
1

Result Verification and Trust-based Scheduling
in Open Peer-to-Peer Cycle Sharing Systems

Shanyu Zhao and Virginia Lo
Computer and Information Science Department

University of Oregon
Eugene, Oregon 97403

szhao,lo@cs.uoregon.edu

Abstract—Systems that seek to harvest idle cycles available through-
out the Internet are vulnerable to hosts that fraudently accept compu-
tational tasks and then maliciously return arbitrary results. Current
strategies employed by popular cooperative computing systems, such as
SETI@Home, rely heavily on task replication to check results. How-
ever, result verification through replication suffers from two potential
shortcomings: (1) susceptibility to collusion in which a group of mali-
cious hosts conspire to return the same bad results and (2) high fixed
overhead incurred by running redundant copies of the task.

In this paper, we first propose a scheme called Quiz to combat col-
lusion. The basic idea of Quiz is to insert indistinguishable quiz tasks
with verifiable results known to the client within a package containing
several normal tasks. The client can then accept or reject the normal
task results based on the correctness of quiz results. Our second contri-
bution is the promotion of trust-based task scheduling. By coupling a
reputation system with the basic verification schemes - Replication and
Quiz - a client can potentially avoid malicious hosts and also reduce the
overhead of verification. Furthermore, by adjusting the degree of result
verification according to the trust value of a particular host, a client can
tailor the system to achieve the desired level of accuracy.

Our mathematical analysis and simulation results show that Quiz
greatly outperforms Replication in terms of accuracy and overhead un-
der collusion assumptions. In non-collusion scenarios Replication is a
better solution although Quiz also performs well. Reputation systems
effectively improve the performance of both Quiz and Replication in a
variety of cheating scenarios.

Keywords: Result Verification, Grid Computing, Trust,
Reputation System, Peer-to-Peer

I. INTRODUCTION

In the converging realms of peer-to-peer networks and grid
computing, peer-to-peer cycle sharing systems seek to har-
ness idle computational cycles throughout the Internet, pro-
viding tremendous computing power for a range of scientific
applications. The highly successful cooperative computing
project SETI@Home [1] has more than 4.5 million users con-
tributing their computer’s idle cycles (mostly home PCs) and
utilizes one thousand years of CPU time every day. This is
equivalent to 15 Teraflops of compute power, exceeding the
12-Teraflops achievement of IBM ASCI White [2].

Our research project CCOF (Cluster Computing On the
Fly) [3] supports the formation of cycle sharing communi-
ties by aggregating machines on the edge of the Internet
into a shared resource pool, providing on-demand cycles to
a wide range of client applications. CCOF goes beyond
the current client-server-based cycle sharing systems, such
as SETI@home and the Stanford Folding project [4], as-
suming a pure peer-to-peer cycle sharing model, in which
each peer is potentially a host or a client (or both). Four
classes of applications have been addressed in CCOF: in-
finite workpile, workpile with deadlines, tree-based search,

Research supported in part by NSF ANI 9977524.

and point-of-presence application. Other research projects
investigating the peer-to-peer cycle sharing paradigm include
[5][6][7][8]

In contrast to institution-based resource sharing systems,
such as Globus [9] and Condor [5], peer-to-peer cycle sharing
systems operate in an open, untrusted, and insecure environ-
ment. Under a system in which hosts volunteer their cycles, a
malicious or irresponsible participant could potentially sub-
vert the computing community by accepting computational
tasks (or Work Units in SETI@Home, or Bag-of-Task in the
OurGrid project [6]) from other peers and return arbitrary or
imprecise results. For example, it has been reported that the
SETI@Home project suffered from cheating by some volun-
teers who faked the number of work units completed in or-
der to gain higher ranking on the website list of top donators
[10]. Molnar also described a problem in which unauthorized
patches to make the SETI code run faster actually returned
incorrect results [11]! It is quite conceivable that in the fu-
ture when "selling spare cycles" becomes a common business
practice, this cheating problem will wreak serious havoc.

Current strategies against this result cheating problem can
be roughly divided into two categories: generic solutions and
specialized solutions. Generic verification schemes can be
utilized by a wide range of applications while specialized so-
lutions are tailored to specific types of computational tasks.
For example, encrypted functions [12] and ringer schemes
[13] have been proposed to prevent cheating in strictly de-
fined environments. To the best of our knowledge, result ver-
ification through replication is the only generic solution.

Replication sends out copies of the computational task to
multiple hosts, compares all the results, and relies on major-
ity agreement to determine the correct result. However, this
intuitive and straightforward solution has two drawbacks: (1)
It works on the assumption that there is no collusion among
malicious hosts. In the absence of collusion, the chance that
two malicious hosts will return the same bad result is negligi-
ble, making the replication method virtually 100% accurate.
However, a group of colluding hosts can easily communicate
and return the same bad results by using, for example, a DHT
(Distributed Hash Table) to store the hash value of tasks and
the corresponding bad result to be returned. The wide dis-
tribution of unauthorized patches mentioned earlier also pro-
duced consistent bad results across multiple hosts. (2) Repli-
cation has a fixed high overhead: for each computational task,
multiple redundant tasks are computed. This duplication of
effort may not be sustainable in a limited cycle sharing envi-
ronment.

Our research investigates the effectiveness and efficiency

of result verification schemes in an open untrusted cycle shar-
ing environment. Through mathematical analysis and simula-
tion, we evaluate the performance of replication-based result
verification, and compare it to a new scheme we have devel-
oped called Quiz whose goal is to combat collusion. In order
to further enhance the efficacy of Reputation and Quiz, we
propose the notion of trust-based scheduling, in which the
basic verification scheme is coupled with a reputation system
to help clients select reliable hosts and to reduce the over-
head of verification. We also introduce the idea of accuracy-
on-demand for cycle sharing systems: by tuning the result
verification parameters appropriately, a client can tailor the
system to achieve a desired level of accuracy at the cost of
greater (or less) overhead.

Our analysis and simulation results reveal that:
• Quiz greatly outperforms Replication under the assumption
of collusion. In the absence of collusion, Quiz lags a little
behind Replication.
• The use of a reputation system helps accuracy converge
to 1 over time whereas it significantly reduces the overhead
imposed by the Replication or Quiz scheme.
• Adding blacklists into reputation systems improves the ef-
ficacy of Quiz but hurts Replication.

II. RESULT VERIFICATION: REPLICATION VS. QUIZ

Before giving our mathematical analysis of the perfor-
mance of Replication vs. Quiz, we describe the cheating
models assumed and give a more detailed description of
the operation of the Replication and Quiz result verification
schemes.

A. Cheating Models

The cheating models we presume for this study combine
those proposed in previous work [13] [14]. We define three
types of cheaters and two cheating scenarios.

The three basic types of cheaters are:
• Type I: Foolish malicious hosts that always return wrong
results.
• Type II: Ordinary malicious hosts that return wrong re-
sults with a fixed probability. Type I is an extreme example
of Type II.
• Type III: Smart malicious hosts that will perform well
for a period of time to accumulate a good reputation before
finally returning bad results with a fixed probability.
The other dimensions of our cheating models address collu-
sion and the lifetime of cheaters.
• Colluding vs. Non-colluding Scenario. Colluding
cheaters return the same wrong result if they are chosen to
compute the same task. Non-colluding cheaters are assumed
to each return a unique (wrong) result.
• Dynamic vs. Static Scenario. Under a dynamic model,
the malicious host will periodically leave and rejoin the com-
munity with a new ID, in order to erase its notorious history.
In the static model, malicious hosts remain in the system un-
der the same ID and thus can be neutralized using Black Lists.

B. Replication: A Voting Principle

Under Replication, a client node selects one task at a time
from its task input queue, and given replication factor k,

chooses k + 1 distinct hosts to ship the same task to. When
all the chosen hosts have finished the task and returned the
results, the client compares the results and if more than h of
the hosts agree on the same result, it accepts that result as
the correct one. If there is no dominant result, the client will
discard all the results and reschedule that task later.

C. Quiz: A Sampling Principle

The basic idea of Quiz is to insert indistinguishable quiz
tasks with verifiable results known to the client within a pack-
age containing several normal tasks. The client can then ac-
cept or reject the normal task results based on the correctness
of quiz results. The Quiz scheme assumes that it is impossi-
ble for a host to discriminate quizzes from normal tasks and
that the cost to verify quiz results is trivial.

More precisely, under Quiz, given package size s and
quiz ratio r, the ratio of quizzes to tasks, a client fetches t
tasks from its task queue, and mixes them randomly with m
quizzes, where t + m = s. The client then ships the whole
package, either serially or in one transmission, to a chosen
host for execution. Upon completion of all tasks and quizzes
in that package, the client checks the results for the hidden
quizzes. The client accepts all tasks in a package only if ev-
ery quiz was correctly computed; otherwise, the client will
discard all tasks in that package, and reschedule the tasks
later.

Note that in reality the concept of package in Quiz could be
implemented by a result buffer. The client ships tasks serially
with mixed quizzes but collects results with a buffer. One
challenging problem of Quiz is that it requires an efficient
method to generate verifiable quizzes. The most straightfor-
ward approach is for the client to run one of the tasks itself
so that it knows the correct results. We consider this an open
problem and will investigate it in the future.

D. Differences between Replication and Quiz

Replication can be regarded as a "horizontal" voting while
Quiz can be seen as "vertical" sampling. Each has scenar-
ios for which it is clearly superior with respect to accuracy
or overhead alone. Under no collusion, Replication is 100%
accurate while with Type I cheaters Quiz can rely on a single
quiz for detection. Quiz does not suffer from collusion since
only one host is involved. In other scenarios, however, the
accuracy and overhead tradeoffs are complex. We will give a
detailed probability and statistics based analysis in section III.
If we take a scheduling view of Quiz and Replication, we see
that Quiz has unfavorable turnaround time (the time to com-
plete computation and data transfer for a task or a batch of
tasks[15]). Quiz’s turnaround time depends on the package
size. In a system with an abundance of hosts, Replication’s
turnaround time is exactly one round, except when reschedul-
ing is called for. In a resource-limited system, Replication
may have to serialize its voting, thus increasing turnaround
time.

III. MATHEMATICAL ANALYSIS

We analyze the behvior of Replication and Quiz under the
assumptions of Type II malicious hosts, those that cheat with
fixed probability b. (Type I is covered by the case b = 1.0.)

We consider a large pool of hosts in which p fraction are ma-
licious. Thus, p*b, denoted by q, expresses the probability of
attaining a bad result when randomly choosing a host.

We evaluate these schemes using two metrics: accuracy
and overhead as defined in Table I. For overhead we only ad-
dress the computational overhead, because the network com-
munication time for CPU-intensive workpile applications is
negligible compared to task execution times, which is nor-
mally measured in hours or tens of hours [15].

Symbol Explanation
p fraction of malicious nodes in the system
b the probability that a malicious node returns

a bad result
q p*b, the probability of attaining a bad result

when randomly choosing a host
k (for Replication) replication factor, a client

send one task and k replicas to (k+1) hosts
r (for Quiz)quiz ratio, the number of quizzes

divided by the number of normal tasks
s (for Quiz)package size, the total number of

normal tasks + quizzes sent to a host
m (for Quiz)the number of quizzes in a package,

equal to rs
r+1

Accuracy # of tasks with correct results
of tasks accepted by the client as correct

Overhead # of extra copies of tasks or quizzes executed
of tasks accepted by the client as correct

TABLE I
NOTATIONS FOR ANALYZING REPLICATION AND QUIZ

Replication in No Collusion Scenario. If there is no col-
lusion, the chance that two malicious hosts return the same
bad result is negligible, and thus the accuracy of replication
should be 1. Now let ORN represent the overhead for Repli-
cation with No Collusion. The calculation of overhead can
be broken down into two parts. The probability of getting
a majority consensus on the first round of task scheduling,
denoted by α, is

∑k/2
i=0 qi(1 − q)k+1−iCk+1

i , and overhead
in this situation is just k. If no majority is achieved in the
first round, a second attempt to schedule the same task is per-
formed. The overhead in this situation is k + 1 + ORN . By
coupling the two situations, we have an equation ORN =
α ∗ k + (1− α)(k + 1 + ORN), from which we can get:

ORN =
k + 1

k/2∑
i=0

qi(1− q)k+1−iCk+1
i

− 1 (1)

Replication in Type II Collusion Scenario. Assuming
that all the malicous hosts selected by the client return the
same result, the probability that good results dominate is∑k/2

i=0 qi(1 − q)k+1−iCk+1
i . The probability that bad results

take the majority is
∑k/2

i=0(1 − q)iqk+1−iCk+1
i . When there

is a tie (only when k is an odd number), meaning the num-
ber of good results equals the number of bad result, the task
must be rescheduled. Thus, the accuracy for Replication with
Collusion, denoted by ARC , and the overhead for Replication

with Collusion, denoted by ORC , is as follows:

ARC =

k/2∑
i=0

qi(1− q)k+1−iCk+1
i

k/2∑
i=0

qi(1− q)k+1−iCk+1
i +

k/2∑
i=0

(1− q)iqk+1−iCk+1
i

(2)

ORC =
k

k/2∑
i=0

qi(1− q)k+1−iCk+1
i +

k/2∑
i=0

(1− q)iqk+1−iCk+1
i

(3)
Quiz - A Simple Model. Quiz is not affected by collu-

sion since only one host is involved. The calculation of the
probability that a client accepts bad results under Quiz, de-
noted by FQ, could be broken down to three parts. First,
when a good host is selected(with probability 1−p), the client
will never get bad results; second, when a malicious host is
selected and gives correct results to quizzes(with combined
probability p ∗ (1 − b)m), the probability of accepting bad
results is b; third, when a malicious host is selected but fails
on quizzes(with combined probability p∗ (1− (1− b)m)), all
the tasks should be rescheduled. Thus the probability that the
client is cheated in this situation is FQ. Therefore we have
the equation FQ = p∗ (1− b)m ∗ b+p∗ (1− (1− b)m)∗FQ.
By resolving this equation we can calculate the accuracy for
Quiz in the presence of Type II cheaters as given in Equation
(4). The calculation of overhead can also be broken down to
two situations, like we have done in calculating ORN . The
probability that a package will be accepted in one round of
scheduling is (1 − p) + p(1 − b)m. The total overhead is
given in equation (5).

AQ =
1− p + p(1− b)m+1

1− p + p(1− b)m
(4)

OQ =
r + 1

(1− p) + p(1− b)m
− 1 (5)

Quiz - A General Model. In reality every malicious host
may have a different probability of cheating. Let random
variable β represent this probability value, and β falls into
a distribution whose density function is f(x), x ∈ [0, 1].
For every possible value(denoted by x) of random vari-
able β, the corresponding accuracy could be calculated as:
p(1− x)m(1− x) + p(1− (1− x)m)AQ. By counting every
situation pertaining to possible values of β, we have:

AQ = 1− p + p
∫ 1

0
f(x)(1− x)m+1dx +

pAQ

∫ 1

0
f(x)[1− (1− x)m]dx

By resolving this equation, we can get the relation between
AQ, m and the distribution of β, as shown in equation (6).
Following the similar process we can calculate the overhead
given in equation (7). This general model will be utilized to
analyze and implement a technique called Accuracy on De-
mand in section IV.

AQ =
p

∫ 1

0
f(x)(1− x)m+1dx + 1− p

p
∫ 1

0
f(x)(1− x)mdx + 1− p

(6)

OQ =
r + 1

1− p + p
∫ 1

0
f(x)(1− x)mdx

− 1 (7)

The next figures visually illustrate these equations devel-
oped for Type II cheaters for Replication and Quiz(we only
show simple model here). For all the graphs, we set k=r
(replication factor equal to quiz factor), yielding compara-
ble overhead for both schemes. In these graphs we set the
parameter b, probability of returning a bad result to 0.5. This
is a fair choice for comparison of the two schemes since at
the extremes of b = 0.0 and b = 1.0, Quiz will have 100%
accuracy while Replication will have the worst performance
at b = 1.0.

Fig. 1. Accuracy vs. Percentage of Malicious Hosts, k=r=2

Fig. 2. Overhead vs. Percentage of Malicious Hosts, k=r=2

As depicted by Figure 1, under collusion when the frac-
tion of malicious hosts increases, the accuracy of Replication
drops off dramatically, whereas the accuracy of Quiz declines
gradually. The accuracy of Quiz lies in between that of Repli-
cation with collusion and Replication with no collusion. Fig-
ure 2 shows the corresponding overhead which increases as
expected with increasing percentage of cheaters. Intuitively,
increasing the quiz ratio or replication factor increases ac-
curacy but at the cost of higher overhead. This is verified
by Figure 3, where both Quiz and Replication with collusion
slowly gain higher accuracy as the quiz ratio or replication
factor is increased. It is worth noticing that when quiz ratio
or replication factor is smaller than 8, which is a practically

Fig. 3. Accuracy vs. Replication/Quiz Factor, 30% of Type II, k=r=2

Fig. 4. Accuracy & Overhead vs. Package Size in Quiz, r=2

large value, the accuracy of Quiz is much better than Repli-
cation under the collusion assumption. Figure 4 shows the
tradeoff between accuracy and overhead, with respect to in-
creasing package size. As package size increases accuracy
increase reapidly while overhead grows gradually. However,
in reality, we have to consider the prolonged turnaround time
as a side-effect of larger package size.

IV. TRUST-BASED SCHEDULING

The philosophy behind trust-based scheduling is called
"trust but verify", which we believe should be the tenet of
future design of applications in open peer-to-peer networks.
Trust-based scheduling couples a result verification scheme
with a reputation system. By using a reputation system, a
client can reduce the chance of selecting malicious hosts,
thereby increasing overall accuracy. At the same time, by
giving priority to reliable hosts, the overhead will be reduced.

A. Trust-based Scheduling System Model

Figure 5 depicts our system model of trust-based schedul-
ing. The Task Scheduler fetches tasks from the task queue,
and selects a set of trusted hosts using the Reputation Sys-
tem. The Reputation System contains a Trusted List, a list of
candidate host nodes, each with a trust rating, and an optional
Black List, a list of host nodes known to be malicious. The
Result Verification Module uses its Trust List to select reli-
able hosts. It then inserts quizzes or disseminates replicas,

and verifies the results of quizzes or replicas. The Reputation
System is updated based on the consequence of this verifica-
tion, i.e., the trust values of hosts in the Trust List are updated.

The Result Verification Module uses two functions in its
operations. Based on the reputation value of a given host,
this module calculates the appropriate quiz ratio or replication
factor using a quiz ratio function or replication factor func-
tion. These functions generate quiz ratios (replication fac-
tors) that are lower for more highly trusted nodes, reflecting
the reduced need to verify the results from trustworthy hosts.
The Results Verification Module uses a second function, the
trust function, to update hosts trust values after verifying the
returned results. The functions we use are described in Sec-
tion V.

Fig. 5. Trust-based Scheduling Model

B. Reputation System Classification

There are two dimensions involved in the computation of
a host’s trust value. Formation of local trust values is con-
trolled by a trust function, which computes the trust value
based on direct transactions with the host to be rated. Previ-
ous work on reputation systems [14] [16] either uses the cu-
mulative number of successful transactions, or uses the high-
est satisfaction value in the near past. Formation of aggre-
gated trust values uses a number of methods ranging from
simple averages to sophisticated mathematical functions.

Reputation systems can be characterized by the degree of
trust information aggregation:
• Local Sharing. Each peer in the system only uses informa-
tion based on its own interactions with hosts that have vol-
unteered to do work for that peer. There is no information
sharing about trust values with other peers.
• Partial Sharing. Each peer shares information with a subset
of all of the peers. The most common type is information
sharing with neighboring nodes in the overlay (or physical)
network.
• Global Sharing. This presumes a mechanism to gather in-
formation from everyone in the peer-to-peer community to
calculate a global trust value for a particular host and to share
the trust values among all peers.

Intuitively, as the level of cooperation becomes broader
from local sharing to global sharing, reputation systems will
gain performance, but at the cost of increased network traf-
fic and communication overhead. For cycle sharing systems,
a more global reputation system is appropriate because the
time comsumed executing a single task is several orders of
magnitude higher than the amount of network traffic gener-
ated.

Based on this taxonomy, we study five different reputation
systems in order to quantify the performance gains achievable

from the use of a reputation system for trust-based schedul-
ing.

(1) Local Sharing Strategy:
• Local Reputation System. Every peer maintains its own
trusted list and black list separately, which are purely based
on direct transactions with others in the past. Peers never ex-
change any trust information with others. Clearly, this imple-
mentation is the least expensive in terms of network traffic.

(2) Partial Sharing Strategies:
• NICE Reputation System [16]. NICE is similar to local
reputation system except that when deciding the reputation
value for a previously unrated peer, NICE performs a tree-
based search on the trust graph that is logically formed using
the trust relationship among peers. By traversing the trust
graph, it builds a chain of trust and the new trust value is
based on this trust path. This scheme has high overhead in
the searching process.
• Gossip Reputation System. Peers periodically gossip
about host trust values with the most trusted hosts in their own
Trust List. The traffic overhead is controlled by adjusting the
gossiping frequency and number of gossiping partners.

(3) Global Sharing Strategies:
• EigenTrust Reputation System [14]. EigenTrust pro-
posed a way of aggregating trust values reported by every
peer in the system to form a normalized global reputation
value for each peer. The original EigenTrust scheme required
recalculating the reputation value vector each time a single
trust value was updated by some peer. This incurs a high
overhead in communication and computation.
• Global Reputation System. All peers share a single Trust
List and optional Black List. Trust values reported by indi-
vidual peers are aggregated using simple a function (see Sim-
ulation section for details).

C. Trust-based Scheduling Algorithms

Traditional reputation systems only provide a service to
look up the reputation value for a single peer. We extend these
reputation systems to return a list of most trusted free hosts.
Whenever a request is received, the trusted list is traversed
from the most trusted to least trusted hosts to find currently
available hosts.

Table II and and Table III give the pseudo codes for Trust-
based Replication and Trust-based Quiz. These algorithms
contain two parts: Scheduling uses the reputation system to
choose the hosts with the highest trust rating. Verification and
Updating Reputation System updates the trust values upon re-
ceiving correctly or incorrectly completed tasks as discerned
from the replication voting process or the quiz results.

D. Accuracy on Demand

Applications in peer-to-peer cycle sharing system normally
have different goals and properties, thus requiring different
levels of accuracy. Instead of gambling on the unpredictable
accuracy which depends on the behavior of malicious hosts,
most clients want to have a desired level of certainty con-
cerning the correctness of their tasks. This is what we called
Accuracy On Demand(AOD). AOD ensures that the obtained
accuracy is above a demanded level, by dynamically adjust-
ing quiz ratio or replication factor according to the reputation
value of a given host.

Trust-based Replication
1. Scheduling
while(task queue not empty):
for each task in task queue:
a. fetch a most trusted free host(aid by repu sys);
b. calculate the replication factor k, and determine
the # of extra hosts needed, say c;
c. pick c most trusted free hosts(aid by repu sys),
if(not enough hosts are allocated) then

stall for a while;
2. Verification and Updating Reputation System
for each task scheduled:
upon receiving the result set from all replicas:
a. cross check the results,
if(# of majority results > (k + 1)/2) then

accept the majority result;
else

reject all results, reschedule that task later;
b. update reputation system,
if(task result is accepted) then

for each host H who was chosen in replication:
if(host H gave majority result) then
increase trust value for H;

else if(host H gave minority result) then
decrease trust value for H;

TABLE II
TRUST-BASED REPLICATION ALGORITHM

In trust-based scheduling, the accuracy a client will gain
depends on two factors. First, the reputation system helps to
select a host with trust value v. This ensures some level of
accuracy. Second, the verification scheme itself also can sta-
tistically guarantee a certain level of accuracy based on the
quiz ratio r or replication factor k. Therefore, given a par-
ticular host with trust value v, the result verification module
in AOD will automatically select the appropriate quiz ratio or
replication factor to meet the desired level of accuracy.

We use Quiz to illustrate the calculation of the proper quiz
ratio m′ to achieve a demanded level of accuracy A. Using
Equation (6), we can solve for m, the total number of quizzes
needed to achieve an accuracy value A. When selecting a
host that has previously correctly computed v quizzes, we
can compute m′ = m − v, the additional number of quizzes
needed to achieve accuracy A. We can keep track of v by
using the linear trust function described in [14] in which the
trust function increments a node’s trust value v by one for
each correctly computed quiz.

Note: the percentage of malicious node p and the distri-
bution of β in Equation (6) is unknown for the clients. We
need to conduct real system measurements or invent auto-
matic detection techniques for p and β distribution in the fu-
ture. For now, we just assume a rather dangerous scenario
where p = 0.5 and β falls into uniform distribution between
0 and 1 (means f(x) = 1). Take these assumptions, we can
have the relation between m′ and A, as:

m′ =

√
1

1−A
− v − 2 (8)

Trust-based Quiz
1. Scheduling
while(task queue not empty):

a. fetch a most trusted free host H(aid by repu sys);
b. calculate the quiz factor r, and determine
the # of tasks to schedule, say t,
and the # of quizzes to be inserted, say i;

c. pick t tasks from task queue, mixed with i quizzes
2. Verification and Updating Reputation System
for each package scheduled:

upon receiving all results from the host H:
a. check the results for quizzes in that package,
if(all results for quizzes are correct) then

accept all the results in that package;
else

reject all results, reschedule those tasks later;
b. update reputation system,
if(task result is accepted) then

increase trust value for H;
else

decrease trust value for H;

TABLE III
TRUST-BASED QUIZ ALGORITHM

Equation (8) demonstrates that given the trust value of a
host, if we want to achieve an accuracy A, how many quizzes
should be contained in one package. Notice that when the
required number of quizzes exceeds the configured package
size, a client will just send a whole package of quizzes, to
avoid the risk of lower accuracy than the desired level.

V. SIMULATIONS

A suite of simulations were conducted in order to verify the
effectiveness of the trust-based scheduling model and com-
pare the performance of Replication and Quiz in a variety
of scenarios. Our simulator evaluates the two result verifica-
tion schemes combined with the five reputation systems de-
scribed earlier. Our experiments simulate the macro view of
cycle sharing systems, including the task generation model,
task execution by peers, fraudulence of task results, etc., but
does not model low level activities such actual computation
or network traffic.

A. Simulation Models

A.1 Cycle Sharing Model

We adopt a dedicated cycle sharing model in our simula-
tion, in which every peer has no private computing burden
and devotes all its cycles to client applications. In reality, a
peer in a cycle sharing system might only donate its com-
puting resources when it is in idle state, e.g. in screensaver
mode.

In our simulations, tasks have the same length in terms of
run time. We model a homogeneous system in which every
peer has the same computing power. Each peer performs both
as a client who generates tasks and as a host who computes
tasks. A host can only conduct one task at a time and if it
accepts n tasks, it keeps busy for n rounds. We simulate a

system with a total number of 1000 nodes and some of them
are configured as Type I, Type II or Type III malicious nodes
as described in section II.

The topology of the peer-to-peer cycle sharing overlay net-
work is not a critical factor in our simulation, because we
don’t measure traffic overhead. Thus, we assume an underly-
ing routing infrastructure which connects every pair of peers.
Whenever a node wishes to contact other unknown nodes, it
randomly chooses nodes from the overlay network. This ran-
dom peer selection occurs when a node recruits new hosts to
its trusted list, e.g. during bootstrap period or upon exhaust-
ing its trusted list.

A.2 Task Generation Model

We use synthetic task generation models based on classic
probability distributions. Table IV lists two synthetic task
generation models used in our simulation: Syn1 and Syn2.

Syn1 uses a normal distribution for the number of tasks
generated per round and an exponential distribution for inter-
arrivals of task generation events. Syn2 is based on our anal-
ysis of a real trace from the Condor [5] load sharing system.
We found that the total number of tasks generated by one
client during a long period (e.g. 72 hours) falls into an expo-
nential distribution. This means that many peers only gener-
ate very few tasks while few peers produce large numbers of
tasks. Syn2 models this skewed task generation pattern. Our
simulation results didn’t show significant difference between
these two workload models. Thus, we only show results from
Syn1.

The expected value µ of the exponential distribution of task
inter-arrival periods is a simulation parameter. In section D
we will modify this value in order to change system load.

of tasks task runtime inter-arrivals
Syn1 Normal 1 round Exponential

µ = 20 µ = 50rounds
Syn2 Normal 1 round Exponential

µ ∼ Exponential µ = 50rounds

TABLE IV
TWO SYNTHETIC MODELS OF TASK GENERATION

A.3 Reputation System Models and Trust Functions

The trust values used in our simulation lie in the interval
[0,1], where 0 means most untrustworthy and 1 means most
trustworthy. Initially, all peers have the default trust value of
0. When an unknown peer is recruited to a host’s trust list,
the default trust value for that peer is also 0.

The trust function defines how a client should adjust the lo-
cal trust value for a host after checking the quiz or replication
results. Previous work [14] proposed a linearly increasing
function after each successful transaction. We modeled three
trust functions as follows:

Linear Increase Sudden Death (LISD). Increase the trust
value linearly when successfully verifying a quiz or replica-
tion result, and clear the trust value to 0 upon a failed quiz or
false replication.

Additive Increase Multiplicative Decrease (AIMD.) In-
crease the trust value linearly upon success, and decrease the
trust value by half upon a failure. It is observed in the simu-
lation that this function performs better for replication under
the assumption of collusion.

Blacklisting. Increase as in LISD or AIMD. After a veri-
fication failure, put the bad host into a blacklist.

A.4 Quiz Ratio and Replication Factor Functions

A linear function serves as both the quiz ratio and repli-
cation factor function. When the trust value is less than a
certain value, this function gives a linearly decreased quiz ra-
tio or replication factor as the trust value increases. After the
trust value exceeds the threshold, a constant value of quiz ra-
tio or replication factor will remain as a strategy fighting the
Type III malicious behavior.

A.5 Metrics

We use the same metrics used in our mathematical analysis
of Replication and Quiz scheme in Section III. The following
lists the definitions used in our simulations:

Accuracy =
of tasks with correct results

of tasks accepted by the clients

Overhead =
of quizzes or replicas + # of rejected tasks

of tasks accepted by the clients

B. Simulation Results

B.1 Contribution of Reputation Systems

In order to show the contribution of various reputation sys-
tems, we experimented with the five reputation systems dis-
cussed in section IV: Local, NICE, Gossip, EigenTrust and
Global, listed from the least information sharing(local) to the
highest degree of knowledge sharing(global).

In the following graphs, we show the evolution of accuracy
and overhead over time. The X-axis represents the total num-
ber of finished tasks throughout the system. At the end of the
simulation, on average 500 tasks are executed for each client.
The Y-axis gives the average accuracy and overhead.

Fig. 6. Overhead reduced over time, for Replication with reputation systems,
replication factor is 1, 30% Type II malicious nodes.

Figure 6 shows the impact of adding a reputation system
to Replication under non-colluding scenario. We clearly see

Fig. 7. Accuracy converges to 1 over time, for Quiz with reputation systems,
quiz ratio in [0.05,1], 30% Type II malicious nodes.

Fig. 8. Overhead reduced over time, for Quiz with reputation systems, quiz
ratio in [0.05,1], 30% Type II malicious nodes.

the declining overhead over time in the replication scheme, as
the reputation system becomes mature and guides the client
to select the trustworthy host to replicate tasks, reducing the
chance of rescheduling. The two global reputation systems
brings the overhead close to the ideal value of 1.0. Note the
consistently high overhead of replication without reputation
system.

Figures 7 and 8 shows the improvement of accuracy and
overhead over time in the trust-based Quiz scheme. As can
be seen, the accuracy obtained through trust-based Quiz is
gradually increased whereas the overhead is firmly reduced.
Note that the accuracy converges to 100% while the corre-
sponding overhead converges to a minimum level. It is con-
ceivable that for a long lived system, the accuracy can poten-
tially reach 100% without causing excessive overhead. Also
note that this strong performance is achieved with very small
values of quiz ratio.

To see how Type III malicious hosts influence trust-based
scheduling, see Figure 9. The dip in the graph corresponds
to the moment when the cheater switches from good to bad
behavior. Note that Quiz with global reputation system re-
covers and quickly converges to 1; Quiz with local reputation
system recover much more slowly; without a reputation sys-
tem, Quiz cannot recover from this switch. This figure shows
that a minimum quiz ratio or replication factor must be main-
tained to fight for Type III malicious hosts.

Fig. 9. Accuracy recovers over time, for Quiz with reputation systems, quiz
ratio in [0.05,1], 30% Type III malicious nodes.

Fig. 10. Accuracy on different percentage of colluding hosts, calculated
among the first 500000 tasks submitted to the system from the beginning

B.2 Replication VS Quiz

In this section, we investigate how a reputation system af-
fects the relative ranking of performance of Replication and
Quiz. Figures 10 and 11 show the accuracy and overhead of
the three scenarios: Replication under No Collusion, Quiz,
and Replication under Collusion. The addition of reputation
systems to the basic verification schemes doesn’t change the
relative performance of Quiz and Replication (see Figures 2
and 3 from the theoretical analysis). But it clearly improves
both accuracy and overhead in all the three scenarios. An-
other point worth noticing is that the relative improvement
of Quiz overhead is prominent compared to the replication
scheme. This is because Quiz is more efficient in feeding
verification outcomes to reputation systems. Quiz can defi-
nitely detect whether a host is cheating for every instance of
verification, whereas Replication sometimes just throw tasks
away without updating the reputation system because there is
no dominating result.

Notice that the range of quiz ratio and replication factor
is set to [0.05,1], meaning sometimes a client will not repli-
cate at all and directly accept the task result. That is why
Replication with No Collusion can not always achieve 100%
accuracy.

Fig. 11. Overhead on different percentage of colluding hosts, calculated
among the first 500000 tasks submitted to the system from the beginning

Fig. 12. Accuracy is improved by adding blacklist to Quiz with reputation
systems, 30% Type II malicious nodes

B.3 The Impact of Blacklist in Reputation Systems

Since Quiz scheme can be very confident in detecting mali-
cious hosts, a blacklist can be utilized to avoid a client choos-
ing a malicious host in the future, thus further improving the
performance of Quiz.

Figure 12 shows the greater accuracy gained by using a
blacklist in Quiz. We also observed that overhead decreases,
but we don’t show the graph due to space limits. How-
ever, it is interesting to note that a Black List has negative
consequences for performance of Replication since collud-
ing nodes in the majority will cause Replication to put honest
nodes on the Blacklist!

B.4 Accuracy On Demand

To exemplify the effectiveness of Accuracy on De-
mand(AOD), figure 13 shows a comparison of accuracy over
time among three configurations: linear quiz ratio function,
99.5% AOD and 99.95% AOD, under a system with half Type
II malicious hosts. We only use Quiz with global reputation
system to illustrate that the accuracy of AOD is solidly main-
tained above the demanded level, whereas Quiz with linear
quiz ratio function has accuracy as low as 98% at the begin-
ning, which is beyond the scope of the graph.

Figure 14 shows the corresponding overhead. The large
overhead costs for AOD in the beginning of simulation falls
into our expectation. Actually, to guarantee a certain level

Fig. 13. Accuracy on Demand ensures the demanded accuracy, for Quiz
with global reputation system, 50% Type II malicious nodes.

Fig. 14. Accuracy on Demand incurs high overhead in the beginning, for
quiz with global reputation system, 50% Type II malicious nodes.

of accuracy, AOD has to issue huge number of quizzes for
unfamiliar hosts. This is the situation at the start of our sim-
ulation when every host has the reputation value of 0. But in
an evolved system where good hosts already have high repu-
tation, AOD will send fewer quizzes to trusted hosts, resulting
in a lower overhead.

By using accuracy on demand, we argue that trust-based
scheduling can provide an arbitrarily high accuracy without
the cost of long-term high overhead (like traditional replica-
tion scheme does).

VI. RELATED WORK

A. Result Verification Schemes

The result verification problems exist in every distributed
computing system. However, most of the previous work such
as mobile agent system seldom considers the cheating on
computation a serious problem, instead, the protection of host
machine from malicious mobile code is extremely studied.
Sander and Tschudin [12] took an opposite road to seek for a
method to protect mobile agent from malicious hosts. Their
scheme requires an encrypted function E(f). The client sends
two functions f(x) and E(f)(x) to the host. After getting the
results, it performs a comparison of P(E(f))(x) and f(x) , and
the equality of this two value demonstrates the honest com-
putation. As pointed out in their paper, finding an encrypted
function for a general function is very difficult.

Golle and Mironov [13] proposed a ringer scheme in dis-
tributed computing for a special type of computation: they as-
sume f(x) is a strictly one-way function, and host should com-
pute f(x) for all x in a domain D. The ringer scheme allows
the client to compute several "checkpoint" value yi = f(xi),
and send all the yi to the host to expect the value of corre-
sponding xi (which is known in advance to the client). Du
et. al. [17] extends this scheme to achieve uncheatable grid
computing. They require a host who compute f(x) in the do-
main of D save all the intermediate result of f(x) and build a
merkle tree to prove the honest computation for every input
x. However, this scheme is weak in that the building of the
huge merkle tree is costly and it only combats the cheating of
incomplete computation.

B. Reputation Systems

Trust or reputation mechanisms [18] [19] are effective in
enhancing the reliability of shared resources in the p2p file-
sharing systems, in which the quality of the resources is mea-
surable after the resource trading. The basic idea is to appoint
every node a trust value based on its history behavior, and
save that value properly in the system. Kamvar et al. [14]
proposed a scheme that uses a DHT to calculate and store the
trust value of each node. Hash functions are used to deter-
mine the mother nodes (more than one) of each node, which
take care of calculation and storage of the trust value of that
node. The main drawbacks of this scheme are the mainte-
nance of the consistency among the mother nodes and the
vulnerability of the mother nodes since everyone knows who
its mother nodes are.

Singh and Liu [20] designed a more secure scheme which
utilized a smart public key algorithm to query trust value
anonymously. If a peer A want to know another peer say
B’s trust value, it floods a query to the p2p network, then
only peer B’s THA (denotes for trust holding agents) nodes
return the digital signed trust value. The bootstrap servers
are in charge of the assignment of THA nodes to each peer,
along with the public-private key pairs. So the THA nodes
are protected since nobody knows the THA nodes of a par-
ticular peer. But the message flooding makes this scheme
un-scalable.

A more scalable and efficient scheme was proposed by Lee
et al. [16], which could infer reputation ranking for a particu-
lar node based on a chain of trust. Every node only stores the
trust value for those nodes that had direct transaction with
it. When a node needs to know a stranger node’s reputa-
tion value, it only queries its honest friends, and in turn its
friends would query their friends. As the distance increases,
the weight of the returned trust value decreases. The weak
point of this scheme is the assumption that the recommenda-
tion of a trusted friend is also trustworthy. This assumption
does not hold if a malicious peer always conducts transaction
honestly while cheats on reputation inference.

VII. CONCLUSION AND FUTURE WORK

We have presented a sampling-based result verification
scheme called Quiz as an alternative approach for Replica-
tion, especially in systems with colluding cheaters. We also
proposed trust-based scheduling in open cycle sharing sys-

tems by coupling verification schemes with reputation sys-
tems. A client in such system can dynamically adjust the level
of verification based on a host’s reputation, thus ensuring ar-
bitrarily high accuracy. The philosophy behind this paper is
called "trust but verify". We believe this tenet should be taken
into serious consideration for the future design of solutions in
open peer-to-peer networks.

Our future work involves three parts. First, to make Quiz
a reality, we need to find efficient and scalable mechanisms
for generating quizzes. Second, a further study of Accuracy
on Demand for a variety of reputation systems and verifica-
tion schemes should be conducted. Finally, we would like to
invent a cooperative scheme to detect or estimate the fraction
of malicious nodes and the distribution of malicious nodes’
behavior to make Accuracy on Demand more precise.

REFERENCES

[1] “Seti@home: The search for extraterrestrial intelligence project,”
http://setiathome.berkeley.edu/.

[2] Andy Oram, Ed., Peer-to-Peer: Harnessing the Power of Disruptive
Technologies, O’Reilly & Associates, Sebastopol,CA,USA, 2001.

[3] Virginia Lo, Daniel Zappala, Dayi Zhou, Yuhong Liu, and Shanyu
Zhao, “Cluster computing on the fly: P2p scheduling of idle cycles
in the internet,” in IPTPS, 2004.

[4] “Folding@home distributed computing project,”
http://www.stanford.edu/ group/ pandegroup/ folding/.

[5] “Condor project,” http://www.cs.wisc.edu/condor/.
[6] “Ourgrid project,” http://www.ourgrid.org/.
[7] Keir A Fraser, Steven M Hand, Timothy L Harris, Ian M Leslie, and

Ian A Pratt, “The xenoserver computing infrastructure,” in Technical
Report UCAM-CL-TR-552, Cambridge University, UK, 2003.

[8] Yun Fu, Jeffrey Chasey, Brent Chunz, Stephen Schwabx, and Amin
Vahdat, “Sharp: An architecture for secure resource peering,” in
SOSP’03, 2003.

[9] Ian Foster and Carl Kesselman, Eds., The Grid:Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, San Francisco,USA,
1999.

[10] Andrew Colley, “Cheats wreak havoc on seti@home: partici-
pants,” ZDNet Australia, 2002. http://www.zdnet.com.au/ news/ secu-
rity/ 0,2000061744,20269509,00.htm.

[11] David Molnar, “The seti@home problem,” E-Commerce, 2000.
[12] T. Sander and C. Tschudin, “Protecting mobile agents against mali-

cious hosts,” in G. Vigna (ed.) Mobile Agents and Security, LNCS,
1998.

[13] Philippe Golle and Ilya Mironov, “Uncheatable distributed computa-
tions,” in Proceeding of RSA Conference, Cryptographer’s track, 2001.

[14] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust
algorithm for reputation management in p2p networks,” in Proceedings
of the Twelfth International World Wide Web Conference, 2003.

[15] Derrick Kondo, Henri Casanova, Eric Wing, and Francine Berman,
“Models and scheduling mechanisms for global computing applica-
tions,” in International Parallel and Distributed Processing Sympo-
sium, 2002.

[16] Seungjoon Lee, Rob Sherwood, and Bobby Bhattacharjee, “Coopera-
tive peer groups in nice,” in IEEE Infocomm, 2003.

[17] Wenliang Du, Jing Jia, Manish Mangal, and Mummoorthy Murugesan,
“Uncheatable grid computing,” in ICDCS, 2004.

[18] Stephen Marsh, Formalising Trust as a Computational Concept, Ph.D.
thesis, University of Sterling, 1994.

[19] Karl Aberer and Zoran Despotovic, “Managing trust in a peer-2-peer
information system,” in ACM CIKM, 2001.

[20] Aameek Singh and Ling Liu, “Trustme: Anonymous management of
trust relationships in decentralized p2p systems,” in IEEE International
Conference on Peer-to-Peer Computing (ICP2PC), 2003.

