it does not). log(pij) is the natural log of
the predicted probability made by the model that the image i belongs to whale j.

While training the recognition network, we minimize this metric directly. Figure
9 shows this loss function as it is being minimized during training. The log loss
goes as low as 1.62 at the end of the training.

On the server, the log loss score we achieved is 1.47. The top-1 accuracy of
the module on the validation set is 69.7% while the top-5 predictions accuracy is
85.0%.

We used the same loss function to train the localization modules. Figure 9
shows the train and validation log loss progress for both the bonnet localization
network and the blow hole network, respectively. In Figure 9, we can see that the
loss function of the bonnet localization network decreases from 4.5 to around 2.28
at the end of training.

As shown in Figure 9, the blow hole localization loss decreases from 5 to around
2.52 at the end of the training. The performance of the bonnet network is slightly
better than the blow hole localization network as the former has a lower loss than
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Table 2. Teams Ranking: this table shows the ranking of the solution we describe in the paper.

The solution ranked in the 5th position. The table only shows the top 10 teams while the number

of teams that participated in the competition is 364. The full table can be found on the web
page of the competition [17].

Ranking Team Name Score
1 deepsense.io 0.59600
2 felixlaumon 1.07585
3 SKE 1.14982
4 threedB 1.33648
5 AbdulWahab 1.46909
6 Tsakalis Kostas 1.51900
7 bawdyb . 1.55823
8 Left Whales 1.75764
9 Anil Thomas 1.80178
10 Doug Koch 2.13797
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Figure 9. Loss Curve: This figure shows the training and validation loss during the training

of the four deep learning models (bonnet localization model, blow hole model, head localization
model, and whale recognition model).

the latter. This is likely because for many samples the blow hole is completely
covered by water (white pixels) while the bonnet is visible in most of the images.

Figure 9 also shows the performance of loss function of the head localization
network. The loss value goes down from 5.03 to around 3.87. Because both the
validation and training losses curves are very close to each other, the performance
may be improved slightly by using a larger network.
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Figure 10. A sample of localized whale bodies.

Figure 11. A sample of localized whale heads.

In the context of localization, the log loss function may be difficult to interpret.
Of course, the lower the loss function, the better we can expect the localization
to be. However, it is also useful to track the quality of the localization visually.
Figures 10 and 11 show a random set of images of localized whale bodies and
localized whale heads, respectively.

In addition, Figure 12 shows the bonnet location prediction after every 5 epochs
(up to epoch 35). The upper row shows the true location of the bonnet while the
lower row shows the prediction made by the network. Because we augment the
data by flipping the image horizontally and vertically, the true location of the
bonnet (in the upper row) changes. At the beginning of the training (epoch 0),
the network predicts the bonnet to be in the middle. Then, the prediction starts
to improve gradually. At epoch 20, we start to see the network correctly tracking
the location of the bonnet. Of course, monitoring one image is not enough so we
monitor a small sample of images. Once we were satisfied with the performance
of the localization network, we stopped the training. Figure 12 shows one of the
monitored images while training the bonnet localization network. We monitor the
training performance in the same manner when training the blow hole and head
localization networks.

As we mentioned earlier, using a multi-stage approach was the only way to be
able to train a deep learning model on this data set. However, when carrying out
a multi-stage approach, there is a risk of error propagating from one stage to the
next. Figure 13 shows a sample of cases where the whale body crops could not be
localized correctly. In the images shown in this Figure, some of them do not show
the full callosity pattern on the whale head while others include the whale body
oriented in the wrong directory. There are approximately 0.7% of cases where the
model could not correctly localize the body.
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Figure 12. This figure shows how the network performance in tracking the location of the

bonnet improves as it is being trained. At epoch 0, the network predicts the location of the
bonnet to be in the middle of the image. Later, the network gradually becomes capable at

predicting the location of the bonnet.

Figure 13. A sample showing cases where the body of the whale was not localized correctly.
In the images shown in this Figure, some of them do not show the full callosity pattern on the

whale head while others include the whale body oriented in the wrong directory.

Figure 14. A sample showing cases where the head of the whale was not localized correctly.

These images include cases where the callosity pattern is not fully shown in the image.

The head localization error is higher than the body localization error. The head
localization error is 2.9%. Figure 14 shows a sample of images where the head was
not localized correctly. These images include cases where the callosity pattern is
not fully shown in the image.

While the head localization error is relatively low, the union over intersection
metric shows that there is a room for improvement. The union over intersection
is defined as shown in Equation (8.1):
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UoI =
Mtrue ∩Mpred

Mtrue ∪Mpred
(8.1)

where Mtrue, Mpred are the true and predicted masks. On the validation set, the
average body localization UoI is 0.51. In other words, while the percentage of
complete failure in localizing the whale head is relatively low (2.9%), the quality
of the head localization can be improved. We strongly believe that using a better
model to perform head and body localization is likely to yield a better UoI score.
A lower UoI score is likely to lead to a lower whale classification error.

9. Conclusion

We introduced a method to recognize individual whales from the callosities on
their heads. This method can help in the conservation efforts of marine biologists.
Because the size of the available training images is very low, overfitting is very dif-
ficult to avoid. We solved this problem by introducing a model to localize the head
of the whale and training the recognition model on it. This helps the recognition
model to focus on the callosity features located on the head of the whale. Our
model’s top-1 and top-5 predictions accuracies are 69.7% and 85%, respectively.
We strongly believe that the performance can be boosted by increasing the size of
the training set. In addition, improving the body and head localization models is
likely to improve the whale classification error.
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