
VirtualPower: Coordinated Power Management in
Virtualized Enterprise Systems

Ripal Nathuji
CERCS Research Center

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30032
rnathuji@ece.gatech.edu

Karsten Schwan
CERCS Research Center

College of Computing
Georgia Institute of Technology

Atlanta, GA 30032
schwan@cc.gatech.edu

ABSTRACT
Power management has become increasingly necessary in
large-scale datacenters to address costs and limitations in
cooling or power delivery. This paper explores how to inte-
grate power management mechanisms and policies with the
virtualization technologies being actively deployed in these
environments. The goals of the proposed VirtualPower ap-
proach to online power management are (i) to support the
isolated and independent operation assumed by guest vir-
tual machines (VMs) running on virtualized platforms and
(ii) to make it possible to control and globally coordinate
the effects of the diverse power management policies ap-
plied by these VMs to virtualized resources. To attain these
goals, VirtualPower extends to guest VMs ‘soft’ versions of
the hardware power states for which their policies are de-
signed. The resulting technical challenge is to appropri-
ately map VM-level updates made to soft power states to
actual changes in the states or in the allocation of underlying
virtualized hardware. An implementation of VirtualPower
Management (VPM) for the Xen hypervisor addresses this
challenge by provision of multiple system-level abstractions
including VPM states, channels, mechanisms, and rules. Ex-
perimental evaluations on modern multicore platforms high-
light resulting improvements in online power management
capabilities, including minimization of power consumption
with little or no performance penalties and the ability to
throttle power consumption while still meeting application
requirements. Finally, coordination of online methods for
server consolidation with VPM management techniques in
heterogeneous server systems is shown to provide up to 34%
improvements in power consumption.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General—Sys-
tem architectures; D.4.7 [Operating Systems]: Organiza-
tion and Design; K.6.4 [Management of Computing and

Information Systems]: System Management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’07, October 14–17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010 ...$5.00.

General Terms
Design, Experimentation, Management

Keywords
Power management, Virtualization

1. INTRODUCTION
The necessity of power management in computing sys-

tems has become increasingly evident in both mobile and
enterprise environments. Limitations in battery capacities
and demands for longer device lifetimes have motivated re-
search for mobile and embedded systems [12, 34, 37, 38].
For server systems, online management is important for two
significant reasons. First, there are power delivery and cool-
ing limitations in datacenter environments that result from
meeting the ever increasing performance and scalability de-
mands of enterprise applications with a combination of tech-
nological advances like increased densities, small form factor
blade servers, and software methods for server consolidation
through virtualization. Here, the nearly 60 Amps per rack
currently provisioned in datacenters could become a bot-
tleneck for high density configurations, even if the related
cooling issues can be solved [33]. Online methods for min-
imizing power consumption and, when necessary, enforcing
limits on rack power draws can help deal with such bottle-
necks. A second motivation for online power management
is the cost of power and cooling capabilities in datacenters.
A datacenter consisting of 30,000 square feet and consum-
ing 10MW, for instance, requires an accompanying cooling
system that costs from $2-$5 million [25]. The yearly cost
of running this cooling infrastructure can reach up to $4-$8
million [33].

To manage the power properties of server systems, re-
searchers have considered issues that include managing ther-
mal events [25] and utilizing hardware management support
like processor frequency scaling for power budgeting [10,
33]. An aspect of future datacenter environments not ad-
dressed by previous work, however, is the proliferation of
virtualization techniques into the enterprise domain. Specif-
ically, the growing capabilities of hardware support for vir-
tualization [28] and of software solutions like Xen [4] or
VMware [36] have made it easier to flexibly use datacen-
ter resources for applications [3]. The resulting interplay of
power management and virtualization may be formulated
more precisely as follows:

1. ‘Soft’ and ‘Hard’ power scaling – Virtualization creates

new possibilities for scaling the allocation of physical
resources to guest virtual machines (VMs), both us-
ing ‘soft’ techniques that exploit a hypervisor’s ability
to limit hardware usage by guests, and ‘hard’ tech-
niques that leverage underlying hardware support such
as processor frequency scaling. To be effective, virtu-
alization layer power management must exploit both of
these methods.

2. Independence and coordination – Guest VMs are de-
signed to execute their own, independent OS- and/or
application-specific methods for power management.
For example, the Linux operating system allows for
dynamic voltage and frequency scaling (DVFS) of the
processor, where governing policies can be loaded into
the kernel or executed in userspace daemons. Applica-
tion specific policies that can address real-time work-
loads [30, 31] or meet application requirements with
minimum power consumption [11] can then be inte-
grated. From these facts, it is clear that a necessary
element of power management is the need to coordinate
between VM-level solutions and global goals that con-
cern platform-, rack-, and then datacenter-level power
consumption.

3. Flexibility in management – Modern datacenters that
utilize virtualization often house multiple generations
of equipment with different attributes and manage-
ment capabilities [26], and deploy a variety of applica-
tions that have distinct requirements expressed by Ser-
vice Level Agreements (SLAs). These traits dictate the
use of diverse dynamic management policies. There-
fore, to effectively address virtualized environments it
is important to give administrators the flexibility to
provide their own power management policies.

The VirtualPower approach to power management pre-
sented in this paper can exploit both hardware power scaling
and software-based methods for controlling the power con-
sumption of underlying platforms. Its power management
actions take into account guest VMs’ independent power
management policies, and can coordinate across multiple
such policies to attain desired global objectives. Effective
for both fully and para-virtualized guests, VirtualPower’s
abstractions and methods may be summarized as follows.
First, to permit guest VMs to run their own, independent
power management methods, VirtualPower exports a rich
set of virtualized (i.e., ‘soft’) power states, termed Virtu-
alPower Management states – VPM states. Guest VM-level
power management policies, then, observe and act upon
these states when carrying out their management actions.
Second, coordination is based on the fact that independent
VM-level management policies change power states via priv-
ileged actions that, for example, modify model-specific reg-
isters (MSRs) in hardware. VirtualPower can leverage the
fact that these events are trapped by the hypervisor to cre-
ate an abstraction of VPM channels. These channels de-
liver guest VM power management actions as a set of ‘soft’
state updates that can be used for application-aware man-
agement at the virtualization layer. Third, VirtualPower en-
ables flexibility by encoding the actual power management
actions carried out by the infrastructure as VPM rules, pro-
vided by hardware vendors and/or system administrators.
VPM rules treat the ‘soft’ VPM state changes conveyed by

VPM channels as ‘hints’ for assigning actual shadow VPM
states for guest VM resources, a control relationship we term
state-based guidance. Finally, VPM rules are based on a rich
set of underlying VPM mechanisms that provide a uniform
basis for implementing management methods across hetero-
geneous hardware platforms.

The implementation of VirtualPower with the Xen hyper-
visor significantly extends the infrastructure’s power man-
agement capabilities. On this basis, this paper’s contribu-
tions include: (1) an experimental study of power manage-
ment and its implications in virtualized systems, (2) the use
of VPM channels and states to obtain application-specific
power/performance tradeoffs for representative enterprise ap-
plications, (3) the definition and evaluation of multiple man-
agement actuators in the form of our VPM mechanisms, and
(4) the evaluation of VirtualPower with sets of rules that
jointly implement a tiered policy-driven approach to online
power management. Experimental evaluations are based on
micro-benchmarks, the RUBiS enterprise application, and
transactional workloads. Using VPM rules that implement
representative power management policies, measured results
show improvements of up to 31% in the active power con-
sumption of underlying computing platforms. They also
demonstrate VirtualPower’s abilities to perform QoS-aware
power throttling and to exploit the consolidation capabilities
inherent in modern multicore platforms. Moreover, when
using the tiered VPM rule components for managing VMs
across heterogeneous platforms, we reduce power consump-
tion up to 17% by exploiting power management heterogene-
ity and up to 34% by performing runtime consolidation onto
more power-efficient hardware. Finally, VirtualPower en-
ables future work on management policies and mechanisms
that can extend across multiple devices and/or separately
manageable platform components like memory, can take into
account additional properties like thermal events [15], and
can address the multiple machines, racks, and enclosures
found in modern datacenters.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work. This is followed by a discussion
in Section 3 on how virtualization impacts power manage-
ment and the resulting technical challenges. Section 4 out-
lines the components of the VirtualPower architecture and
describes the manner in which they address these challenges.
After describing experimental methodology in Section 5, we
evaluate the viability of soft scaling as a power management
mechanism in Section 6, and the performance of coordinated
policy-based management with VirtualPower in Section 7.
Conclusions and future work are reviewed in Section 8.

2. RELATED WORK
Managing power and thermal issues has been addressed

extensively for single platforms, particularly their proces-
sor components. Brooks and Martinosi propose mechanisms
to enforce thermal thresholds on the processor [5]. For
memory-intensive workloads, dynamic voltage and frequency
scaling (DVFS) during memory-bound phases of execution
has been shown to provide power savings with minimal per-
formance impact. Solutions based on this premise include
hardware-based methods [23] and OS-level techniques that
set processor modes based on predicted application behav-
ior [18]. Power budgeting of SMP systems with a perfor-
mance loss minimization objective has also been implemented
via CPU throttling [20]. VirtualPower leverages the invest-

ments in application-specific power management represented
by these approaches by encouraging their use, rather than
replacing them, in virtualized systems.

In high performance settings, energy savings can be ob-
tained for parallel programs during their communication pe-
riods using hardware frequency scaling capabilities in clus-
ters [24]. For server systems, Chase et al. discuss how to
reduce power consumption in datacenters by turning servers
on and off based on demand [6]. Identifying the need for
disk power management in datacenters, support for energy-
efficient disk arrays has been extended [39]. Incorporating
temperature awareness into workload placement in datacen-
ters was proposed by Moore et al. [25], along with emula-
tion environments for investigating the thermal implications
of power management [15]. Researchers have also investi-
gated using such cluster-level reconfiguration in conjunction
with DVFS [8], or by using spare servers [32] to improve the
thermal and power properties of enterprise systems. Other
methods have enforced power budgets by allocating power in
a non-uniform manner across nodes [10], at the granularity
of blade enclosures [33], or even amongst virtual machines
using energy accounting capabilities [35]. The experimental
evaluations performed in this paper show that global man-
agement policies like those above are easily realized with
appropriate VPM rules based on VirtualPower’s rich set of
power control mechanisms.

In datacenter environments, an important attribute of on-
line power management is its ability to deal with hardware
heterogeneity. This is evident from prior work on man-
agement extensions for heterogeneous multicore architec-
tures [21] and in cluster environments, the latter proposing
a scheduling approach for power control of processors with
varying fixed frequencies and voltages [13]. In enterprise sys-
tems, intelligent methods for request distribution have lever-
aged hardware heterogeneity to curtail power usage [16].
The ability to exploit heterogeneity in platform hardware
and underlying power management capabilities for datacen-
ters has also been investigated [26]. Experiments presented
in this paper demonstrate the importance of support for het-
erogeneity in the VirtualPower infrastructure and provide
further evidence of the utility of heterogeneity awareness in
power management techniques.

3. MANAGING VIRTUALIZED SYSTEMS
This section discusses the impact of virtualization on the

power management landscape of enterprise systems. Of par-
ticular interest are barriers to utilizing guest VM- or appli-
cation specific policies for enabling workload-aware manage-
ment in these environments. We identify such hurdles and
describe how VirtualPower is designed to overcome them.

3.1 Scalable Enterprise Environments
Desired benefits from virtualization include improved fault

isolation and independence for guest VMs [4], performance
isolation [19], and the ease of seamless migration of VMs
across different physical machines [7]. Jointly, these permit
usage models in which VMs freely and dynamically share
pools of platform and datacenter resources, as also consid-
ered in recent research on autonomic management [2, 14]
and as indicative of next generation enterprise management
environments. The goal, of course, is the delivery of flexi-
ble and scalable enterprise infrastructures, as illustrated in
Figure 1.

Figure 1: Scalable Enterprise Infrastructure.

Power management directly threatens the independence
and performance isolation properties of virtualization tech-
nologies. First, how can guest VMs realize the goals of their
application-specific power management policies when there
is a disassociation between the virtual resources they are
managing and the physical resources actually being used?
Here, a specific issue is that guest machines may have in-
consistent views of the management capabilities of the un-
derlying resources they are trying to manage, particularly
in the presence of VM migration. Second, in datacenter
settings, inconsistencies are aggravated by the need to fre-
quently update platforms, to replace them to deal with fail-
ures, or to add new platforms for capacity increases. A
natural outcome of such changes is increased heterogene-
ity, with respect to platform power properties, performance
characteristics, and/or management capabilities. Isolation
and independence, however, demand that VMs’ power man-
agement policies not be altered to deal with such changes.
The VirtualPower approach maintains the isolation and in-
dependence properties of virtualization systems by exporting
to VM-level management policies ‘soft’ VPM states, wherein
guest machines have a consistent view of hardware manage-
ment capabilities regardless of the underlying set of physical
resources. The implementation of the approach, then, per-
forms state-based guidance to map changes to these soft
states to changes in underlying hardware according to asso-
ciated VPM rules, as described further in Section 4.

3.2 Leveraging Guest VM Policies
The increasingly apparent need for power management

has led to the implementation of system- and application-
level policies that carefully balance hardware performance
states to attain application-specific notions of quality-of-
service (QoS). An example of such a policy is the onde-
mand governor integrated into the Linux kernel. This pol-
icy scales the frequency of the processor based upon the
CPU utilization observed by the operating system and is
effective for workloads with variations in processor utiliza-
tion, such as web servers. Other management policies in-
clude those specific to real-time systems, where processors’
DVFS capabilities are used to reduce power consumption
while still maintaining application deadlines [30, 31]. Since
VM-level management policies can meet application-specific
QoS constraints, it is highly desirable to use them to man-
age the power/performance tradeoffs of modern computing
platforms. Giving these policies direct access to hardware
power management facilities, however, negates the notion
of virtualized hardware resources. Moreover, direct access

would threaten desired performance isolation properties, as
evidenced on thermally sensitive multicore chips where a VM
increasing its frequency may heat up its core in a manner
that compromises another core’s ability to run at a speed
sufficient for meetings its VM’s desired QoS. Worse, such
actions might be malicious, as with a VM compromised by
a power virus.

VirtualPower responds to these challenges with an ap-
proach that takes advantage of the power management poli-
cies built into guest VMs, but interprets them as ‘hints’
rather than executable commands. These hints are acquired
by exploiting the ACPI [17] interface for power management
provided by modern platforms. When guest VMs attempt
to perform privileged operations on this interface, current
hypervisors ignore them, but VirtualPower intercepts them
and maps them to VPM channels. These channels, in turn,
provide them as useful hints to VirtualPower’s VPM rules.
VPM rules may then use the ‘soft’ state requests that make
up these hints as inputs to localized power management
and/or to global policies that coordinate across multiple
guest VMs and multiple machines. The combination of VPM
states and channels provides for coordinated power manage-
ment while maintaining VM independence.

3.3 Limitations of Hardware Management
An issue with utilizing hardware support for power man-

agement in virtualized systems is that resources within a
management domain may be shared by multiple guest VMs.
For example, memory DIMMs that are accessible via the
same bus and/or share the same voltage plane may con-
tain memory that is allocated to many guests. This means
that this component cannot be managed unless all guest ma-
chines desire reduced memory bandwidth via bus scaling, or
are currently not utilizing the DIMMs such that they can be
powered down. Similar limitations exist for disks that con-
tain multiple partitions, each of which may be allocated to
different guests. Any one partition can be power-managed
by placing the disk into a low power state only if all parti-
tions can be placed into that state.

Figure 2: DVFS Limitations on a Dual Core Chip.

An approach to overcoming limitations for power man-
aging shared resources is to use time domain multiplexing,
which sets components to the hardware states that reflect
the power management criteria of the currently executing
VM. Unfortunately, this approach has two significant draw-
backs. First, it can only be used if the transition time of
resources between management states is much smaller than
the scheduling time granularity used by the hypervisor. Sec-
ond, even if this were the case, this approach is not promis-
ing in the context of multicore platforms. Here, the intent to
concurrently execute a large number of guest VMs on avail-

able cores significantly reduces the ability to utilize time
domain multiplexing for reasons that include the following.
Consider the use of DVFS to manage the processor com-
ponent of multicore platforms. Since the dynamic power
consumption of a core is proportional to the product of fre-
quency and voltage squared, in order to obtain significant
energy or power savings, voltage scaling must be performed
in conjunction with frequency scaling. In multicore pack-
ages, however, even when the frequency of cores can be
scaled independently, there is only one voltage rail into the
package from the motherboard. Therefore, the voltage is
constrained by the highest frequency of any core in the pack-
age. As shown in Figure 2, this restriction can significantly
limit the system-level benefits of hardware power manage-
ment, where power is only reduced by 4% when scaling fre-
quency on only one processor, but is reduced by 19% when
both are scaled at the same time. VirtualPower overcomes
hardware limitations derived from resource sharing and lim-
ited opportunities for voltage scaling by providing mecha-
nisms for power management that go beyond mere reliance
on hardware operating modes. These mechanisms include
consolidation techniques and runtime changes to hypervisor-
level scheduling. The outcome is a rich set of VPM mecha-
nisms for VPM rules that exploit both ‘soft’ and hard power
scaling techniques.

4. VIRTUALPOWER ARCHITECTURE
In keeping with common practice, VirtualPower does not

require modifications to guest operating systems. Further,
while implemented with the Xen [4] virtualization frame-
work, the VirtualPower architecture and abstractions are
designed for the wide range of virtualization solutions cur-
rently deployed or under development. Therefore, most of
its functionality resides as a controller in the driver domain,
termed Domain Zero (Dom0) in current systems, with only
small changes required to the underlying virtual machine
monitor or hypervisor. Specifically, VirtualPower’s monitor-
ing functionality is integrated into the hypervisor, whereas
its higher level mechanisms and policies (i.e., VPM mecha-
nisms and rules) reside in Dom0. As a result, policies have
easy access to CPU and device power states, and they can
take advantage of Dom0’s control plane functionality for cre-
ating guest virtual machines, migrating them, . . . etc.

Figure 3: VirtualPower Management Architecture.

Figure 3 illustrates the VirtualPower architecture. Each
physical platform runs a hypervisor and associated Dom0.
Guest VMs perform power management based upon the
‘soft’ VPM states exported to them. VPM channels capture
guest VM power management requests, via updates to these
‘soft’ states, in the hypervisor. This information is then
passed to power management software components, com-

posed of sets of VPM rules running in Dom0, which finally,
use VPM mechanisms to actually carry out management
decisions. As described further in Section 7, our current
VPM rules implement a tiered policy approach: local PM-L
policies perform actions corresponding to resources on lo-
cal platforms, and a higher-level PM-G policy component
uses rules responsible for coordinating global decisions (e.g.,
VM migration). We next describe in more detail the VPM
states, channels, and mechanism components that permit
VPM rules to perform coordinated power management.

4.1 VPM States
It is important to leverage the substantial investments and

knowledge about online power management embedded in
guest operating systems. Technically, this implies the need
to provide to the policies run by guest VMs what appears to
be a richly manageable set of underlying resources, even if
the hardware platform does not actually provide the differ-
ent power states being exported. In heterogeneous hardware
environments, for instance, a guest machine with sophisti-
cated power management policies may initially be deployed
on hardware that does not support power management and
later be migrated to manageable components. VirtualPower
is designed to permit guest VM policies to run in both sys-
tems, by exporting to them ‘soft’ VPM states and then us-
ing appropriate VPM rules and VPM mechanisms to real-
ize them. These VPM states need not reflect the actual
operating points (i.e., Px states [17]) supported by under-
lying hardware, but instead, they consist of a set of per-
formance states made available by VirtualPower for use by
VMs’ application-specific management policies. This is im-
plemented by simply defining these ‘soft’ states in the rel-
evant portions of the ACPI tables created for guest VMs.
In addition, for management flexibility, VM-level changes to
‘soft’ VPM states are disassociated from the assignment of
shadow VPM states to actual resources by VPM rules.

In exporting VPM states, a limitation is imposed by the
fact that the ACPI interface specification defines a maxi-
mum of sixteen Px states for a device, thereby limiting the
number of possible soft states available for each manage-
able component. We do not consider this an issue because,
in general, most devices, such as processors, only support
a small number of performance states. Therefore, even in
heterogeneous environments where one must define a set of
VPM states that allows VMs to provide useful hints across
a range of machines, there is sufficient ability to define a
rich set of VPM states that express the performance scaling
capabilities of multiple physical platforms.

4.2 VPM Channels
VPM channels are the abstraction via which guest VMs

provide input on power management to VPM rules, as il-
lustrated in Figure 3. Since hardware power management
is privileged, whenever guests attempt to execute such op-
erations, they are trapped by the hypervisor, whereupon
VirtualPower re-packages them as VPM events made avail-
able to the VPM rules in Dom0. In particular, the informa-
tion encapsulated by a VPM event includes a timestamp,
the ‘soft’ state set by the guest VM, and information re-
garding the actual performance state being provided to the
guest when the request was made. The implementation of
VPM event information retrieval by VPM rules is an asyn-
chronous one, where VPM event information is temporarily

stored in the hypervisor using a cyclic buffer from which
VPM rules may retrieve it. The timing and frequency of
retrievals depend upon whether the control algorithm being
used requires polling or event-based retrieval techniques.

The implementation of VPM channels uses hypercalls and
Xen event channels. VirtualPower defines its own hyper-
call interface which can be used to perform a variety of
actions for VPM rules. The interface defines a VPM_POLL

operation that allows VPM rules in Dom0 to query for VPM
events corresponding to a particular guest VM. VPM rules
can use this operation to periodically retrieve updates about
the state changes desired by guest VMs. In addition, Vir-
tualPower provides a Xen event channel that may be used
if VPM rules desire immediate notification of desired state
changes by guest VMs. This is useful when timely responses
to VM behavior are necessary for balancing power manage-
ment with performance requirements.

4.3 VPM Mechanisms
VPM mechanisms are the base level support for online

power management by VPM rules. They provide uniform
ways of dealing with the diversity of underlying platform
power management options. The mechanisms supported
by VirtualPower include hardware scaling, soft scaling, and
consolidation.

Hardware Scaling.
Hardware scaling capabilities vary across different plat-

form and device architectures. Moreover, whether or not
such scaling is possible or effective depends on VM-level
resource sharing (e.g., VMs running across multiple cores
in multicore platforms). The VPM mechanism supporting
hardware scaling is straightforward, permitting VPM rules
to set the hardware states to be used during the execution of
a particular guest VM via a VPM_SET_PSTATE operation on
the VirtualPower hypercall interface. Of course, the actual
rules that decide upon such state changes can be non-trivial.
For example, policy rules must determine whether or not
a set of hardware performance states for VMs can create
conflicts due to resource sharing. In the particular case of
processor DVFS management, such conflicts are handled by
hardware that ensures that the voltage provided to the chip
is sufficient for the core running at the highest frequency.

Soft Scaling.
Hardware scaling is not always possible, or it may provide

only small power benefits, as shown in our earlier example
of utilizing DVFS on multicore chips. In response, we intro-
duce the notion of ‘soft’ resource scaling, which uses resource
scheduling to emulate the performance loss of the hardware
scaling action that would otherwise be performed. For pro-
cessor management, this entails modifying the hypervisor’s
scheduling attributes for a VM to emulate the VM’s desired
performance mode. For instance, if a VM has requested
scaling a core to half of its previous performance state, then
with soft scaling, the hypervisor scheduler may reduce the
guest’s maximum time slice in a period by half. The nec-
essary adjustments to scheduling parameters are performed
using a VPM_SET_SOFT operation with the VirtualPower hy-
percall interface.

An obvious issue with soft scaling is that the performance
degradation attained in this fashion may not accurately rep-
resent what the application would have observed from actual

hardware scaling. For example, a guest VM may request a
reduced processor frequency, because it expects to observe
little or no performance degradation for its current memory-
bound application workload. If soft scaling proportionally
changes CPU allocation in response to such requests, the ap-
plication would experience notable and unexpected levels of
performance loss. Our implementation of soft scaling, there-
fore, is carried out by VPM rules that operate with feedback
loops based upon state-based guidance in which such degra-
dation is observed, indirectly, by VM requests for increased
performance states. This results in policies that dynami-
cally tune to what extent, if any, soft scaling is applied to a
physical resource.

Soft scaling can result in substantial power benefits, for
two reasons. First, there is the idle power management of
resources. Components such as processors are achieving in-
creasingly substantive savings when idle compared to ac-
tive, even when active power management cannot provide
improvements. Thus, soft scaling is most effective when it
results in processors being idle for some time (i.e., no VMs
currently running on any of their threads). Second, addi-
tional savings may be derived from appropriately managing
soft scaling across multiple resources, by coordinating their
concurrent use [27] and/or by use of consolidation.

Consolidation.
When soft scaling multiple VMs for multiple resources,

such as cores on a multicore chip, it becomes possible to
share resources, perhaps to totally idle one core while fully
using another one. An obvious first benefit from such re-
source consolidation is the substantial power improvements
derived from placing offloaded resources into their idle or
suspend states. An interesting second benefit is derived
from resource heterogeneity. In particular, in datacenter
environments, there likely exist physical resources that are
more power efficient for certain workloads or that are more
amenable to online management. By combining soft scal-
ing with VM re-mapping or migration (i.e., consolidation),
therefore, it is possible to map multiple ‘compatible’ in-
stances of virtual resources to appropriately efficient phys-
ical resources. This dynamic migration capability is imple-
mented using existing control interfaces in Dom0.

5. EVALUATION METHODOLOGY

5.1 Experimental Setup
Experimental evaluations of the VirtualPower manage-

ment infrastructure use standard multicore server hardware.
Our testbed consists of multiple dual core Pentium 4 ma-
chines, which are identical in terms of their hardware ca-
pabilities and components. These machines have processors
based upon the Intel Netburst microarchitecture, 3GB of
memory, gigabit network cards, and 80GB hard drives. In
terms of manageability, they support two physical operating
modes for their processor cores: 3.2GHz and 2.8GHz.

Power data is obtained using an Extech 380801 power an-
alyzer, which allows for out of band measurements via a
laptop, thereby avoiding undesirable measurement effects on
the system under test. Power is measured ‘at the wall’, in
order to include the AC power consumption of the entire
system. We obtain power traces at the maximum sampling
rate of 2Hz using the Extech device, then use these traces
to calculate offline the power consumption characteristics

Figure 4: Power Measurement Setup.

seen during experiments. Figure 4 summarizes our power
measurement configuration.

5.2 Guest Applications and Policies
Experiments are conducted with representative enterprise

workloads, using the RUBiS tiered web service application
and using transactional loads. The distributed components
of these applications are instantiated in their own virtual
machines, with each VM mapped to a single virtual proces-
sor. The different workload characteristics of these codes,
along with the varying VM-level policies which drive their
management, present interesting challenges to VirtualPower’s
management policies, as explained next.

Transactional Workloads.
Many backend services deployed in enterprise systems and

datacenters are of a transactional nature. For example, as
part of an ongoing collaboration with our corporate partner
Delta Air Lines, we have obtained workload traces from a
backend subsystem responsible for tracking operational rev-
enue earned from the services offered by the company [1].
The backend operates by continually receiving, queuing, pro-
cessing, and then, emitting revenue-relevant events, with
current incoming event rates at the level of thousands per
hour. Two interesting elements of these event traces are
(1) that event queuing delays often outweigh actual event
processing times and (2) that arrival rates vary significantly
over the course of a day. For example, a large batch ar-
rival of events submitted every day at 4 AM EST creates
queue lengths as high as 4000. From (1), it is clear that for
these types of applications, changes in the execution times of
events due to power management may have negligible effect
on overall processing time, due to queuing delays. From (2),
it is evident that there exist possibilities for management to
exploit changes in application behavior across larger time
scales.

For transactional applications like these, the goal of back-
end servers is to process requests at rates that are suffi-
ciently high to meet certain application-specific SLAs. For
the actual traces received from our corporate partner, these
SLAs are dictated by revenue reporting requirements. More
generally, different transactional applications will have dif-
ferent performance requirements, and in addition, such re-
quirements may vary over time (e.g., due to changes in re-
porting requirements or when dynamic pricing methods are
used). In all such cases, the principal performance metric
for a transactional service is whether it can run its trans-
actions at some currently desired minimum processing rate.
For power management, this means that management poli-
cies can exploit the slack available between minimum de-
sired rate and the current rate being observed. Accordingly,

we define a simple VM-level power management policy that
keeps track of ‘performance slack’ while also maintaining a
desired transaction execution rate. When slack is large, the
policy requests reduced processor frequencies, and if slack
becomes negative, it scales up the underlying processor’s
performance state. Experiments show that this simple con-
trol policy proves to effectively enforce a defined application-
specific transaction processing rate. For purposes of experi-
mentation, we use the well-known SPEC CPU2000 suite to
create code modules that carry out computationally expen-
sive transactions. These code modules are driven by vary-
ing transaction rates and rate requirements. Future steps
in this work will consider transactional computations using
the Nutch open source search engine [29].

Tiered Web Service Workloads (RUBiS).
RUBiS is a well-known tiered web service benchmark, im-

plementing some of the basic functionality of an auction
website, including selling, browsing, and bidding. We use
a PHP-based two node configuration of RUBiS where there
is a web server front end (Apache) connected to a database
backend (MySQL). Load is provided using a third client ma-
chine. All of these nodes are connected via a gigabit Ether-
net switch. Web service applications typically exhibit varia-
tions in processor utilization based on current request arrival
rates from clients and on current request behaviors. This
characteristic can be exploited for power management via
reactive policies that attempt to scale the processor to an ap-
propriate performance state based on current load statistics.
Since VM-level policies like Linux’s ondemand governor are
designed to exploit this fact, this is the application-specific
policy used in our experiments with the RUBiS VMs.

6. VIABILITY OF SOFT SCALING
As described in Section 4.1, VPM states act to disassociate

the management actions of virtual machine policies from the
manageability support of underlying physical resources. Our
Pentium 4 based processors support two operating frequen-
cies of 3.2GHz and 2.8GHz. With the use of VPM mecha-
nisms, however, we can perform power management actions
at the virtualization layer beyond just these two hardware
performance states, resulting in the export of five different
‘soft’ Px states (frequencies) to guest VMs. In particular,
guest VMs see frequency capabilities of 3.2GHz, 2.8 GHz,
2.0 GHz, 1.6GHz, and 800MHz. When guest VMs attempt
to set these states, it is up to VPM rules to map these re-
quests to actual changes (or not) of the shadow states they
maintain. Changes applied to shadow states trigger changes
in the Xen scheduler’s scheduling attributes and/or in un-
derlying processor power states.

Experimental measurements of soft scaling presented in
this paper use the Xen hypervisor’s earliest deadline first
(SEDF) scheduler, which allows for dynamic tuning of the
amount of processing time allotted to a VM’s virtual CPU
(vcpu). In addition, based on the SEDF parameters, the
scheduler can be set to be work-conserving, or to limit CPU
time in a non-work-conserving fashion. We take advantage
of its non-work-conserving mode in order to use the sched-
uler as a control actuator via the VPM soft scaling mecha-
nism. For example, consider the case of a VM executing with
the physical processor at 3.2GHz and using work-conserving
scheduling parameters. Based on VM power management
request information, VPM rules wish to set the shadow VPM

state of the VM to 1.6GHz to reduce the performance of the
application by 50%. One method for doing this is to use the
VirtualPower hypercall interface to schedule the vcpu with
half its original slice size and with the non-work-conserving
setting. Another method is to use hardware scaling in con-
junction with soft scaling. In this example, a VPM rule can
specify a reduced physical frequency f l and simultaneously
soft scale the resource to 1

2
∗

3.2GHz
fl

of its original amount.

(a) Performance Error (b) Scaling Power Effects

Figure 5: Soft Scaling Characteristics.

In Figures 5(a) and 5(b), we compare VPM rules that
use 3.2GHz versus 2.8GHz as physical frequencies for real-
izing the different VPM states less than 3.2GHz. In these
measurements, rules define VPM states so as to attain linear
performance reductions based on frequency for computation-
bound workloads. In other words, the 1.6GHz VPM state
should provide half the performance of the 3.2GHz state.
Figure 5(a) shows how actual measured performance degra-
dations are within a few percent of desired goals, thereby
demonstrating the viability of the approach. Errors are
larger for the 2.8GHz physical frequency, but the implemen-
tation is designed to forego potential (slight) improvements
in power to ensure ‘negative’ errors, that is, to attain perfor-
mance slightly better than would be expected from a strictly
linear degradation. In Figure 5(b), we observe the power
tradeoffs between using only soft scaling versus using soft
and hard scaling simultaneously, for a single instance of the
computation-bound transactional application. From this fig-
ure, the power benefits of soft scaling with either physical
frequency are apparent, with increased power reductions of
up to 48W when the processor is running at 3.2GHz. Sum-
marizing, these experiments establish (1) the viability of soft
scaling and perhaps more importantly, (2) the importance
of simultaneously using soft and hard scaling to create the
rich set of VPM states desired by guest VMs and their ap-
plications.

Table 1: VPM State Definitions.
Hardware Soft (Scheduler)

VPM State CPU Work-conserving Slice

3.2GHz 3.2GHz Yes -
2.8GHz 2.8GHz Yes -

3.2GHz No 88ms
2.0GHz 2.8GHz No 71ms

3.2GHz No 63ms
1.6GHz 2.8GHz No 57ms

3.2GHz No 50ms
800MHz 2.8GHz No 29ms

3.2GHz No 25ms

 0

 1

 2

 3

 4

 0 10 20 30 40 50

P
er

fo
rm

an
ce

 S
ta

te
 (

P
x)

Time (s)

WS

 0

 1

 2

 3

 4

 0 10 20 30 40 50

P
er

fo
rm

an
ce

 S
ta

te
 (

P
x)

Time (s)

DB

(a) No Active Power Management

 0

 1

 2

 3

 4

 0 10 20 30 40 50

P
er

fo
rm

an
ce

 S
ta

te
 (

P
x)

Time (s)

WS

 0

 1

 2

 3

 4

 0 10 20 30 40 50

P
er

fo
rm

an
ce

 S
ta

te
 (

P
x)

Time (s)

DB

(b) Active Power Management

Figure 6: VPM Channel Feedback for State-Based Guidance with VirtualPower.

Table 1 lists the parameters used by VPM rules to de-
fine VPM states. Each state can be implemented using only
soft scaling or with a combined hardware and software scal-
ing approach. Experimentally, we find that the ‘slice’ def-
initions for the 3.2GHz mode and for the hardware-scaled
version of the 2.8GHz mode are irrelevant because of their
use of work-conserving scheduling. For the remaining states,
the slices correspond to periods of 100ms. A tradeoff when
using both soft and hard scaling is that reduced hardware
frequencies imply larger allocation slices for VMs, as found
in Table 1. As seen later in our evaluations, the interest-
ing and somewhat counterintuitive outcome of this fact is
that for minimizing power consumption across multiple ma-
chines, it is sometimes necessary to implement VPM states
with higher hardware frequencies so that multiple vcpus can
be mapped to a single machine (i.e., to permit consolidation
for exploiting low idle/sleep power or power-efficient hard-
ware). For example, if two VMs are being set to the 1.6GHz
VPM state, using soft scaling alone at a hardware frequency
of 3.2GHz, they each require 50% of a CPU allowing for
consolidation, whereas if hardware scaling is used, the re-
quirement is 57% per VM. Since VirtualPower allows VPM
rules to define VPM states based upon hard and soft scal-
ing mechanisms as they see fit, such dynamic, coordinated
management is easily realized with our approach.

7. POLICY BASED COORDINATION
The VirtualPower infrastructure can be used to imple-

ment complex management policies. We demonstrate this
fact with hierarchical power management policies [10]. These
are comprised of local policies (PM-L) running on each phys-
ical system and driven by local guest VM and platform pa-
rameters, coordinated by global policies (PM-G) with knowl-
edge about rack- or blade-level characteristics and require-
ments. Specifically, PM-L policies obtain VMs’ desired power
states via VPM channels and use state-based guidance to
determine suitable local shadow VPM states. The higher
level PM-G policies use the ‘consolidation’ VPM mecha-
nism based on information about the shadow VPM states
assigned to VMs by PM-L policies and the platforms on
which they run (e.g., rack or blade enclosures). One objec-
tive of these experiments is to evaluate VirtualPower’s abil-
ity to run diverse rules with different and varying goals while
exercising the multiple VPM mechanisms presented to these
rules. Goals sought by the VPM rules policies demonstrated
include power minimization and power throttling/limiting,
the latter designed to enforce limits on blade- or rack-level
power draws, perhaps triggered by thermal events. Another
objective is to demonstrate, experimentally, the importance

of coordination: (1) across the different levels of abstraction
at which VM-level vs. virtualization layer policies run, and
(2) across policies running on different platforms.

7.1 PM-L Policies: Platform Management
The VirtualPower approach establishes an indirect feed-

back mechanism that permits power management at the vir-
tualization level to take into account the desires of VM spe-
cific management policies using state-based guidance. The
existence of this desirable feedback loop is established with
traces of power management requests from the web server
(WS) and database (DB) VMs for our RUBiS workload in
Figure 6. Here, we denote VMs’ requests in terms of de-
sired Px states, where P0 is 3.2GHz, P1 is 2.8GHz, P2 is
2.0GHz,. . . etc. Figure 6(a) shows the requests made by the
two VMs without active VirtualPower management. That
is, VPM rules are disabled and do not perform any hard
or soft resource scaling. When active power management
is enabled and PM-L policies are run, a dramatic change
is seen in the request patterns of both VMs in Figure 6(b).
This demonstrates the interplay between active management
in the virtualization layer with the internal policies run by
guest VMs. In other words, the Figure visualizes perfor-
mance feedback data communicated from VMs to the virtu-
alization layer power management. We next evaluate how
this indirect feedback loop can be used for effective, coordi-
nated platform- and system-level power management.

A simple virtualization-level policy is one that attempts to
minimize power consumption while maintaining the desired
performance of an application, the latter expressed via the
VM’s power management requests. We term this policy PM-
Lmin. An alternative useful local policy is one that throttles
power consumption for certain periods of time, perhaps due
to thermal events or transient power delivery issues [5, 6].
PM-Lthrottle is a power throttling policy that attempts to
maintain average power consumption at some desired level.
Finally, to address changes in request behavior experienced
for the transactional loads explained earlier, a third useful
local policy, termed PM-Lplan, is one that trades off poten-
tial short term reductions in power usage with longer term
gains enabled by planning based on monitoring historical
trends in power management request behavior. We next
experiment with these policies.

Minimizing Power in the Presence of QoS Constraints.

A common objective for power management policies is
to minimize execution time power consumption while main-
taining the quality of service (QoS) required by applications.

As outlined in Section 4, VirtualPower attains this goal by
observing and reacting to guest VMs’ management requests.
Using combined hard and soft scaling to export a set of five
virtual frequency states to guest VMs, the experimental re-
sults shown here demonstrate that the PM-Lmin VPM rule
successfully assigns suitable shadow VPM states to meet a
VM’s QoS goals while also reducing its power consumption.
Power management behavior with this policy is depicted in
Figure 7, where the straightforward ‘mapping’ version of the
PM-Lmin policy reacts to a change request by a VM by sim-
ply making the appropriate change to some corresponding
shadow state.

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

 0 100 200 300 400 500 600 700 800 900

P
ow

er
 (

W
)

Time (s)

Figure 7: Power Trace of Transactional Application.

The power trace in Figure 7 measured for the transac-
tional application is obtained from an experiment in which
the VPM state for the application is initialized to its maxi-
mum (or 3.2GHz). The VM-level policy determines whether
or not a scaling request should be made between transaction
executions. These decision points can be seen in the figure
where the power consumption drops for a very small pe-
riod of time. We observe that over time, the VM issues
several frequency reduction requests since there is slack be-
tween its performance and the necessary computation power
to maintain its required processing rate. When such slack
is depleted, the system scales the computational resources
back up to an appropriate performance level, in response to
subsequent VM-issued management requests. Via this feed-
back loop, the PM-L policy is able to provide desired levels
of performance for the transactional VM across all experi-
ments run in this series.

(a) Single Transaction VM (b) Two Transaction VMs

Figure 8: Transactional Application Power Results.

An analysis of the power reduction capabilities of the
‘mapping’ PM-Lmin policy used with transactional appli-
cations is shown in Figure 8. The effectiveness of this pol-
icy is measured with varying rate requirements, where for

presentation purposes, the processing rate values are nor-
malized by the rate that requires the highest (i.e., 3.2GHz)
power state on our Pentium 4 machine. Figure 8(a) de-
picts the measured average power consumption of a single
instance of the transactional VM. Also shown are compar-
ative results attained with a non-VirtualPower-enabled sys-
tem, where the guest VM’s performance state is always set
to the maximum. These measurements establish that our
approach can capture and then effectively use VM-specific
power/performance tradeoffs via its VPM channels and mech-
anisms. In fact, with VirtualPower, we see power benefits
of up to 31% for transactional VMs that require reduced
performance (i.e., they execute transactions with low QoS
requirements). The diminishing returns seen with decreased
desired rate/throughput are because the soft scaling VPM
mechanism reduces active power consumption linearly, but
is limited by the idle power consumption of the platform.

Figure 8(b) depicts measurements with two backend trans-
actional VMs that both run on the same dual core platform.
The purpose is to understand whether and to what extent
simple policies like ‘mapping’ PM-Lmin can reduce power
consumption in the presence of multiple VMs with possibly
different individual performance requirements. With VM-
level performance requirements expressed as ‘rate mixes’ in
the figure, it is apparent that with performance slack, the
mapping PM-L policy again successfully reduces execution
time power consumption. Moreover, the policy recognizes
and successfully exploits the differences in VM-level perfor-
mance needs.

(a) Performance (b) Power Consumption

Figure 9: RUBiS Experimental Results.

Realistic web service applications have behaviors that are
more complex than those of the transactional codes we have
evaluated so far. To experiment with these, we use the
tiered RUBiS application, running its web server (WS) and
database (DB) virtual machines on separate physical ma-
chines, with a PM-L policy executing in each Dom0. Again
using the ‘mapping’ PM-Lmin policy, we measure the result-
ing performance, in terms of requests served per second, and
power consumption for various client loads in Figure 9 (each
load class normalized by comparative measurement of the
“policy off” case). Interestingly, while this policy is able to
limit total performance impact to within 5% across all loads,
its power savings aren’t appreciably better than the perfor-
mance degradation being experienced. This is because the
ondemand governor used by the RUBiS VMs is extremely
reactive, as shown in Figure 6. A simple ‘mapping’ PM-L
policy that carries out each of these requests can be inef-
ficient, because it is unable to capitalize on periods of low
utilization. A better policy for applications like these is an
averaging “Avg” PM-Lmin policy, which smooths the VPM

state request pattern observed from the RUBiS VMs. Our
implementation of this policy polls for VM power manage-
ment requests received on VPM channels, once per second
from Dom0. If a VM has made any requests, an averaging
function is used along with the current VPM state of the VM
to determine a new suitable state. Otherwise, if the shadow
VPM state of the VM does not match the last received re-
quest, the VPM state is shifted towards the last request
by one performance state. Figure 9 shows that this policy
provides similar performance characteristics to the mapping
approach, but reduces power consumption further, by up to
4%. Overall, we conclude that our VirtualPower infrastruc-
ture allows power minimization policies to effectively reduce
power within application specific performance requirements
for all of our experimental workloads.

Power Throttling with VPM Mechanisms.
In modern datacenters, there is a need for policies that

can limit the average power consumption of a system, per-
haps in response to some temporary event like a reduction
in cooling or power delivery capabilities, or in order to ad-
here to a global power provisioning strategy [9]. Ongoing
industry research is developing system support for power
consumption monitoring that can be used as feedback for
such policies [22, 33]. Unfortunately, current platforms like
our dual core Pentium 4 systems have limited performance
states for this type of management. Soft scaling corrects
this deficiency, and it makes it possible to construct policies
like PM-Lthrottle, which we describe and evaluate next.

 160
 180
 200
 220
 240

 0
 1

 2
 3

 4
 0 1 2 3 4

 140
 160
 180
 200
 220
 240

Power (W)

VM1 Px state
VM0 Px state

Power (W)

Figure 10: Transactional Workload Management.

Consider a single dual core platform executing two trans-
actional VMs. Each of these VMs can be assigned a static
Px state independently, by setting its shadow VPM state
in the hypervisor. Figure 10 provides the associated power
consumption trends. An interesting observation from this
figure is that there is a significant power reduction when
both VMs are set to VPM states of P1 or less, compared
to either of them running at P0. Particularly, the power
consumption of both VMs at P1 is 8% less than with one
VM at P0 and the other at P4. This is because for our
platform, voltage scaling can only be performed on the dual
core package if both cores are scaled down. A more general
observation from this figure is that soft scaling substantially
improves power limiting capabilities: hardware scaling alone
provides up to 20% throttling capability, while soft scaling
extends to up to 40%. These results again highlight the need
to utilize both hard and soft scaling in conjunction for effec-
tive management.

Next, we again consider the RUBiS setup with two ma-
chines in Figure 11. If the power of both machines is limited
simultaneously such as in a rack or enclosure setting, from

 105
 120
 135
 150
 165

 0
 1

 2
 3

 4
 0 1 2 3 4

 80
 100
 120
 140
 160
 180

Fetches/sec

DB Px state
WS Px state

Fetches/sec

(a) Performance

 255
 270
 285
 300
 315

 0
 1

 2
 3

 4
 0 1 2 3 4

 250
 270
 290
 310

Power (W)

DB Px state
WS Px state

Power (W)

(b) Power Consumption

Figure 11: RUBiS Management.

the figure, we see that with RUBiS, power savings scale with
performance degradation with the first few VPM states (P0-
P2). Within this range, an up to 9% performance degra-
dation can be traded for a 10% power reduction. If PM-
Lthrottle needs to limit power beyond this, then performance
drops by as much as 45% for an up to 20% reduction in
power. This nonlinearity exists because for distributed ap-
plications like RUBiS, their end-to-end performance metrics
can be significantly affected by local performance degrada-
tions. These experiments demonstrate, for a single applica-
tion, the effects of coordinated, multi-machine power man-
agement.

Figure 12: Non-uniform VPM State Allocation.

Our final measurements in this set of experiments go be-
yond coordinating across multiple machines to also demon-
strate the importance of coordination across multiple VM
policies, specifically, in order to attain some global goal,
such as limiting a server’s total power consumption to about
180W. Consider two guests VM0 and VM1 with different
power/performance tradeoffs, expressed by the commands
they issue to their respective VPM channels. A “fair”, ap-
plication unaware approach to throttling the machine would
divide the power budget uniformly and execute both VMs
at the P2 VPM state. On the other hand, if VM0 needs to
process transactions at a normalized rate of 0.8 while VM1
requires only a rate of 0.25, then when executing at P2, VM0
will try to upscale its frequency, since its performance is too
low to maintain its desired transaction rate. At the same
time, VM1 will attempt to down-scale its processor. With
the workload-awareness enabled by VirtualPower, a coordi-
nation policy can exploit information about VM desires to
determine that the first VM can run at P1, while the sec-
ond can run at P4. Although both assignments observe the
180W power limit, Figure 12 shows how the non-uniform
VirtualPower allocation provides adequate performance for
both VMs, while a uniform allocation overprovisions VM1
and causes VM0 to underperform.

VirtualPower Enabled Power Planning.
As a final example of a PM-L policy that can benefit from

the VirtualPower system, we briefly consider how power
management requests observed from VMs can be used to
create power management plans based on predicted behav-
ior. For example, an observation about the traces from Delta
Air Line’s enterprise subsystem is that a large batch of re-
quests arrives for processing at the same time every day. By
tracking power management requests associated with these
events, a PM-Lplan policy can make more appropriate de-
cisions than other policies. To highlight how this type of
policy is enabled by the VPM architecture, we next describe
a PM-Lplan that attempts to throttle power consumption to
180W on a machine over some time period.

 120

 130

 140

 150

 160

 170

 180

 0 200 400 600 800 1000 1200

P
ow

er
 (

W
)

Time (s)

No Plan
Plan

Figure 13: Power Tradeoffs of a Planning Policy.

Consider the ‘mapping’ PM-Lmin policy explained earlier.
This policy is ‘aggressive’ in that each VM is treated inde-
pendently and scaled down as much as possible. A global
planning policy, however, may wish to limit scaledown in
order to complete all existing transactions prior to the large
batch arrival, particularly when multiple VMs are involved.
Figure 13 depicts measurements of an illustrative example
in which a large batch job arrives after 700 seconds. The
“no plan” approach illustrates what happens if the minimal
VPM state corresponding to each VM’s currently desired
QoS is assigned to each machine. With this approach, ini-
tial power consumption is low, just under 140W. In order
to provide adequate performance when the second VM re-
ceives requests, power exceeds the desired throttling point.
Therefore, the policy would have to reduce the VPM state
of one or both VMs, thereby violating their performance
requirements. On the other hand, using past VM request
behavior, a planning policy can predict the future high de-
mand experienced by the second VM, and preemptively pro-
vide additional performance to the first VM, so that it may
complete its transactions. In Figure 13, the “plan” results
show that the throttling point is maintained using this ap-
proach. This illustration underlines that infrastructures like
VirtualPower must be able to run diverse and rich policies,
including those that require past observation and/or use pre-
dictive techniques.

7.2 PM-G Policies: Global Coordination
Coordination across multiple local policies has already

been recognized as an important element of any manage-
ment infrastructure. A specifically interesting case for power
management is that global policies can exploit the ever-
increasing efficiency in idle, standby, and sleep power sought
and attained by hardware vendors, by using VirtualPower’s

consolidation mechanism. It is a well-known concept, of
course, that consolidation can be used to minimize the num-
ber of currently active resources so that standby and sleep
states can be used. The new capability provided by Virtu-
alPower is that aggressive soft scheduling based on observed
VM-level management requests can be used to substantially
improve consolidation-based power management. In addi-
tion, we show that a PM-G policy that combines consolida-
tion with migration can perform power efficient allocations
in heterogeneous environments.

Figure 14: Consolidation with Sleep States.

Soft Scale-Enabled Consolidation.
To understand the benefits of consolidation, particularly

in multicore machines, consider Figure 14. The figure pro-
vides power measurements of two Pentium 4 machines when
there are two transactional VMs, each with the same desired
processing rate. Both machines run the mapping PM-Lmin

policy described earlier. The figure compares the measured
power consumption of the two machines when the VMs are
on separate physical machines vs. being consolidated onto
one multicore machine vs. the projected power consump-
tion when there is consolidation and when the idle platform
is shut down or placed into a low power sleep/standby state
(which we assume consumes close to zero power). We see
from the figure that at high processing rates (i.e., high VPM
states), there is an up to 10% power improvement derived
from consolidation. This is due to the power characteristics
of the multicore chips where when one core is being highly
utilized, from a global power perspective, it is better to use
the second core on the same chip. At lower request rates,
however, we see that the only significant power reduction
stems from the act of placing the unused resources, in this
case a machine, into a low power/off state.

A VirtualPower-enabled system can aggressively exploit
the power characteristics of multicore chips. Specifically,
by monitoring lower level PM-L policies, a PM-G policy can
determine whether and when soft scaled VMs should be con-
solidated. In our implementation, PM-L policies spawn com-
munication threads that listen for information requests from
PM-G policies. Upon a request, PM-L policies respond with
a list of guest domains currently executing and the shadow
VPM states used to run them. The PM-G policy can then
act based upon its knowledge about the use of shadow VPM
states on some set of machines. Given the definition of our
VPM states, of particular interest are VMs that run at states
P3 and P4 for long durations. An illustrative example is
one in which four transactional VMs with normalized de-
sired processing rates of 0.4 are deployed onto two physical

machines. Table 2 provides the power consumption of these
machines under various configurations.

Table 2: Managing Two Machines with Four VMs.

Configuration Power (W)

Two VMs per machine (no PM) 490W
Two VMs per machine (PM-Lmin) 318W
Consolidated with 1 idle machine 362W
Consolidated with 1 sleep/off machine 242W

The scenario illustrates several interesting facts. First,
when consolidating all four VMs onto one machine, these
machines are set to run at P3, or the 1.6GHz VPM state.
The implementation of this state reduces the sizes of VM
slices by setting the physical frequency of the two cores to
3.2GHz (rather than the lower 2.8GHz). This implementa-
tion of the VPM state consumes more power, but it also
allows for improved power consumption from a global per-
spective (i.e., due to consolidation and the associated effi-
cient use of sleep power). Indeed, we see from Table 2 that
power consumption increases under consolidation, compared
to two active machines managed by PM-Lmin policies, until
the idle machine is placed into a sleep mode which provides a
24% reduction in power consumption across both machines.

Exploiting Heterogeneity in Power Management.
Upgrade cycles and cost considerations are causing in-

creased levels of platform heterogeneity in datacenter envi-
ronments. Even within a platform and processor generation,
there may be differences between components. In particu-
lar, due to fabrication issues, it is becoming necessary to bin
processors into different groups based on their frequency and
management capabilities. Therefore, our next experimental
scenario considers the heterogeneity case in which there are
some machines that support hardware scaling, while others
do not. In our testbed, this simply involves treating some
of our Pentium machines as non-scalable. Figure 15 shows
how this fact can affect the power consumption of one of our
transactional VMs. With varying processing rates, we see
from the figure that the benefits of hardware scaling support
can be significant, up to 8%, especially for application VMs
that can be executed at reduced VPM states.

Figure 15: Power Management Heterogeneity.

VM consolidation and migration are important methods
for dealing with PM heterogeneity. To illustrate, consider
three transactional VMs with normalized performance re-
quirements of 0.4 running on a single machine. On a plat-
form with hardware scaling and a PM-Lmin policy, these

workloads consume 180W, but they consume 218W on a
platform without hardware management support. This con-
stitutes a 17% reduction in power. It is clear therefore, that
in the context of VirtualPower-enabled consolidation, PM-G
policies can and should be designed to intelligently leverage
hardware manageable components whenever permitted by
VMs’ performance requirements.

Resource Heterogeneity Exploitation with VPM States.

The final results shown in this paper concern aggressive
consolidation to exploit heterogeneity in the power and per-
formance tradeoffs of datacenter platforms. In particular,
we include in our experimental setup a dual core platform
using Intel’s new Core microarchitecture, and we enable live
VM migration as one of the VPM mechanisms offered to
VPM rules. In this setup and for the transactional VMs
used in our work, migration time is measured to be, on av-
erage, 8.5 seconds when the machine is executing two VMs,
and 4.4 seconds when there is only one VM.

 350

 400

 450

 500

 550

 600

 0 50 100 150 200 250 300
P

ow
er

 (
W

)

Time (s)

Figure 16: Consolidation with Heterogeneity.

The experiment deploys four transactional VMs with nor-
malized rate requirements of 1.0, two on each dual core Pen-
tium 4 machine. All machines run a PM-Lmin policy, and
there is a PM-G policy whose goal is to maximize usage
of the Core microarchitecture-based system since it is quite
power efficient and also provides significant performance. In
fact, it consumes around 140W when running both cores as
compared to the 240W used by the Pentium based machines.
Moreover, it can execute transactions at roughly 2.4 times
the rate of the older machines.

The PM-G policy begins by offloading two VMs from one
of the P4 platforms and onto the Core microarchitecture-
based platform. Due to the improved performance expe-
rienced by the VMs after migration, they request reduced
performance states. The ability to obtain these hints trans-
parently across these heterogeneous platforms highlights the
benefits of our VPM state abstraction for VM policies. Over
time, the PM-G policy detects that the PM-Lmin policy
running on the Core microarchitecture machine has reduced
allocations to the existing VMs, freeing up room for addi-
tional consolidation. As shown by the experiment’s power
trace in Figure 16, this causes a chain of migrations. Here,
the Pentium machines are not powered down or placed into
sleep states, but instead, continue to consume idle power.
Nonetheless, we observe power savings of almost 200W, or
34%, by allowing for extensive use of the more power-efficient
resources when all four VMs are finally migrated. This
experimental scenario highlights the ability of the Virtu-

alPower infrastructure to support complex policy strategies
that leverage heterogeneity, as well as the ability of its VPM
channels and VPM states to provide seamless coordination
across systems and migration activities.

8. CONCLUSIONS AND FUTURE WORK
Power management has become an important problem

in enterprise systems, where costs as well as limitations
in cooling and power delivery have made it necessary to
extend active power management support into these envi-
ronments. At the same time, end users are deploying new
methods for system virtualization, to benefit from their iso-
lation properties and/or from the increased levels of flexibil-
ity derived from server consolidation. Our research has ex-
tended virtualization solutions to support rich and effective
policies for active power management. The VirtualPower
infrastructure presented in this work advocates two basic
ideas: (1) to present guest virtual machines with what ap-
pears to be a rich set of ‘soft’ power states accessible to
their application-specific policies, termed VPM states, and
then (2) to use the state changes requested by VMs as in-
puts to virtualization-level management policies. These in-
clude local policies architected to efficiently use specific plat-
forms and their power management capabilities, coupled
with global policies that consider goals derived from entire
applications running across multiple machines and/or de-
rived from global constraints, such as blade- or rack-level
limitations on maximum power consumption. Extensive ex-
perimentation with multiple processors, including the new
power-efficient Intel Core microarchitecture, demonstrate the
benefits of active power management with VirtualPower as
well as the suitability of VirtualPower’s abstractions of VPM
states, channels, mechanisms, and rules. They also demon-
strate that with the state-based guidance approach to ac-
tive power management realized in VirtualPower, it is possi-
ble to capture and respond to the application-specific power
management desires and policies implemented in guest vir-
tual machines without any need for application specificity
at the virtualization level. Experimental evaluations also
show substantial benefits derived from VirtualPower’s use
(i.e., with improvements in power consumption of up to 34%
without appreciable losses in performance).

Our future work will extend the VirtualPower infrastruc-
ture across multiple dimensions. One of these is to include
abstractions and mechanism support for VM-specific power
throttling and power allocation. The idea is to ensure ‘fair’
power allocations across different VMs. An outcome of such
fairness would be the ability to prevent power viruses from
damaging machine performance. Another set of extensions
will consider the potential performance and thus, power de-
pendencies in applications like RUBiS, where often, it is
only certain application components in certain VMs that
critically affect application performance. Runtime methods
for identifying these via VirtualPower’s state-based guidance
approach would permit downscaling of all but the most im-
portant VMs for these applications.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd,

Mendel Rosenblum, for their feedback on improving this pa-
per. This work has been supported by an NSF ITR award
and by Intel Corporation via an Intel Foundation Student

Fellowship. Extensive exposure to modern multicore plat-
forms and virtualization technologies at Intel Corporation
have been invaluable to our research, including discussions
with Intel personnel, most notably Eugene Gorbatov and
Rob Knauerhase. We also acknowledge additional inputs
and support from Dilma Da Silva and Freeman Rawson at
IBM. Finally, we would like to thank Intel Corporation for
their generous donation of resources and platforms used to
perform this work. Ripal Nathuji was awarded an SOSP
student travel scholarship, supported by Infosys, to present
this paper at the conference.

10. REFERENCES
[1] S. Agarwala, F. Alegre, K. Schwan, and

J. Mehalingham. E2eprof: Automated end-to-end
performance management for enterprise systems. In
Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks
(DSN), June 2007.

[2] J. Almeida, V. Almeida, D. Ardagna, C. Francalanci,
and M. Trubian. Resource management in the
autonomic service-oriented architecture. In
Proceedings of the IEEE International Conference on
Autonomic Computing (ICAC), June 2006.

[3] Amazon Elastic Compute Cloud.
http://aws.amazon.com/ec2.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 2003.

[5] D. Brooks and M. Martonosi. Dynamic thermal
management for high-performance microprocessors. In
Proceedings of the 7th International Symposium on
High-Performance Computer Architecture (HPCA),
January 2001.

[6] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and
R. Doyle. Managing energy and server resources in
hosting centers. In Proceedings of the 18th Symposium
on Operating Systems Principles (SOSP), 2001.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In Proceedings of the 2nd
ACM/USENIX Symposium on Networked Systems
Design and Implementation (NSDI), May 2005.

[8] E. N. Elnozahy, M. Kistler, and R. Rajamony.
Energy-efficient server clusters. In Proceedings of the
Workshop on Power-Aware Computing Systems,
February 2002.

[9] X. Fan, W.-D. Weber, and L. Barroso. Power
provisioning for a warehouse-sized computer. In
Proceedings of the International Symposium on
Computer Architecture (ISCA), June 2007.

[10] M. Femal and V. Freeh. Boosting data center
performance through non-uniform power allocation. In
Proceedings of the IEEE International Conference on
Autonomic Computing (ICAC), 2005.

[11] K. Flautner and T. Mudge. Vertigo: Automatic
performance-setting for linux. In Proceedings of the
Symposium on Operating Systems Design and
Implementation (OSDI), 2002.

[12] J. Flinn and M. Satyanarayanan. Energy-aware

adaptation for mobile applications. In Proceedings of
the Symposium on Operating Systems Principles
(SOSP), December 1999.

[13] S. Ghiasi, T. Keller, and F. Rawson. Scheduling for
heterogeneous processors in server systems. In
Proceedings of the International Conference on
Computing Frontiers, 2005.

[14] S. Graupner, R. Konig, V. Machiraju, J. Pruyne,
A. Sahai, and A. V. Moorsel. Impact of virtualization
on management systems. Technical report,
Hewlett-Packard Labs, 2003.

[15] T. Heath, A. P. Centeno, P. George, L. Ramos,
Y. Jaluria, and R. Bianchini. Mercury and freon:
Temperature emulation and management in server
systems. In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS),
October 2006.

[16] T. Heath, B. Diniz, E. V. Carrera, W. Meira Jr., and
R. Bianchini. Energy conservation in heterogeneous
server clusters. In Proceedings of the 10th Symposium
on Principles and Practice of Parallel Programming
(PPoPP), 2005.

[17] Hewlett-Packard, Intel, Microsoft, Phoenix, and
Toshiba. Advanced configuration and power interface
specification. http://www.acpi.info, September 2004.

[18] C. Isci, G. Contreras, and M. Martonosi. Live, runtime
phase monitoring and prediction on real systems with
application to dynamic power management. In
Proceedings of the 39th International Symposium on
Microarchitecture (MICRO-39), December 2006.

[19] Y. Koh, R. Knauerhase, P. Brett, M. Bowman,
Z. Wen, and C. Pu. An analysis of performance
interference effects in virtual environments. In
Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software
(ISPASS), 2007.

[20] R. Kotla, S. Ghiasi, T. Keller, and F. Rawson.
Scheduling processor voltage and frequency in server
and cluster systems. In Proceedings of the Workshop
on High-Performance, Power-Aware Computing
(HP-HPAC), 2005.

[21] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi,
and K. Farkas. Single-isa heterogeneous multi-core
architectures for multithreaded workload performance.
In Proceedings of the International Symposium on
Computer Architecture (ISCA), June 2004.

[22] C. Lefurgy, X. Wang, and M. Ware. Server-level power
control. In Proceedings of the IEEE International
Conference on Autonomic Computing (ICAC), June
2007.

[23] H. Li, C. Cher, T. Vijaykumar, and K. Roy. Vsv:
L2-miss-driven variable supply-voltage scaling for low
power. In Proceedings of the IEEE International
Symposium on Microarchitecture (MICRO-36), 2003.

[24] M. Lim, V. Freeh, and D. Lowenthal. Adaptive,
transparent frequency and voltage scaling of
communication phases in mpi programs. In
IEEE/ACM Supercomputing, November 2006.

[25] J. Moore, J. Chase, P. Ranganathan, and R. Sharma.
Making scheduling cool: Temperature-aware workload
placement in data centers. In Proceedings of the

USENIX Annual Technical Conference, June 2005.

[26] R. Nathuji, C. Isci, and E. Gorbatov. Exploiting
platform heterogeneity for power efficient data centers.
In Proceedings of the IEEE International Conference
on Autonomic Computing (ICAC), June 2007.

[27] R. Nathuji and K. Schwan. Reducing system level
power consumption for mobile and embedded
platforms. In Proceedings of the International
Conference on Architecture of Computing Systems
(ARCS), March 2005.

[28] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and
R. Uhlig. Intel virtualization technology: Hardware
support for efficient processor virtualization. In Intel
Technology Journal
(http://www.intel.com/technology/itj/2006/v10i3/),
August 2006.

[29] Nutch. http://lucene.apache.org/nutch.

[30] P. Pillai and K. Shin. Real-time dynamic voltage
scaling for low-power embedded operating systems. In
Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP), October 2001.

[31] C. Poellabauer, L. Singleton, and K. Schwan.
Feedback-based dynamic frequency scaling for
memory-bound real-time applications. In Proceedings
of the 11th Real-Time and Embedded Technology and
Applications Symposium (RTAS), March 2005.

[32] K. Rajamani and C. Lefurgy. On evaluating
request-distribution schemes for saving energy in
server clusters. In Proceedings of the IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), March 2003.

[33] P. Ranganathan, P. Leech, D. Irwin, and J. Chase.
Ensemble-level power management for dense blade
servers. In Proceedings of the International Symposium
on Computer Architecture (ISCA), 2006.

[34] B. Seshasayee, R. Nathuji, and K. Schwan.
Energy-aware mobile service overlays: Cooperative
dynamic power management in distributed mobile
systems. In Proceedings of the IEEE International
Conference on Autonomic Computing (ICAC), June
2007.

[35] J. Stoess, C. Lang, and F. Bellosa. Energy
management for hypervisor-based virtual machines. In
Proceedings of the USENIX Annual Technical
Conference, June 2007.

[36] J. Sugerman, G. Venkitachalam, and B.-H. Lim.
Virtualizing i/o devices on vmware workstation’s
hosted virtual machine monitor. In Proceedings of the
USENIX Annual Technical Conference, 2001.

[37] W. Yuan and K. Nahrstedt. Energy-efficient soft
real-time cpu scheduling for mobile multimedia
systems. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2003.

[38] H. Zeng, C. Ellis, A. Lebeck, and A. Vahdat.
Currentcy: A unifying abstraction for expressing
energy management policies. In Proceedings of the
USENIX Annual Technical Conference, June 2003.

[39] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and
J. Wilkes. Hibernator: Helping disk arrays sleep
through the winter. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP),
October 2005.

