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Abstract—
With the continued growth of computing power and reduction

in physical size of enterprise servers, the need for actively
managing electrical power usage in large datacenters is becoming
ever more pressing. By far the greatest savings in electrical
power can be effected by dynamically consolidating workload
onto the minimum number of servers needed at a given time
and powering off the remainder. However, simple schemes for
achieving this goal fail to cope with the complexities of realistic
usage scenarios. In this paper we present a combined power-and
performance-management system that builds on a state-of-the-
art performance manager to achieve significant power savings
without unacceptable loss of performance. In our system, the
degree to which performance may be traded off against power
is itself adjustable using a small number of easily-understood
parameters, permitting administrators in different facilities to
select the optimal tradeoff for their needs. We characterize
the power saved, the effects of the tradeoff between power
and performance, and the changes in behavior as the tradeoff
parameters are adjusted, both in simulation and in a sample
deployment of the real system.

I. INTRODUCTION

Energy consumption within data centers has become a major

concern for businesses and governments worldwide. As server

power densities continue to increase, the cost of the energy

used to power and cool a server during its lifetime is becoming

a significant fraction of the cost of the hardware itself.

Given the widely-recognized value of reducing power con-

sumption in data centers, a large variety of power-saving

measures have been proposed, some of which are being

implemented and marketed. Chips have been equipped with

low-power states that are manipulable by firmware or software

(e.g. by the operating system or middleware), and low-power

servers that exploit these states are being designed. At the

facilities level, more efficient power supplies and cooling

systems are being developed and marketed. Kephart et al. [1]

and Chase et al. [2] have previously argued that workload

consolidation with powering off spare server machines is the

most effective way to conserve electrical energy. Our study

of power usage curves as a function of CPU usage performed

on IBM blade center hardware confirms this argument. For

example, we found out that on an IBM LS20 dual-core AMD

Opteron blade as much as 80% of server power usage is

incurred in idle state. Only 20% may be controlled by other

techniques while the server is powered on. In a much more

extensive study Fan et al. [3] found a similar result.

In this paper, we describe an application placement con-

troller (APC) that consolidates workload to achieve substantial

power savings. It is an augmentation of an existing commercial

APC that manages systems to specified performance objec-

tives. We address a key challenge: how to place applications so

as to meet combined power and performance objectives. One

straightforward approach to addressing the tradeoff is to give

blanket priority to performance by consolidating workload

onto the minimum number of machines sufficient to serve it,

and turning off the unused machines. However, much greater

energy savings are possible if we allow application perfor-

mance to be somewhat degraded. In the system we describe

here, an application’s performance is measured relative to a

service level agreement (SLA), which permits us in principle

to reduce the amount of computing resources allocated to

the applications—thereby saving power at the expense of

performance—to the point where the SLA goals are just barely

being met. However, this approach is too inflexible. Even if

service contracts specify SLAs of applications, the service

provider should be able to decide whether to always meet

the SLAs based on their value, penalties, and the cost of

running the datacenter (of which electrical power usage is an

important component). Therefore, in this paper we take on the

more involved problem of modeling a tradeoff between power

and performance and designing a controller that optimizes

application placement and server usage so as to achieve an

optimal tradeoff. It bears emphasizing that we are doing this

by extending an existing performance management system [4],

thereby incorporating the state-of-the-art constrained perfor-

mance optimization techniques it employs [5].

The remainder of this paper is organized as follows. Sec-

tion II describes a formal model of the system and gives our

proposed solution the power-performance coordination prob-

lem. Section III presents experimental results and simulation

data characterizing how our solution performs in practice. Next

is a discussion of related work, followed by conclusions and

a summary of future work.

II. SYSTEM AND ALGORITHMS

In this section we first describe our system, and then

describe how we have augmented an placement controller to

simultaneously manage power and performance.
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Fig. 1. System diagram

A. System description

We consider a cluster of server machines servicing requests

to web applications, as shown in Figure 1. Each application

may be replicated for high-availability and performance to

multiple server machines. The set of all replicas of a given

application (here called the instances of the application)

constitutes its application cluster. Application clusters may

arbitrarily overlap on physical machines.

Each application is accessed by a certain number of client

sessions, which varies over time. Session requests arrive at an

L7 proxy router that provides flow-control. The flow controller

places incoming requests in queues and dispatches them from

the queues so as to prevent overload on the backend server

machines. The dispatching is done based on a weighted-fair

round robin scheduling discipline. The dispatching weights are

controlled based on application SLAs, which are defined in

terms of average response time goals. The flow controller mon-

itors and profiles the incoming request flows while estimating

their average service time on each backend server, response

time, number of client sessions, client think times, and CPU

work factor [6]. Based on these data, the flow controller

models application response time as a function of CPU speed

allocation. The model is used to calculate the optimal division

of server CPU capacity among applications, which translates

into optimal dispatching weights for the dispatcher. The flow

controller is limited by the current placement of application

instances, which introduces constraints on the amount of CPU

capacity that may be used by each application. The design of

the controller is described in detail in [7] and [8].

The placement of applications may be controlled by starting

and stopping individual instances of that application. Ap-

plication placement may be changed dynamically based on

workload intensity and application SLAs. In the past, we

have implemented a controller that periodically evaluates the

placement of applications and modifies it to better optimize

the allocation of resources. To achieve this goal it collaborates

with the flow controller: the flow controller provides the place-

ment controller with application performance information. The

placement controller places applications according to the same

optimality criteria as those used by the flow controller.

When placing application instances, the placement con-

troller strives to meet CPU and memory capacity constraints

as well as various other constraints such as allocation restric-

tions, collocation restrictions, affinity constraints, minimum

and maximum number of instances for each application, etc.

The placement controller that achieves these objectives has

been introduced in [5].

Even though they jointly solve the same optimization prob-

lem, the flow and placement controllers are separate entities

working on different time scales. The flow controller readjusts

queue dispatching weights every 15-30 seconds, which ensures

rapid response to workload intensity changes. Placement is

readjusted every several to tens of minutes, as placement

changes are typically heavy-weight and time consuming.

In this paper, we extend the placement controller with the

ability to consolidate application instances on a subset of

available server machines so as to permit turning off the

remaining machines.

B. Formal system model

To model the system, we start with a set of server machines

(referred to as nodes) N = {n1, . . . , nN}. At any time, a node

ni is either powered on or off. We denote the set of nodes that

are powered on by N on. Each node n has CPU capacity Ωn

and memory capacity Γn.

We also have a set of applications M = {m1, . . . , mM}.

The placement matrix P describes the way instances are

distributed across nodes: Pmn = i means that application m
has i instances running on node n. For this paper, we only

consider the case i ∈ {0, 1}. Obviously, when Pmn = 0 for

all m, then node n may be turned off to save power, i.e. it

may be excluded from N on.

With a given placement P , each application instance is

allocated a portion of the memory and CPU resources of

the node on which it is running. As was noted above, the

placement must obey a variety of constraints and policies

that are unrelated to performance goals. Fortunately, these

complications have no effect on the power-vs.-performance

tradeoff with which we are concerned. In the remainder of

this paper, we will therefore focus almost exclusively on the

CPU allocation. The amount of CPU resource allocated to the

instance of application m running on node n is denoted by

ωmn. We will denote by L the CPU allocation matrix giving

ωmn for all m and n. Clearly we have 0 ≤ ωmn ≤ Ωn

and Pmn = 0 implies ωmn = 0. It is also useful to form

partial sums over applications (ωnode
n =

∑
m ωmn) and over

nodes (ωapp
m =

∑
n ωmn). In order to place application

instances, both P and L must be computed, but from the

perspective of the placement controller they are tightly linked.

Henceforth, we will use L to describe application placement,

as the CPU allocation has the more direct influence on power

consumption.

Based on our observations of several models of Intel- and

AMD-based servers, we model the electrical power usage Π
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of a running node as a linear function:

Πn(ωn) = p0,n + p1,nωnode
n (1)

where p0,n, the idle-power term, is electrical power used by

node n if it is powered on but idle. We can express the total

electrical power usage as a function of CPU allocation as

follows:

Π(L) =
∑

n∈N on

[
p0,n + p1,nωnode

n

]
(2)

As was noted above, in practice the idle-power terms dominate

the CPU-dependent terms by a factor of 3− 5 or more, even

when a node is running at capacity (so ωn = Ωn).

We define application performance vector in terms of re-

sponse time as follows: dm = τm−RTm

τm
, where τm represents

the response time goal defined in the SLA for application m,

and RTm is the measured response time. Thus the performance

for an application is 0 when the SLA is just being met, and 1

when the response time is perfect, i.e. equal to 0. (In this paper,

the performance is based upon response time, but in general

it can be any performance metric, such as throughput.)

To express the tradeoff between application performance

and electrical power usage, we introduce a system utility

function U(d,Π) that depends on both the performance vector

d (in which component dm represents the performance of

application m) and the total power consumption Π. Following

refs. [2], [1], we assume that the utility can be separated into a

performance value portion V (d) and an electrical power cost

portion C(Π); the net utility is simply U = V −C. Since both

the performance and the power consumption are determined

by the CPU allocation matrix, V , C and U are correspondingly

functions of L.

In general, one can envision many different plausible func-

tional forms for V (d) and C(Π); this is a matter for the busi-

ness person or system administrator to decide. For purposes of

this paper, we choose specific forms that experience suggests

are practical. First, we assume that the electrical power cost

is linear in the power consumption, and for simplicity set

C(Π) = Π; any constant of proportionality can be absorbed

into the value function. Second, we take the value function

V to depend on d. The total value function is defined as

a sum over application-specific value functions: V (d) =∑
m vm(dm). Specific forms for the functions vm(dm) will

be discussed in the next subsection.

It might seem that we can simply compute the CPU allo-

cation L that optimizes U(L) = V (d(L)) − Π(L). However,

there are some complications that require us to take a more

subtle approach that constrains our search to a subset of

the full universe of possible L. Previous authors [7] have

found that making allocations according to a utility function

that sums over individual application value functions unduly

favors the applications that are deemed more “important”,

often starving applications with lower value to the point where

their SLAs are violated dramatically. The resulting system

behavior can be hard to predict and analyze. Moreover, system

administrators tend to expect “fair” resource allocation, in

which all applications are doing approximately equally well

in meeting their SLA goals, i.e. the performance values dm

are roughly the same. Fairness is achieved in the existing

placement controller by choosing an allocation L∗ according

to a max-min optimization over L:

L∗ = argmax
L

min
m

dm(L) (3)

In order to combine the fairness achieved by Eq. (3) with

the power-performance tradeoff that would be achieved by

optimizing over U(L), we separate the problem into two

parts solved by two conceptually different entities operating

on different timescales: a power controller that determines

which nodes are to be turned on, and a placement controller

that determines how the applications are to be placed on

those nodes. The second of these is essentially the existing

placement controller, which uses Eq. 3 to determine L∗ given

a fixed set of nodes. As will be described more fully at

the end of section II, the power controller considers various

possible settings of N on, querying the placement controller

to determine what would be the resulting L∗(N on). The

power controller then computes the net utility U(L∗(N on)) =
V (d(L∗(N on))) − Π(L∗(N on)), and selects N on∗ to max-

imize U(L∗(N on∗)). The resulting solution will in general

yield a somewhat lower U than would have been attainable

with no constraints on L, but as will be seen in Section III-A

it yields a good power-performance tradeoff that also satisfies

the fairness criterion.

C. Definition of performance value function

Now we describe in further detail the application value

functions vm(dm) that compose the total value function V (d).
We seek functions that promote the behavior that system

administrators would desire and expect, and possess tunable

parameters that provide flexible controls over their shape that

reflect a range of power-performance tradeoffs in an under-

standable manner. Moreover, we seek functions that permit

us to select the desired level of application performance and

to control the rate with which the function value changes

as the distance between an achieved performance level and

the desired performance level increases. This rate of change

determines the relative importance of application performance

and electrical power savings.

Based on these considerations, we choose for this paper the

following function:

vm(dm) = vm,1 + vm,0(1− (1 + dm,0 − dm)k) (4)

The parameters of vm(dm) can be interpreted as follows.

The value of dm,0 configures the desired level of application

performance. For example, we use dm,0 = 0 when it is

sufficient to only meet SLA goals. We use dm,0 = 1 when

we want the system to offer the best possible performance

and only consolidate unused cycles; intermediate values allow

continuous tuning between these extremes. We can also use

it to implement a safety zone to prevent SLA violations as a

result of the unavoidable inaccuracies of profiling and mod-

eling techniques used by our system. Parameter k (‘rigidity’),
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which is greater than or equal to 1, controls the importance

of achieving dm,0 relative to saving power. A low value of

k permits the system to reduce physical machines usage in

violation of dm,0. A high value of k forbids such a tradeoff,

as it makes value function essentially a step function. The

value of vm,1 simply controls the vertical offset of the value

function and is given here for cosmetic reasons. Since we

are only concerned with finding the allocation that achieves

the optimal tradeoff, and not with the absolute value of that

tradeoff, vm,1 may be set to 0 with no loss of generality.

Parameter vm,0 controls the absolute value of the value

function, which must be dependent on workload intensity.

Parameter vm,0 also controls the first derivative of vm. To

select the right vm,0 we consider the relationship between

value and power functions. The electrical power usage is a

piece-wise linear function with discontinuities that occur when

to increase CPU allocation a new server must be turned on.

The height of the discontinuity corresponds to the power cost

of the added server in idle state, p0,n. In continuous regions,

the power function increases linearly with rate p1,n. The

system utility, which is the distance between value and power

curves is maximized at a point ω0 where the first derivative

of the value function is equal to p1,n, or at any value of CPU

allocation where discontinuity occurs and which is less than

ω0. When dm(ω0) < dm,0, the system will never achieve dm,0,

which is the performance level desired by a user. Hence, we

must choose vm,0 that allows dm(ω0) >= dm,0. It is easy

to show that to achieve this objective, we must use vm,0 with

minimum value defined as follows (where ω′m is the derivative

of ωm with respect to d taken at dm,0):

vm,0 =
1
k

ω′m(dm,0)max
n

p1,n (5)

D. Power management algorithm

In this subsection we describe the power algorithm in further

detail. Recall that it determines the subset of servers that

must be powered on in order to maximize system utility, and

interacts with a placement controller that has been described

previously [5], [9].

The optimal solution to the power-performance tradeoff

problem requires us to evaluate all subsets of nodes by

calculating the optimal application placement that uses a given

subset of nodes and evaluating the utility of the resultant

placement. It is therefore necessary to rely on heuristics. In this

paper, we use the following simple approach. We search the

space of machine subsets starting from the subset of machines

that are currently turned on. We perform the search in two

directions: by adding and by removing machines from the set.

We only evaluate one choice of a machine to be added or

removed. Then, we proceed to add or remove more machines.

We stop when the change does not increase the utility.

Since we evaluate only one machine as a candidate to add

or remove, we must be careful in selecting it. Considerations

that we take into account include the following.

• Application affinity to servers—it may be impossible to

remove some application instances from a server due

to potential loss of state or the cost of migration to a

different server. We cannot remove a server that hosts an

application that cannot be replaced.

• Application allocation restrictions—an application may

be only runnable on a subset of server machines that

match its requirements. When adding a node, we must

select one that can run the lowest-performing application.

When removing the node, we avoid selecting one that

runs the lowest-performing application.

• Machine power efficiency—we prefer to add machines

that are more power efficient, where power efficiency is

defined as a ratio of machine power usage at maximum

CPU utilization to its maximum CPU speed.

Considering that evaluating a subset involves solving the

placement problem, which is known to be complex [5], [9],

it is reasonable to constrain the search space to subsets

whose cardinality differs from the cardinality of the currently

running subset by not more than a configured number of

machines. Besides reducing the complexity, this conservative

approach helps prevent oscillations. The overall complexity of

the power management algorithm is therefore equivalent to the

complexity of the placement algorithm, and for the algorithm

used in this paper [9] it is O(NM2).

III. SYSTEM EVALUATION

In this section we evaluate the power management solution

proposed in this paper through real system experiments and

through simulation.

A. Experimental results

We have integrated our power management technique with

IBM WebSphere Extended Deployment [4] management mid-

dleware by extending its Application Placement Controller

component (APC) with the functionality of the power con-

troller. Besides APC, IBM WebSphere Extended Deployment

includes other workload management components: Applica-

tion Request Flow Manager, Dynamic Workload Manager, and

Work Profiler, which are responsible for overload protection,

load balancing, and online request profiling, respectively. The

accuracy and stability of each of these controllers affects the

overall system performance making it difficult to evaluate any

single controller in isolation. To reduce the impact of other

controllers on the efficacy of power management technique, we

isolate them as follows. We profile application requests offline

to obtain CPU work factor and client think time for each

application and configure the system to use thus computed

values instead of online estimates. This change makes our

system more responsive to workload intensity changes without

the loss of stability than we would normally see in practice. As

a result, in a relatively short time interval, we can evaluate the

system behavior at a large range of workload intensities while

permitting dramatic workload intensity variations. We continue

to use the full functionality of the Application Request Flow

Manager and Dynamic Workload Manager.

We evaluate the system in a cluster of 13 server ma-

chines. One machine serves as a management node where
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Fig. 2. Number of client sessions for applications A, B, and C as a function
of time.

the management components reside. Another machine is used

by the L7 Proxy node with overload protection functionality.

The remaining 11 machines are used as compute nodes. The

compute nodes are single-CPU 3.2GHz Intel Xeon servers

with hyperthreading disabled and 4GB of memory.

We load the system using three synthetic applications (A,

B, and C) which serve servlet requests that alternate between

CPU intensive computation and sleeping. The sleep time emu-

lates application access to a backend database. By controlling

the amount of computation and the frequency and duration of

sleep times, we can emulate applications with various degrees

of computational intensity. The profiled values of the CPU

work factor and service times on the server machines are 37.3

mega cycles and 220ms, respectively, for all three applications.

We configure response time goals for applications A, B, and

C to be 360ms, 600ms, and 840ms, respectively. Throughout

all experiments we vary load by changing the number of

concurrent client sessions according to pattern illustrated in

Figure 2.

We perform four runs in total. The first run (the ‘no-power-

control’ run) has power optimization disabled, and performs

only performance management—all nodes are always on, and

placement decisions do not take power into account. The other

three runs have power optimization enabled, and are run at

various settings of performance goal d0 and rigidity k. We

first set d0 = 0 and k = 300. With this choice of parameters

we expect the system to always satisfy SLA goals but to make

no effort to exceed them. In the second run, we use d0 = 1
and k = 300, which instructs the system to always maximize

performance. Any power savings with this choice of d0 and k
result from consolidating unused cycles. Finally, we set d0 = 1
and k = 20, which makes the system attempt to maximize the

performance, but under high workload intensity permits it to

depart from the best performance by about 10% if this results

in turning off a machine.

In Figure 3 we show a time series of the response times

for applications A, B and C over time in the four runs with

response times averaged over 1 minute intervals. The dotted

horizontal lines in Figure 3 show the response time goals for

the three applications, as discussed above. We expect that for

d0 = 0 and k = 300, the average response times should be at,

or slightly below, 360ms, 600ms, and 840ms for applications

A, B, and C. In the experiment, we observe some departures

from this expectation. First, throughout the run, we observe

occasional high spikes, which correspond to the increases in

workload intensity and last as long as it takes for the system

to react to the change (usually about 1-2 minutes). Second,

throughout the run, and particularly between 140 and 240

minutes after the beginning of the experiment, the response

time for applications is slightly above the configured goal. This

happens as a result of a coarse granularity of allocation used

by the flow controller, which is unable to effectively utilize

CPU capacity that is smaller than what is needed by a full

request. In our scenario, an average request requires 37.3 mega

cycles and is served by a server within 220 ms. Thus, its CPU

demand is about 170MHz, which is roughly 5% of the overall

node CPU capacity. Thus, in the worst case, the flow controller

may be underutilizing the system by as much as 5%, which

results in unnecessary queuing at the L7 proxy and deteriorates

the response time. This is clearly a flaw of our management

system, which may be addressed in several ways, for example

by (1) improving the granularity of management in the flow

controller or (2) modifying the placement controller to detect

the ratio of CPU capacity that the flow controller is able to

utilize and overprovision the system accordingly.

In the second run, for d0 = 1 and k = 300, we expect the

system to always maximize performance. This means that the

response time for all applications should stay at about 220ms

(the service time) throughout the entire run. While we observe

similar discrepancies as in the first run, overall the response

time stays very close to the desired 220ms.

Finally, for d0 = 1 and k = 20, we expect the system

to achieve a response time of 220ms, while occasionally

departing from this level of performance under high workload

intensity. The evidence of such departures may be observed

in Figure 3 at time intervals 45-55, 160-175, and 220-235

minutes after the beginning of the experiment.

Figure 4 shows a time series of the number of nodes turned

on in the three runs in which power management was enabled

(in the no-power-control run, all nodes are always on). It may

be easily observed that for d0 = 0 and k = 300 we are using

up to 3 fewer nodes than for d0 = 1 and k = 300 and d0 = 1
and k = 20. The differences between d0 = 1 and k = 300 and

d0 = 1 and k = 20 show up in points marked by arrows (a),

(b), and (c). Arrow (a) shows a case in which with k = 20 we

are able to serve 48 client sessions for each application using

4 servers, while for k = 300, 5 servers must be started. We

see similar 1 server differences at points (b) and (c). Overall,

as workload increases, higher rigidity makes the system turn

on a node sooner and turn it off later than a lower rigidity.

Figure 5 shows application placement on nodes as a function

of time observed in the run with d0 = 0 and k = 300 (for
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clarity, only the nodes used in this run are shown). The figure

permits us to make an interesting observation that our system,

in response to a workload change for a particular application

frequently responds by increasing the number of instances of

other applications. Such a situation occurs, for example, in

minute 35, when load for application C is increased and system

responds by starting new instances of applications A and B on

node 4. This seemingly odd behavior demonstrates a strength

of our system, which is its ability to model and calculate how

CPU power may be shifted among applications on a server

machine. Another interesting scenario occurs in minute 115

where in response to decreased workload of A, we eliminate

node 2 from the set of running servers. To accomplish this task,

the system moves application C, which is collocated with A

on node 2, to node 3.

Figure 6 shows the overall power savings (as a percentage)
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Fig. 5. Application placement as a function of time for d0 = 0 and k = 300.

as a function of time in each run of the experiment. The power

saving at a given time is defined as difference between the

amount of power used at that time in the current run, and that

used at that time in the no-power-control run—the higher the

number, the more power is being saved. In this experiment,

we defined the power consumption of the machines as being

80W when idle, and 100W when at 100% CPU consumption

(that is to say, p0 = 80 and Πmax = 100 for all nodes).

Between those two points, the power consumption increases

linearly with CPU percentage. These numbers were measured

on IBM LS20 blades—whilst this experiment is not conducted

on those blades, the power consumption curve used is known

to be realistic, as it comes from real machines.

In the no-power-control run, all 11 machines were on

throughout, so the minimum possible power consumption

(when all nodes are idle) in that run is 880W. In all runs, the

maximum possible power consumption (when all nodes are

on and running at 100% CPU utilisation) is 1100W. Figure 6

shows that the greatest power saving is obtained when d0 = 0
and k = 300—this is expected, as it is in that run that the

system is permitted to sacrifice the most performance for

power. Figure 3 shows the performance side of this tradeoff,

and was described above.

B. Simulations

To further characterize the way in which the tuneable

parameters of v affect system behavior, we performed a series

of simulations in which we calculated power savings and

performance degradation across a wide range of k and d0.

The simulation ran the same implementation of the place-

ment algorithm that was used in the real experiments in a

simulated environment of 20 nodes and 20 applications, each

with its own time-varying workload, with a simulated flow

controller and APC that carried out the placement algorithm’s

decisions exactly. We searched the space of k and d0 by choos-

ing d0 ∈ {0, 0.1, 0.2, . . . , 1} and log2(k) ∈ {0, 0.5, 1, . . . , 9}.

For each pair (d0, k), two runs were made: one in which
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Fig. 6. Power savings, over the no-power-control run, as a function of time
for various settings of d0 and k.

power-savings was taken into account, and one in which it

was not. Each run consisted of a sequence of placements

calculated for a sequence of 32 different workloads that

varied in a statistically reasonable, but reproducible, way. For

each such placement, simulated power usage and application

performance levels were measured. The power usage was

averaged over the sequence of placements, and the utility

values were averaged over the placements and the applications

to get two aggregate quantities per run: the average power

usage level, and the average application performance level. By

taking the difference in these aggregates for pairs of runs in

which one run used the power-aware placement and the other

did not, we were able to measure the average power savings

and performance degradation for the given k and d0.

Figure 7 shows the simulation results. The top part shows

the power savings for different values of d0 as a function

of log2(k). The bottom part shows the corresponding change

in performance. As the curves show, for any selected value

of d0, the change in overall behavior as a function of k is

smoothly varying and monotonic; similarly, adjustments to d0

cause a smooth, monotonic change in behavior. Thus k and d0

are useful control parameters: administrators can adjust them

to find desired tradeoff points, and the system’s response to

changes is both smooth and predictable.

IV. RELATED WORK

The three principal approaches to power management are

dynamic voltage Scaling (DVS), dynamic frequency scaling

(DFS), and server consolidation.

DVS permits a quadratic reduction of power usage by

lowering processor voltage at times of low CPU utilization.

Bohrer et al. [10] have shown that this technique can reduce

the CPU energy consumption by as much as 30%. Elnozahy

et al. [11] have proposed a scheme that allows Web requests

to be held in a queue for a short period of time at times of low

workload intensity, and dispatched from the queue as a batch.
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Fig. 7. Power savings and performance degradation as functions of log2(k),
for selected d0.

This permits a CPU to remain at low power usage for longer

periods of time and thus offer further energy savings. Pillai et

al. [12] studied DVS algorithms that offer real-time deadline

guarantees. These approaches focus on a single server system.

Wang et al. [13] propose a control-theoretic technique to adjust

server voltage rates in a cluster of server machines, while

permitting request buffering at the entrance to the system.

DFS reduces clock frequency, permitting the CPU to con-

sume less power. Kephart et al. [1] use it in a scheme that

trades off Web application performance and power usage based

on a prescribed utility function that expresses monetary value

of achieving a certain quality of service and the cost of power

needed to provide CPU capacity necessary to achieve this

level of QoS. The proposed feed back controller modifies CPU

frequency setting and achieves 10% reduction of power con-

sumption for a small degradation of application performance.

Server consolidation has become a particularly atractive

option with the advent of virtualization technologies that

permit live migration of arbitrary workloads. Chase et al. [2]

propose an economic model that finds an optimal allocation

of servers to application clusters. The model associates the

cost of power usage with each server thus representing the
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tradeoff between power and performance. Our approach differs

from theirs in several ways. First, we allow finer-grained

resource allocation to application clusters as, in our technique,

application clusters overlap on a set of physical machines. This

makes it necessary to not only decide the number of servers

that are powered on, but also the placement on applications

on servers that are on. Second, while they consider only CPU

resources, our problem is also constrained by memory capacity

and a variety of operational constraints. Finally, they assume

the cluster of servers to be homogeneous, while our approach

permits heterogeneous server clusters.

Elnozahy et al. [14] study several policies of energy conser-

vation including server consolidation and a hybrid approach

involving server consolidation and DVS. The decision whether

to power a server on or off is made based on the operating

frequency of currently running servers. The approach evaluates

an impact of these decisions on application performance. As

in [2] a homogeneous server cluster is assumed.

Chen et al. [15] discuss a cluster of Web application

servers in which power usage is minimized by both DVS

and consolidation, subject to the constraint that application

response times meet SLA goals. This approach can ensure

SLA satisfaction, but does not permit a dynamical tradoff

between power savings and performance level.

Bobroff et al. [16] introduce an algorithm to consolidate

workloads running inside virtual machines. They minimize the

set of running machines in a heterogeneous server cluster.

An application is equated with a virtual machine, whereas

we deal with applications that may, and usually need, to

be spread across multiple physical or virtual machines. Ap-

plication demands are given in the form of direct resource

requirements and no explicit model of application performance

is present. Likewise, there is no explicit notion of power cost

that would help differentiate among machines with different

energy consumption curves.

Tsai et al. [17] propose a capacity planning technique that

estimates the CPU requirement for a Web application based

on network and OS measurements. This technique is applied

to change the number of running servers based on workload

intensity in a cluster of homogeneous machines. The approach

focuses on a single application and thus does not have to

address the problem of packing applications on running servers

while maintaining their various operational constraints.

V. CONCLUSIONS

In this paper we have shown how power-savings may

be incorporated into advanced, SLA-based performance-

management systems by means of an approximate optimiza-

tion over a synthetic utility function. The combined power-

and performance-management algorithm preserves fairness of

allocation while simultaneously reducing power usage in a safe

and flexible way. It also presents administrators with a small

number of control parameters that can be used to achieve a

“correct” tradeoff between maintaining performance levels and

saving power. We have shown by experiment and simulation

that our approach is likely to work in real-world deployments

and that the control parameters are an effective way of shaping

system behavior.
Future work includes further testing of the system, espe-

cially in complex situations involving policy-based constraints

and memory allocation problems; integration with external

components to handle the actual turning on and off of com-

puters; consideration of policies for machine lifecycle issues;

improving the scalability of the algorithms; and combining

this work with support for other workload types.

ACKNOWLEDGMENTS

The authors would like to thank David Carrera, for creating

the simulator upon which that used for the simulations in

Section III-B is based.

REFERENCES

[1] J. O. Kephart, H. Chan, R. Das, D. W. Levine, G. Tesauro, and
F. R. an C. Lefurgy, “Coordinating multiple autonomic managers to
achieve specified power-performance tradeoffs,” in IEEE Intl. Conf. on
Autonomic Computing, Jun. 2006, pp. 145–154.

[2] J. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle,
“Managing energy and server resources in hosting centers,” in ACM
Symposium on Operating Systems Principles, 2001, pp. 103–116.

[3] X. Fan, W. Weber, and L. Barroso, “Power provisioning for a warehouse-
sized computer,” in Proc. 34th Intl. Symposium on Computer Architec-
ture (ISCA ’07), 2007, pp. 13–23.

[4] “WebSphere Extended Deployment.” [Online]. Available: http://www-
306.ibm.com/software/webservers/appserv/extend/

[5] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviri-
denko, and A. Tantawi, “Dynamic placement for clustered web applica-
tions,” in World Wide Web Conference, Edinburgh, Scotland, May 2006.

[6] G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi, “Dynamic
estimation of cpu demand of web traffic,” in VALUETOOLS, Pisa, Italy,
Oct. 2006.

[7] G. Pacifici, M. Spreitzer, A. Tantawi, , and A. Youssef, “Performance
management for cluster based web services,” Journal of Network and
Systems Management, vol. 23, no. 12, 2005.

[8] G. Pacifici, W. Segmuller, M. Spreitzer, M. Steinder, A. Tantawi,
and A. Youssef, “Managing the response time for multi-tiered web
applications,” IBM, Tech. Rep. Tech. Rep. RC 23651, 2005.

[9] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A scalable appli-
cation placement controller for enterprise data centers,” in World Wide
Web Conference, Banff, Alberta, Canada, May 2007.

[10] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. McDow-
ell, and R. Rajamony, “The case for power management in web servers,”
in Power Aware Computing, Graybill and Melhem, Eds. Kluwer
Academic Publications, 2002.

[11] M. Elnozahy, M. Kistler, and R. Rajamony, “Energy conservation
policies for server clusters,” in 4th USENIX Symposium on Internet
Technologies and Systems, Seattle, WA, Mar. 2003.

[12] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-
power embedded operating systems,” in ACM Symposium on Operating
systems Principles, 2001, pp. 89–102.

[13] M. Wang, N. Kandasamy, A. Guea, and M. Kam, “Adaptive performance
control of computing systems via distributed cooperative control: Appli-
cation to power management in computing clusters,” in IEEE Intl. Conf.
on Autonomic Computing, Jun. 2006, pp. 165–174.

[14] M. Elnozahy, M. Kistler, and R. Rajamony, “Energy-efficient server
clusters,” in 2nd Workshop on Power Aware Computing Systems (in
conjunction with HPCA), Feb. 2002.

[15] Y. Chen, A. Das, and W. Qin, “Managing server energy and opeational
costs in hosting centers,” in Proc. Intl. Conf. on Measurement and
Modeling of Computer Systems (SIGMETRICS’05), 2007, pp. 303–314.

[16] N. Bobroff, A. Kochut, and K. Beatty, “Dynamic placement of virtual
machines for managing SLA violations,” in Integrated Network Man-
agement, Munich, Germany, May 2007, pp. 119 – 128.

[17] C.-H. Tsai, K. G. Shin, J. Reumann, and S. Singhal, “Online web cluster
capacity estimation and its application to energy conservation,” IEEE
Transactional on Parallel and distributed Systems, vol. 18, no. 7, pp.
932–945, 2007.

394

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 25,2010 at 00:00:15 EST from IEEE Xplore.  Restrictions apply. 


