
Chukwa: A large-scale monitoring system

Jerome Boulon
jboulon@yahoo-inc.com

Yahoo!, inc

Andy Konwinski
andyk@cs.berkeley.edu

UC Berkeley

Runping Qi
runping@yahoo-inc.com

Yahoo!, inc

Ariel Rabkin
asrabkin@cs.berkeley.edu

UC Berkeley

Eric Yang
eyang@yahoo-inc.com

Yahoo!, inc

Mac Yang
macyang@yahoo-inc.com

Yahoo!, inc

Abstract
We describe the design and initial implementation of

Chukwa, a data collection system for monitoring and an-
alyzing large distributed systems. Chukwa is built on
top of Hadoop, an open source distributed filesystem and
MapReduce implementation, and inherits Hadoop’s scal-
ability and robustness. Chukwa also includes a flexible
and powerful toolkit for displaying monitoring and anal-
ysis results, in order to make the best use of this collected
data.

1 Introduction

Hadoop is a distributed filesystem and MapReduce [1]
implementation that is used pervasively at Yahoo! for a
variety of critical business purposes. Production clusters
often include thousands of nodes. Large distributed sys-
tems such as Hadoop are fearsomely complex, and can
fail in complicated and subtle ways. As a result, Hadoop
is extensively instrumented. A two-thousand node clus-
ter configured for normal operation generates nearly half
a terabyte of monitoring data per day, mostly application-
level log files.

This data is invaluable for debugging, performance
measurement, and operational monitoring. However,
processing this data in real time at scale is a formidable
challenge. A good monitoring system ought to scale out
to very large deployments, and ought to handle crashes
gracefully. In Hadoop, only a handful of aggregate met-
rics, such as task completion rate and available disk
space, are computed in real time. The vast bulk of the
generated data is stored locally, and accessible via a per-
node web interface. Unfortunately, this mechanism does
not facilitate programmatic analysis of the log data, nor
the long term archiving of such data.

To make full use of log data, users must first write
ad-hoc log aggregation scripts to centralize the required
data, and then build mechanisms to analyze the collected

data. Logs are periodically deleted, unless users take the
initiative in storing them.

We believe that our situation is typical, and that lo-
cal storage of logging data is a common model for very
large deployments. To the extent that more sophisticated
data management techniques are utilized, they are largely
supported by ad-hoc proprietary solutions. A well docu-
mented open source toolset for handling monitoring data
thus solves a significant practical problem and provides
a valuable reference point for future development in this
area.

We did not aim to solve the problem of real-time mon-
itoring for failure detection, which systems such as Gan-
glia already do well. Rather, we wanted a system that
would process large volumes of data in a timescale of
minutes, not seconds, to detect more subtle conditions,
and to aid in failure diagnosis. Human engineers and op-
erators do not generally react on a timescale of seconds,
and so a processing delay of a few minutes is not a con-
cern for us.

We are in the process of building a system, which we
call Chukwa, to demonstrate that practical large-scale
can be readily built atop this existing infrastructure. 1 it
uses Hadoop’s distributed file system (HDFS) as its data
store, and relies on MapReduce jobs to process the data.
By leveraging these existing tools, Chukwa can scale
to thousands of nodes in both collection and analysis
capacities, while providing a standardized and familiar
framework for processing the collected data. Many com-
ponents of Chukwa are pluggable, allowing easy cus-
tomization and enhancement.

While Chukwa development is by no means con-
cluded, an initial version of the system is currently en-
tering production use at Yahoo. We have some initial op-
erational experience, and preliminary performance met-
rics. We begin by discussing our goals and requirements

1In Hindu mythology, Chukwa is the turtle that holds up Maha-
pudma, the elephant that hold up the world. This name is especially
appropriate for us, since the the Hadoop mascot is a yellow elephant.

1



in some detail. We then describe our design, explaining
our motivation for various decisions. We next present
some performance data, and conclude by offering some
comparisons with related work.

2 Motivation and requirements

We intend to use Chukwa to monitor multiple clusters of
several thousand hosts, potentially generating several ter-
abytes of data per day. Our goals in designing Chukwa
were based on survey of our cluster user’s functional re-
quirements and performance demands.

We expect Chukwa to be used by four different
(though overlapping) constituencies: Hadoop users,
cluster operators, cluster managers, and Hadoop devel-
opers. These different groups have different functional
requirements:

• Hadoop Users will ask how far along their jobs
are, and what resources are available for future jobs.
They need access to the logs and output from their
jobs.

• Operators need to be notified of hardware fail-
ures and performance anomalies. They need to be
warned about resource shortages, such as storage
exhaustion.

• Managers need guidance in provisioning, and in
apportioning costs. This means that they need tools
for analyzing past usage by users and groups, and
for projecting future demands. They need access to
figures of merit, such as average job waiting time.

• Hadoop Developers need information about the
performance in operation, bottlenecks within
Hadoop, common failure patterns, and so forth.

Fortunately these different demands boil down to
a comparatively small set of technical requirements.
Chukwa must collect a large and open-ended set of time
series metrics and logs, as well as slowly changing di-
mensions such as machine configuration. Stored data
should be available promptly, and should remain avail-
able indefinitely. Efficient querying and analysis of large
data volumes is essential.

Our initial goal was to be able to monitor Hadoop clus-
ters of 2000 nodes, outputting 5 to 6 MB of data per sec-
ond, and to have collected data available for processing
within ten minutes. Few operational Hadoop clusters to-
day are larger than 2000 nodes, and thus that figure repre-
sents a reasonable initial operating capability. In section
4 of this paper, we report the operational measurements
that justify our target data rate.

While having all data available immediately after col-
lection might be desirable, it is not actually crucial. Sys-
tems such as Nagios or Ganglia work well for real-time
monitoring of metrics such as CPU load. Human admin-
istrators can take few useful actions on timescales shorter
than a few minutes, and so low-latency execution of more
complex processing is not a priority.

3 Architecture

At the heart of any data collection system is a pipeline
to pump data from where it is generated to where it is
stored. The requirements at the endpoints dictate the
design of the system in the middle. To meet its goals,
Chukwa needs flexible, dynamically controllable data
sources, and a high performance, large scale storage sys-
tem. It also needs a suitable framework for analyzing the
large volumes of collected data.

3.1 Adaptors
Data sources need to be dynamically controllable be-
cause the particular data being collected from a machine
changes over time, and varies from machine to machine.
For example, as Hadoop tasks start and stop, different
log files must be monitored. We might want to increase
our collection rate if we detect anomalies. And of course,
it makes no sense to collect Hadoop metrics on an NFS
server.

These dynamically controllable data sources are
known in Chukwa as adaptors, since they generally are
wrapping some other data source, such as a file or a Unix
command-line tool. At present, Chukwa includes adap-
tors to collect Hadoop logs, application metrics, and sys-
tem telemetry. We expect to write adaptors for tasks like
counting recoverable disk read errors, retrieving causal
logs from X-Trace [6], and monitoring operating system
and Java virtual machine state.

3.2 Storage
The scalability challenges in large-scale monitoring sys-
tems primarily concern the data storage and analysis
components, since that is where data from multiple ma-
chines is brought together. We determined from the out-
set to rely on Hadoop’s HDFS as our storage component.
Hadoop HDFS installations can store petabytes of data,
and support high throughput; 20 MB/sec for one writer
is typical in operational deployments, with total cluster
throughput routinely in excess of a gigabyte per second.
HDFS also facilitates parallel processing of stored data
with MapReduce.

Unfortunately, HDFS is not designed for the sort of
workloads associated with monitoring. HDFS aims to

2



Figure 1: The Chukwa Pipeline, showing how long data is retained at each stage.

handle large files and high write rates from compara-
tively small numbers of writers. It is not designed for
thousands of concurrent low-rate writers, and millions of
small files. Worse, writes to a file are not visible to read-
ers until the file is closed, and stable versions of HDFS do
not allow closed files to be reopened for writing. As a re-
sult, some care must be taken in using HDFS to support
continuous rather than batch processing. Much of the
Chukwa design was driven by the need to reconcile our
many sporadic data sources with HDFS’s performance
characteristics and semantics.

3.3 Collectors and Agents

Chukwa resolves these conflicting demands by adding
additional pipeline stages between the adaptors and the
HDFS data store: collectors and agents.

Rather than have each adaptor write directly to HDFS,
data is sent across the network to a collector process,
that does the HDFS writes. Each collector receives data
from several hundred hosts, and writes all this data to a
single sink file, consisting of chunks of data plus meta-
data describing each chunk’s source and format. Peri-
odically, collectors close their sink files, rename them to
mark them available for processing, and resume writing
a new file. Data is sent to collectors over HTTP, since
this allows us to write our collector as a Java servlet.
This in turn lets us use standard Java servlet containers
for connection management. This is in keeping with the
Chukwa philosophy of leveraging existing infrastructure
when possible.

Collectors thus drastically reduce the number of
HDFS files generated by Chukwa, from one per machine
or adaptor per unit time, to a handful per cluster. The
decision to put collectors between data sources and the
data store has other benefits. Collectors hide the details
of the HDFS file system in use, such as its Hadoop ver-
sion, from the adaptors. This is a significant aid to con-
figuration. It is especially helpful when using Chukwa
to monitor a development cluster running a different ver-
sion of Hadoop or when using Chukwa to monitor a non-

Hadoop cluster.
The second of our intermediate stages, agents, are less

fundamental to the design. They exist primarily to pro-
vide various services to adaptors, and thus to make adap-
tors easier to write. Agents are long-running processes
on each machine being monitored by Chukwa. Each
agent process is restarted automatically if it crashes. The
agent provides three chief services to adaptors. First, the
agent is responsible for starting and stopping adaptors in
response to external commands. Second, it is respon-
sible for forwarding chunks over HTTP to the collec-
tors, where they are written to stable storage. Third, it
is responsible for making regular checkpoints of adaptor
state, and restarting adaptors at the appropriate position
after a crash.

3.4 Demux and archiving

A pair of MapReduce jobs runs every few minutes, tak-
ing all the available sink files as input. The first job sim-
ply archives all the collected data, without processing or
interpreting it. The second job parses out structured data
from some of the logs, and loads this structured data into
a data store.

These datastores are also pluggable. For now, we use
HDFS files, one file per cluster, per data type, and time
period. So for instance there would be one file for all of
a particular clusters datanode logs, for the period from
noon to 1pm on a given day. This is only an interim
solution, and we are evaluating various more suitable
data stores, with support for structured queries. Hive, an
HDFS-backed data warehouse, might also be a good fit
here. [5] Column-oriented databases such as HBase, and
Hypertable would also be sensible options. For small de-
ployments, a local relational database would be suitable.

Data stored in HDFS in a structured format can be pro-
cessed straightforwardly with MapReduce jobs. We en-
vision a library of “canned” MapReduce jobs for tasks
like finding common failure modes, correlating events in
the logs with slowdowns, discovering flakey machines,
and so forth. Since Chukwa data is split into differ-

3



Figure 2: HICC displaying some DataNode metrics

ent files based on content, these jobs take as input only
a small fraction of the total data volume, and therefore
can run relatively quickly. Most structured storage sys-
tems, including Hive and Hypertable, include their own
query interfaces. We expect that these interfaces will be
used by users who want to do simple ad-hoc queries over
stored Chukwa data, with MapReduce being reserved for
more complex processing.

4 Data Analysis and Display

Collected data is only as useful as the analysis that can be
done on it. To ease analysis of collected data, we’ve built
a flexible, configurable, “portal-style” web interface to
Chukwa, termed the Hadoop Infrastructure Care Center
(HICC). A configurable interface is not simply a frill —
it is necessary, since different users have very different
data analysis needs.

In practice, a single individual often fulfills more than
one of these roles, or some portion of a role. As a re-
sult, there is a compelling need to allow individuals to
mix and match different components. We chose to do
this by bundling each query, or family of queries, into a
widget. HICC users can assemble their HICC workspace
by selecting widgets from a catalog, in exactly the way
that they can customize their personal Yahoo! or Google
portal pages.

Some of these components will display the results of
canned map-reduce jobs run against data in Chukwa stor-
age. Others will perform on-the-fly queries against SQL
databases. Still others might display telemetry collected
with Ganglia, or report on recently opened failure tickets.

5 Evaluation

Using logs from a production cluster at Yahoo!, we
found that a 2000-node production cluster would gen-

erate around 5.5 MB of data per second. Of this, the vast
bulk (more than 95%) was Task Tracker logs2. System
metrics data accounted for more than half the remainder,
with Namenode, HDFS datanode, and JobTracker logs
accounting for the rest. This data rate is small enough
that Chukwa should impose only very modest overhead
on datacenter networks.

We conducted a number of small experiments to verify
that Chukwa could handle this load. All tests were run
on an internal development cluster at Yahoo. Machines
had four 2.8 GHz Xeon processors, four IDE disks, and
3 GB of RAM, and ran Linux, with a 2.6.9 kernel. There
are two potential bottlenecks in Chukwa that we evalu-
ated in detail, the collector, and the map-reduce job. At
present, collector throughput is more than adequate, and
the demux job is the limiting phase in processing.

To measure collector performance, we ran Chukwa on
a 400 node test cluster. We configured nodes in this clus-
ter to report data at many times the normal operational
rate, emulating a much larger cluster. In this configura-
tion, the test cluster generated 14.4 megabytes of mon-
itoring data per second. A single collector was able to
keep up with this data volume, and write it to HDFS; in a
30 minute test run, machine utilization never rose much
above 50%. At this rate, we are bumping into the single-
writer throughput limits imposed by HDFS, rather than
any Chukwa-specific limits. Higher Chukwa bandwidth
could be achieved by simply adding more writers.

At present, the rate-limiting phase of Chukwa is the
Demux job. Using five worker nodes, our MapReduce
job can process two gigabytes of metrics data in around
three and a half minutes. We conducted five trials on the
same 2 GB of test data. Completion times ranged from
3:25 minutes to 3:34, with a mean of 3:30. This means
that we can can process six minutes of incoming data in
three and a half minutes, thus keeping up with the incom-
ing data flow and achieving our ten minute target latency.
Optimizing MapReduce jobs is fairly routine engineering
at this point, and we believe that significant gains can be
achieved here.

These results show that Chukwa can maintain laten-
cies well under our ten minute target, while imposing
very modest overheads on the cluster: five Chukwa nodes
are only 0.25% of our notional 2000-node cluster. We
expect to be able to maintain these latency targets as we
scale up the number of nodes being monitored. Ramp-
ing up the size of MapReduce jobs is routine, and the
engineering issues are well understood. Even for mon-
itoring hundreds of thousands of nodes, Chukwa’s data
volumes would be significantly smaller than those seen
in our production web indexing clusters.

2In Hadoop, a Task Tracker is a node doing MapReduce processing.

4



6 Related Work

Chukwa represents a design point in between two ex-
isting classes of systems: log collection frameworks on
the one hand, and network management systems on the
other. Chukwa intends to combine the abundance of
data display tools of existing NMS systems, with the
high throughput and robustness expected of log collec-
tion frameworks.

The syslog protocol supported streaming logs across
the network as long ago as the late 1980s. However, sys-
log had serious defects: no clear solution to the discov-
ery, load balancing, or failure handing problems. Face-
book’s Scribe [7] system apparently solves some of these
problems, but unfortunately, no details of Scribe have
been published to date.

Chukwa has some similarity with network monitoring
systems such as Nagios, Ganglia, or Tivoli Monitoring
[2, 3, 4]. The three systems differ in emphasis, but have
important commonalities. All are capable of collecting
and storing substantial volumes of metrics data. All in-
clude tools for displaying this data. Nagios and Tivoli
monitoring have centralized architectures, while Gan-
glia is decentralized. Ganglia, unfortunately, is heavily
adapted towards numeric time-series data, and provides
minimal support for the sort of complex text-processing
necessary for our applications.

Chukwa, however, differs in crucial respects from
these current systems. Today’s monitoring systems are
focused primarily on collection, with storage being a sec-
ondary priority. Chukwa is designed for far higher data
rates; metrics data, which is essentially all that Ganglia
and Nagios are used to collect, is only a few percent of
the data we will capture in operational settings.

With hundreds of gigabytes of data being collected per
day, processing the stored data becomes a key bottleneck.
Chukwa’s design was optimized precisely for storage and
batch processing of collected data. While MapReduce
is routinely used at these scales, no currently available
monitoring system makes provision for large-scale data
intensive processing.

7 Conclusion

Chukwa demonstrates that a high performance dis-
tributed monitoring system can readily be built atop
existing distributed data collection frameworks. The
Hadoop distributed file system supports petabytes of
stored data and hundreds of megabytes per second of
write throughput, enough for even very demanding mon-
itoring applications. MapReduce provides a suitable
framework for organizing and analyzing these data vol-
umes.

Building Chukwa on top of Hadoop resulted in a few
design quirks, and a modest latency penalty. However,
it greatly simplified implementation, and leverages the
substantial amount of work going into Hadoop. Hadoop
0.19, which will be released shortly, should significantly
improve the performance of short-running Map tasks.
This will allow us to efficiently operate Chukwa while
meeting more demanding latency targets.

References

[1] Jeffrey Dean and Sanjay Ghemawat. “MapReduce:
Simplified Data Processing on Large Clusters.” In
Communications of the ACM, Volume 51, Issue 1,
pp. 107-113, 2008.

[2] Matthew L. Massie, Brent N. Chun, and David E.
Culler. “The Ganglia Distributed Monitoring Sys-
tem: Design, Implementation, and Experience”. In
Parallel Computing Volume 30, Issue 7, pp 817-
840, 2004.

[3] http://www.nagios.org/

[4] IBM Tivoli Monitoring. Available online:
http://www.ibm.com/ software/
tivoli/ products/ monitor/

[5] Joydeep Sen Sarma. “Hive as a
contrib project” Available online:
https://issues.apache.org/jira/browse/HADOOP-
3601

[6] Rodrigo Fonseca, George Porter, Randy H. Katz,
Scott Shenker, and Ion Stoica. X-Trace: A Perva-
sive Network Tracing Framework. In 4th USENIX
Symposium on Networked Systems Design & Imple-
mentation (NSDI’07), Cambridge, MA, USA, April
2007.

[7] Scribe logfile aggregation system described
by Facebook’s Jeff Hammerbacher https:
//issues.apache.org/jira/browse/
HADOOP-2206?focusedCommentId=
12542775#action 12542775

5


