
Long spaced seeds for finding similarities between
biological sequences

LUCIAN ILIE1

Department of Computer Science
University of Western Ontario

N6A 5B7, London, Ontario, CANADA
e-mail: ilie@csd.uwo.ca

SILVANA ILIE2

Centre for Mathematical Sciences
Numerical Analysis, Lund University
Box 118, SE-221 00 Lund, SWEDEN
e-mail: silvana@maths.lth.se

Abstract—Homology search finds similar segments between
two biological sequences, such as DNA or protein sequences.
A significant fraction of the computing power in the world is
devoted to finding similarities between biological sequences. The
introduction of optimal spaced seeds in [Ma et al., Bioinformatics
18 (2002) 440–445] has increased both the sensitivity and the
speed of homology search and it has been adopted by many
alignment programs such as BLAST. In spite of significant
amount of work, there are no algorithms able to compute long
good seeds. We present a different approach here by introducing
a new measure that has two desired properties: (i) it is highly
correlated with sensitivity of spaced seeds and (ii) it is easily
computable. Using this measure we give algorithms that compute
better seeds than all previous ones. The fact that sensitivity is not
required is essential as it enables us to compute very long good
seeds, far beyond the size for which sensitivity can be computed.

Index Terms—homology search, spaced seed, sensitivity, Pat-
ternHunter, BLAST

I. I NTRODUCTION

H OMOLOGY search finds similar segments between two
biological sequences, such as DNA or protein sequences.

A significant fraction of the computing power in the world is
dedicated to performing such tasks. The increase in genomic
data is quickly outgrowing computer advances and hence
better mathematical solutions are required. As the classical
dynamic programming techniques of [19], [25] became over-
whelmed by the task, popular programs such as FASTA [15]
and BLAST [1] used heuristic algorithms. BLAST used a
filtration technique in which positions with short consecutive
matches, orhits, were identified first and then extended into
local alignments. Speed was traded for sensitivity since longer
initial matches missed many local alignments, hence decreas-
ing sensitivity, whereas shorter initial matches produced too
many hits, thus decreasing speed.

A breakthrough came with PatternHunter [17] where the hits
were no longer required to consist of consecutive matches.
Precisely, PatternHunter looks for runs of 18 consecutive
nucleotides in each sequence such that only those specified
by 1’s in the string111* 1** 1* 1** 11* 111 are required to
match. Such a string is called aspaced seedand the number

1Research partially supported by NSERC and CNRS.
2Supported by a postdoctoral fellowship from the Natural Science and

Engineering Research Council of Canada.

of 1’s in it is its weight. Using this notion, BLAST required a
hit according to aconsecutiveseed such as11111111111 .

The filtration principle has been used before in approximate
string matching [10], [22], [5] but the important novelty of
PatternHunter was the use of optimal spaced seeds, that is,
spaced seeds that have optimal sensitivity. (The sensitivity
of a seed is the probability that it hits a random region of
a given length.) Impressively, the approach of PatternHunter
increases both the speed and sensitivity. Since then the idea has
been adopted by the new versions of BLAST – MegaBLAST,
BLASTZ – and other software programs [3], [21], [12].

Quite a few papers have been written about spaced seeds,
evaluating the advantages of spaced seeds over consecutive
ones [11], [4], [6], [16], showing that the relevant computa-
tional problems are NP-hard [14], [16], giving exact (expo-
nential) algorithms for computing sensitivity [14], [11], [4],
[6], [7], [4], polynomial time approximation schemes [16] or
heuristic algorithms [14], [7], [23], adapting the seeds for more
specific biological tasks [3], [21], [13], or building models to
understand the mechanism that makes spaced seeds powerful
[4], [26], [23].

In this paper we present a different approach. Previous work
gave algorithms to compute the sensitivity exactly, which is
NP-hard [16], or to approximate it. We introduce a combinator-
ial measure of complexity which attempts to replace sensitivity
in the sense that it is highly correlated with it but easily
computable. Our measure is based on string overlaps, hereto
calledoverlap complexity. Seeds with low overlap complexity
have high, or even optimal, sensitivity. Optimal seeds with
weight up to 18 can be computed by considering a number of
seeds with low overlap complexity and pick the best. With a
much simpler and faster algorithm we obtain better seeds than
those of [23] for weights between 19 and 24.

For higher weights, no good seeds are known. Note that
computing long good seeds is of practical importance since
some software tools, such as MegaBLAST [28] and SSAHA
[20], use long seeds. Great difference in speed allows our
algorithm to compute seeds long enough for all purposes one
can imagine – we provide a list of seeds of selected weights up
to 64. It is interesting that the sensitivity of these seeds cannot
be computed by any of the existing algorithms and likely it
will never be since the problem is NP-hard.

II. SPACED SEEDS

A spaced seedis any3 string consisting of1’s and * ’s; 1
stands for a ‘match’ and* for a ‘don’t care’ position. For
a seeds, the length of s, denoted bỳ , is the total number
of characters ins and theweight of s, denoted byw, is the
number of 1’s ins. For instance, the length and weight of
PatternHunter’s seed111* 1** 1* 1** 11* 111 are 18 and 11,
respectively.

Given two DNA sequences and a seeds, we say that
s simultaneously matches (hits) the two sequences at given
positions if each1 in s corresponds to a match between the
corresponding nucleotides in the two sequences; see Fig. 1 for
an example using PatternHunter’s seed.

The above process can be reformulated as follows. Assume
there are two DNA sequencesS1 andS2 such that the events
that they are identical at any given position are jointly inde-
pendent and each event is of probabilityp, called thesimilarity
level. The sequence of equalities/inequalities between the two
DNA sequences translates then into a sequenceR of 1’s and
0’s, corresponding to matches and mismatches, that appear
with probabilityp and1−p, respectively. Therefore, given an
(infinite) Bernoulli random sequenceR and a seeds, we say
that s hits R (ending) at positionk if aligning the end ofs
with position k of R causes all1’s in s to align with 1’s in
R; see Fig. 1.

The sensitivityof a seeds is the probability thats hits R
at or before positionn. Note that the sensitivity depends on
both the similarity levelp and the length of the homologous
regionn.

III. SEED OVERLAPS

The hits of a seed can obviously overlap but overlapping hits
will detect a single local alignment. Therefore, the sensitivity
of a seed is inverse proportional with the number of overlap-
ping hits, since the expected number of hits is the same for
all seeds. Therefore, good seeds should have a low number
of overlapping hits. The definite proof that (nonuniformly)
spaced seeds (defined formally in the section) are better
than consecutive seeds, due to [16], involves estimating the
expected number of nonoverlapping hits. However, computing
this number in general is as difficult as computing sensitivity.
Therefore, we look here for simpler ways to detect low
numbers of overlapping hits.

The discussion leading to our definition of overlap complex-
ity is not given here because of limited space. We say only that
there are three natural candidates, depicted in Fig. 2; the thick
lines are the seeds, overlapping in various ways, whereas the
dashed boxes show the part that is considered for counting: (i)
the overlaps alone, (ii) the participant strings, and (iii) a fixed-
size window containing the overlapping strings as prefixes.

Keeping in mind that a* aligned against a1 will have to
take value 1 with probabilityp and two * ’s aligned against
each other will take the same value, 0 or 1, with total proba-
bility p2+(1−p)2, longer overlaps will get penalized more by
the candidate (i), which is wrong, whereas the candidate (ii)

3From biological point of view only strings starting and ending with1 are
spaced seeds. The ones we shall ultimately compute satisfy this condition.

tends to penalize the short overlaps too much. An in-between
choice is our third candidate. It is interesting to note that the
value ofp does not seem to be relevant as far as the obtained
ranking is concerned. This is due to the fact that, even if the
optimal seed may change withp, the differences in sensitivity
are very small among these top seeds (compared, of course,
for the same similarity level), a fact heavily exploited later.
We shall therefore fix the value ofp as 0.5.

The overlap complexityof a seeds is formally defined as

OC(s) =
`−1∑

i=1

2σ[i] ,

where σ[i] gives the number of pairs of1’s aligned to-
gether betweens and its shift byi positions. (Equivalently,
this means the number of pairs of1’s at distancei in
s.) As an example, for PatternHunter’s seed we haveσ =
(5, 5, 5, 4, 4, 3, 3, 4, 3, 2, 3, 3, 3, 2, 3, 2, 1) and its overlap com-
plexity is

∑`−1
i=1 2σ[i] = 214.

Note that, for any seeds, OC(s) = OC(sr) (sr is the
reversal ofs) which is a property to be expected since the
sensitivity ofs andsr is the same. Throughout our experiments
we consider only one ofs andsr.

IV. CONSECUTIVE AND UNIFORMLY SPACED SEEDS

The spaced seed of PatternHunter clearly outperformed
the former consecutive seeds but whether spaced seeds were
always better than consecutive ones required investigation. In
fact, it is not true for all spaced seeds:uniformly spaced seed,
i.e., seeds of the form

uk,r = *
r(1*

k)w
*

`−r−w(k+1) ,

for k ≥ 0, are not better. Note that consecutive seeds are a
particular case of this definition fork = 0. For the remaining
ones, indication of their superiority has been given in [11], [6]
but a rigorous proof had to wait until [16].

It can be proved that uniformly spaced seeds (consecutive
ones included) are the worst with respect to overlap com-
plexity. (Here “worst” means of highest overlap complexity.)
Moreover, they are the only ones with this property. The
formal proof is omitted. We shall only mention that, for fixed
length and weight, all these seeds have the same overlap
complexity, namely

OC(uk,r) = 2w + `− w − 2 .

V. CORRELATION BETWEEN OVERLAP COMPLEXITY AND

SENSITIVITY

We present in this section the numerical data which ex-
perimentally show very good correlation between overlap
complexity and sensitivity.

First, we consider the good seeds computed by Choi, Zeng,
and Zhang in [7]. While we do not have the space to show
all data, we mention only that all top seeds in the sensitivity
ranking are at the top, or very close, of the ranking induced
by overlap complexity. In all cases, at least one sensitivity-
optimal seed tops the overlap ranking.

DNA sequence A G G C A C T G T A T G T A T A T C
DNA sequence A G G C A A T G C A T T T A A A T C
matches/mismatches = = = = = 6= = = 6= = = 6= = = 6= = = =
Bernoulli sequence 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1
spaced seed 1 1 1 * 1 * * 1 * 1 * * 1 1 * 1 1 1

Fig. 1. An example of a hit using PatternHunter’s seed.

(iii)

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �	 	 	 	 	 	 	 	

� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � � ! ! ! ! ! ! ! !! ! ! ! ! ! ! !

(i) (ii)

" " " " " " " "" " " " " " " "# # # # # # # ## # # # # # # #

Fig. 2. Three possibilities for counting overlaps.

The opposite comparison, even more important, is shown
in Table I. We give only the mean statistics. The second and
third columns contain the mean and standard deviation, resp.,
of the difference between optimal sensitivity,Soptimal (taken
from [7]), and the sensitivity of the seed with best overlap
complexity for the same weight and length,Sbest overlap. (In
fact, almost all differences are zero and the remaining ones
are negligible, which proves a remarkable correlation between
the two measures.) The data are computed for weight range 9
to 18. The optimal sensitivity for higher weights is unknown.
The last two columns will be discussed later.

VI. F INDING GOOD SPACED SEEDS USING OVERLAP

COMPLEXITY

The exact algorithms for computing sensitivity are all expo-
nential, see [11], [4], [6], which is expected since the problem
is NP-hard [16]. Some though are better than others. The one
of [6] runs in timeO(n`22(`−w)), which makes it the slowest.
The other two have running timesO(n`22`−w) for [11] and a
bit less,O(nw2`−w), for [4]. Therefore, finding optimal seeds
by trying all of a given weight (and length) and selecting the
best is computationally very expensive. In fact, it has been
shown by [14] to be NP-hard for an arbitrary distribution. On
the other hand, [16] explains why finding an optimal seed in
an uniform distribution is probably not NP-hard. We refer to
[16] for details.

Choi, Zheng and Zhang [7] used theirO(n`22(`−w))-
algorithm for sensitivity to find optimal seeds for weights
up to 18. The total complexity of the exact algorithm is
thenO((`

w)n`22(`−w)). They noticed that the sensitivity for
homologous region of lengthn = 2` is a good indicator for
the target sensitivity forn = 64 (length 64 for homologous
region has been recommended by [17]). Therefore, they have
a heuristic algorithm of complexityO((`

w)`222(`−w)).
A much faster heuristic algorithm has been proposed by

Preparata et al. [23], where heuristics derived from a compli-
cated analysis of a probability leakage model are used. The
complexity of their algorithm is not explicitly given but, from
the description of the tests performed, it seems to be something
like O(2w) in addition to computing the exact sensitivity for
a few seeds.

The heuristic algorithm we derived from our overlap com-
plexity is very simple: compute the seed with the lowest
overlap complexity. With a heuristic using the fact that the
best seeds must start and end with a number of1’s, the time
complexity is roughly the same as the one of [23]. However,
our seeds are always better. For each seed computed in [23],
we found only one seed with minimum overlap complexity
with the same length and weight (using the heuristic with the
number of1’s at the ends) and computed its sensitivity for
comparison. Table II shows the results for homologous regions
of length 128, as used in [23]. (Our seeds’ sensitivities are
better also for length 64.)

Note that our algorithm described above is better than the
heuristic algorithm of [7] since, being much faster, we can
afford computing the sensitivity for a number of seeds with
low overlap complexity and the optimum is found in all cases
of [7]. In addition, our algorithm is much simpler than all the
other ones.

VII. L ONG GOOD SEEDS

So far we have seen that simple algorithms based on overlap
complexity can produce remarkably good seeds. They are
better than those produced by previous algorithms. However,
the computation of the seeds with lowest overlap complexity
requires investigation of all seeds of given weight and length.
Even when using the heuristic with the1’s at the ends their
number remains exponential. To compute much longer good
seeds we need something much better. The simplicity of our
approach will allow an extremely efficient heuristic algorithm
for approximating overlap complexity which will be the one
we are looking for. It runs fast and produces excellent results.

We shall say that1 flipped is * and vice versa. For a
seed s and a set of positionsi1, i2, . . . , ik, we denote by
flip(s, i1, i2, . . . , ik) the seed obtained froms by flipping
the letters in positionsi1, i2, . . . , ik. For instance, we have
flip(1* 11* 11*** 1, 3, 6, 8) = 1** 1** 11** 1. With this
notation, the algorithm, calledSWAP(w, `), is described in
Fig. 3.

Thus, the algorithm essentially swaps a1 with a * as long
as the overlap complexity can be improved and then swaps
two 1’s with two * ’s with the same goal. Each swap greedily

TABLE I
Heuristic versus optimal sensitivity for weights 9 to 18 and length of homologous region 64.

similarity Soptimal− Sbest overlap Soptimal− Sheuristic overlap

mean standard deviation mean standard deviation
65% 0.000024 0.000043 0.000152 0.000217
70% 0.000033 0.000098 0.000454 0.000492
75% 0.000029 0.000061 0.000812 0.000810
80% 0.000089 0.000148 0.001153 0.001077
85% 0.000383 0.000809 0.001309 0.001449
90% 0.000270 0.000644 0.000707 0.001137

TABLE II
Comparing our seeds with the ones of [23] for homologous region of length 128. For each weight, the seed of [23] is given first and then our seed.

good seeds sensitivity
weight (our seeds are second for each weight) under a similarity level

70% 80% 90%
18 1111 * 11* 1* 111*** 11** 1** 11111 0.1213710 0.634614 0.995108

111* 111** 1* 1* 11** 1* 11** 11111 0.1226640 0.639962 0.995514
19 11111 ** 11* 1* 1** 111** 1* 1* 11111 0.0874472 0.555891 0.990715

111* 11* 1* 11** 11* 1* 1* 11** 11111 0.0879040 0.558625 0.991186
20 11111 ** 11*** 111* 1** 1* 1* 11* 11111 0.0625721 0.482963 0.984702

1111 * 1* 1* 11** 111** 1* 11** 11* 1111 0.0629695 0.485533 0.985240
21 11111 * 1** 111* 1* 111** 1** 1** 111111 0.0439876 0.407405 0.973435

11111 ** 11* 1* 1* 11** 11* 1* 11** 11111 0.0446784 0.414399 0.975833
22 11111 * 1** 11* 11* 1** 111** 1* 1** 111111 0.0312319 0.347302 0.961702

1111 * 11** 111** 1* 11* 1* 1* 1* 11** 11111 0.0315421 0.350986 0.963462
23 111111 * 1* 1** 1** 11* 11*** 11* 11* 111111 0.0216683 0.285175 0.939958

11111 ** 11* 1* 1* 1* 11* 1** 111** 11* 11111 0.0222235 0.294443 0.947310
24 111111 ** 1* 1** 11*** 111** 11* 1* 11* 111111 0.0153424 0.240568 0.921973

1111 * 1* 11** 111** 11* 11** 1* 11* 1* 1* 11111 0.0155691 0.245343 0.927552

SWAP(w, `)

- given: the weightw and length̀
- returns: a seeds with weightw, length` and low overlap complexity

1. s := 1w
*

`−w

2. while
�
there arei < j with {s[i], s[j]} = {1, * }
andOC(flip(s, i, j)) < OC(s)

�
do

3. choose a(i, j) that reducesOC(·) the most
4. s := flip(s, i, j)
5. while

�
there arei1 < i2 < i3 < i4 with
{s[i1], s[i2], s[i3], s[i4]} = {1, 1, * , * } (multiset)
andOC(flip(s, i1, i2, i3, i4)) < OC(s)

�
do

6. choose a(i1, i2, i3, i4) that reducesOC(·) the most
7. s := flip(s, i1, i2, i3, i4)
8. return (s)

Fig. 3. TheSWAP algorithm.

chooses the largest decrease in overlap complexity. We could
of course swap more positions but then the complexity of a
single swap, though polynomial, increases too much.

The algorithm is extremely simple but the results are
remarkably good. As an example, PatternHunter’s seed is
computed immediately using 6 single swaps (step 4) and 2
double swaps (step 7). In Table I, the last two columns give the
mean and standard deviation, resp., of the difference between
optimal sensitivity,Soptimal (taken from [7]), and the sensitivity
of the seed computed bySWAP, Sheuristic overlap. All differences
are again negligible, which proves a remarkable efficiency of
our heuristic algorithm. (The data are computed for weight
range 9 to 18.)

Perhaps more surprising is the fact that using the much

simpler SWAP, we obtain better seeds in all cases than those
of [23]. The differences are not big but it is the consistency
with which it obtains good seeds that makes us believe that
it should continue to produce good seeds even if we venture
into the unknown territory of large weights, where sensitivity
cannot be computed at all.

A problem that needs to be solved is predicting the best
length. So far we worked with a fixed length (and computed
the best overlap complexity) or chose the best in an interval
of lengths (for a fixed weight), based on sensitivity (this is
the case ofSWAP for weights between 18 and 24). Since
sensitivity is no longer there to help, we shall interpolate the
optimal lengths given bySWAP for weights up to 24. The line
given by the least squares method, see, e.g., [9], gives a good
approximation as can be seen in the plots drawn with MAPLE
software ([18], [8]) in Fig. 4 where the precise equations are
also shown. (We note that some of the lengths used as basis
for interpolation may be slightly higher, since sensitivity could
not be computed for a large enough interval. This seems also
consistent with the interpolation we used.) All lengths are
computed or predicted for length of the homologous region
128.

Using SWAP, we computed good seeds for all weights
between 25 and 64, similarity levels 70%, 80%, and 90%,
and length of homologous region 128. The implementation of
SWAP is straightforward. The NTL library, [24], was employed
to deal with the large numbers of overlaps. A selection of these
seeds is shown in Table III.

4010 3020

50

80

6050

70

60

weight

30

20

40

optimal length

predicted length

6050

30

4030

40

20

60

20

10

90

80

70

weight

50

optimal length

predicted length

504030

80

40

50

60

20

90

weight

60

70

2010

30

optimal length

predicted length

Fig. 4. Predicting the length by least squares method. From left to right, the similarity is 70%, 80%, and 90%, respectively.

TABLE III
A selection of long good seeds computed bySWAP for length of homologous region 128. We have computed good seeds for all weights between 25 and 64

but they are not shown here due to limited space.

weight similarity good seeds length

25 70% 1111 * 11* 1* 1* 111** 111* 1* 11** 11* 11* 1111 37
80% 1111 * 11* 1* 1* 11** 11* 1* 1*** 111** 11* 1** 11111 41
90% 1111 * 1* 1** 111** 11* 1* 11** 1** 11* 1* 1* 11** 1111 42

26 70% 1111 * 11* 1* 111** 11* 1* 1* 1111 ** 11* 11* 1111 38
80% 111111 ** 11* 1* 1* 1* 1** 1* 1111 ** 1* 11** 11** 1111 42
90% 11111 * 1** 1* 11** 111* 1* 1** 11** 11* 1* 1* 11** 1111 43

27 70% 11111 * 11* 1* 111* 11** 111* 1* 11* 1* 11** 11111 39
80% 111111 ** 111** 1* 11* 1* 1* 1* 1* 11** 11** 1* 11* 1111 43
90% 111111 ** 1** 111** 11* 1* 1* 1* 11** 1* 11** 11* 1* 1111 44

28 70% 11111 * 1* 111* 111** 111* 1* 11* 1* 11* 11** 11111 40
80% 111111 ** 11* 1** 1* 111** 11** 1* 1* 1* 111** 11* 1* 1111 45
90% 11111 * 11* 11*** 11* 1* 1* 1** 111*** 11* 11** 1* 1* 11111 46

29 70% 11111 * 1* 111** 111* 1* 11* 11* 1* 111* 11** 111111 41
80% 1111 * 1* 11** 11* 111*** 1* 11* 11* 1* 1* 11** 111** 11111 46
90% 1111 * 1* 11** 11* 11*** 111* 11* 1* 11** 1* 1* 1* 11** 11111 47

30 70% 11111 * 111* 11* 11* 1* 11** 1111 * 1* 1* 111** 111111 42
80% 1111 * 11* 1* 11* 1* 1* 1* 1* 11** 1111 ** 11* 11*** 11* 11111 47
90% 111111 *** 111*** 11* 11* 1* 1** 11* 11** 11* 1* 1* 1* 11* 1111 49

35 70% 111111 * 11* 111** 1111 * 11* 1* 111* 1* 111** 111* 11* 11111 48
80% 1111 * 11* 1* 11* 111** 1* 1* 111* 1** 11* 111*** 111** 1* 111* 11111 54
90% 111111 * 1* 1* 11* 11** 111*** 111* 11** 111* 1** 1* 11** 11* 1* 11111 55

40 70% 111111 * 111* 1* 1111 * 11* 11* 1111 * 111** 1111 * 1* 111* 11* 11111 53
80% 11111 * 1* 111** 111** 1111 * 1* 1* 11* 1** 11* 111** 11* 11* 11* 1* 1* 111111 60
90% 11111 * 1* 1* 1111 *** 111** 1* 11* 11** 111* 11* 11** 1* 1* 111** 11* 1* 111111 62

46 70% 1111111 * 1111 ** 11111 * 111* 11* 1* 11111 * 111* 11* 1111 * 111* 1* 111111 59
80% 111111 * 1* 11* 111** 11* 1* 1111 ** 1* 111* 1* 11** 11111 ** 1* 1* 111** 111* 11* 11111 68
90% 111111 ** 111** 111* 11* 11* 1* 1* 1* 111** 1* 111** 11* 11* 11* 1* 11** 1111 ** 1* 111111 70

52 70% 1111111 ** 1111 * 1111 * 1* 1111 * 111* 11111 * 11* 11111 * 111* 111* 11* 1111 * 11111 66
80% 1111111 * 1* 11* 11** 1111 * 11* 1* 1* 11* 111* 11** 1111 * 1** 1111 ** 111* 1* 111* 1* 11** 111111 76
90% 11111 * 111** 11** 1111 *** 1111 ** 11* 1111 ** 11* 111* 1* 1* 11* 11* 1* 1* 11* 1* 111* 1** 1* 1111111 79

58 70% 111111 * 11111 * 111* 111* 11111 * 11* 11111 * 11* 1111 * 1111 * 1* 1111 * 11111 * 111* 111111 72
80% 1111111 *** 1111 * 1* 111** 11* 111** 111* 1* 11* 1111 * 1* 111* 1* 111* 11* 11** 111* 11* 11* 11* 1* 111111 84
90% 111111 * 1** 111* 11* 1* 1111 *** 1111 ** 11* 111* 1* 11* 11** 111** 1* 111* 1* 111* 1* 11** 111* 11* 1* 1111111 87

64 70% 111111 * 1111 * 11111 * 11111 * 1* 111111 * 11* 1111 * 1111 * 11111 * 11* 111* 11111 * 111* 111* 111111 79
80% 111111 * 1* 11* 1111 ** 1111 * 11* 1* 1111 ** 111* 11* 1111 *** 1111 * 111* 1* 1* 111* 11* 1* 111* 11** 11* 11* 1111111 91
90% 1111111 * 1* 111** 1* 1111 * 1* 111** 111** 1111 * 1* 11* 11* 11* 111* 1** 1111 * 1** 11* 1111 ** 11** 11* 111* 1* 1* 111111 95

VIII. C ONCLUSION AND FURTHER RESEARCH

We have introduced a new measure, overlap complexity,
which is experimentally very well correlated with sensitivity.
Our heuristic algorithms for computing overlap complexity en-
abled us to compute very long seeds about which we have good
reasons to believe they have high sensitivity. Their sensitivity
cannot be computed by the existing algorithms and maybe it
will never be found since computing sensitivity is NP-hard.
Therefore, different ways for inferring high sensitivity are
needed.

While our experimental results are excellent, the theory to
support them needs development. Problems include proving
guarantees for the correlation between overlap complexity and
sensitivity, finding bounds on the approximation ratio of our
heuristic algorithm, and computing its running time. On the
one hand, these theoretical questions are probably difficult to
solve and they are not essential for the practical aspect of our
study. On the other hand, they may bring new ideas to further
improve our approach.

A closely related problem not investigated here is computing
good multiple seeds [4], [14]. We expect our algorithm to work

as well in that case but it remains to be investigated.

REFERENCES

[1] S.F. Altschul et al., Basic local alignment search tool,J. Mol. Biol. 215
(1990) 403 – 410.

[2] S.F. Altschul et al., Gapped Blast and Psi-Blast: a new generation of
protein database search programs,Nucleic Acids Res.25 (1997) 3389 –
3402.

[3] B. Brejova, D. Brown, and T. Vinar, Optimal spaced seeds for homol-
ogous coding regions.J. Bioinf. and Comp. Biol.1 (2004) 595 – 610.

[4] J. Buhler, U. Keich, and Y. Sun, Designing seeds for similarity search
in genomic DNA, in:Proc. of RECOMB’03, ACM Press, 2003, 67 –
75.

[5] S. Burkhardt and J. K̈arkkäinen, Better filtering with gapped q-grams
Proc. of CPM’01, LNCS 2089, Springer, 2001, 73 – 85.

[6] K.P. Choi, and L. Zhang, Sensitivity analysis and efficient method for
identifying optimal spaced seeds,J. Comput. Sys. Sci.68 (2004) 22 –
40.

[7] K.P. Choi, F. Zeng, and L. Zhang, Good Spaced Seeds for Homology
Search,Bioinformatics20 (2004) 1053 – 1059.

[8] R.M. Corless,Essential Maple 7. An Introduction for Scientific Pro-
grammers, Springer-Verlag, New York, 2002.

[9] G.H. Golub and C.F. Van Loan,Matrix Computations, 3rd ed., Johns
Hopkins Univ. Press, Baltimore, 1996.

[10] R. Karp and M.O. Rabin, Efficient randomized pattern-matching algo-
rithms, IBM J. Res. Develop.31 (1987) 249 – 260.

[11] U. Keich, M. Li, B. Ma, and J. Tromp, On spaced seeds for similarity
search,Discrete Appl. Math.3 (2004) 253 – 263.

[12] D. Kisman, M. Li, B. Ma, and L. Wang, tPatternHunter: Gapped, fast
and sensitive translated homology search,Bioinformatics21 (2005) 542
- 544.

[13] G. Kucherov, L. Noe, and Y. Ponty, Estimating seed sensitivity on
homogeneous alignments, in:Proc. IEEE 4th Symp. on Bioinformatics
and Bioengineering, Taiwan, 2004, 387 – 394.

[14] M. Li, B. Ma, D. Kisman, and J. Tromp, Pattern-HunterII: highly
sensitive and fast homology search,J. Bioinformatics and Comput. Biol.
2 (2004) 417 – 440.

[15] D.J. Lipman and W.R. Pearson, Rapid and sensitive protein similarity
searches,Science227 (1985) 1435 – 1441.

[16] M. Li, B. Ma, and L. Zhang, Superiority and complexity of spaced seeds,
in Proc. of SODA’06, SIAM, 2006, 444 – 453.

[17] B. Ma, J. Tromp, and M. Li, PatternHunter: faster and more sensitive
homology search,Bioinformatics18 (2002) 440 – 445.

[18] Maplesoft’s MAPLE,http://www.maplesoft.com/ .
[19] S.B. Needleman and C.D. Wunsch, A general method applicable to

the search for similarities in the amino acid sequence of two proteins,
J. Mol. Biol. 48 (1970) 443 – 453.

[20] Z. Ning, A.J. Cox, and J.C. Mullikin, SSAHA: A fast search method
for large DNA databases,Genome Res.11 (2001) 1725 – 1729.

[21] L. Noé and G. Kucherov, Yass: enhancing the sensitivity of DNA
similarity search,Nucleic Acids Res.33 (2005).

[22] P. Pevzner and M.S. Waterman, Multiple filtration and approximate
pattern matching,Algorithmica13 (1995) 135 –154.

[23] F.P. Preparata, L. Zhang, and K.P. Choi, Quick, practical selection of
effective seeds for homology search,J. Comput. Biol.12 (2005) 1137
– 1152.

[24] V. Shoup’s NTL: A Library for doing Number Theory, web site:
http://shoup.net/ntl/ .

[25] T.F. Smith and M.S. Waterman, Identification of common molecular
subsequences,J. Mol. Biol. 147 (1981) 195 – 197.

[26] Y. Sun and J. Buhler, Designing multiple simultaneous seeds for DNA
similarity search, in:Proc. of RECOMB’04, ACM Press, 2004, 76 – 85.

[27] J. Xu, D. Brown, M. Li, and B. Ma, Optimizing multiple spaced
seeds for homology search, in:Proc. of CPM’04, Lectutre Notes in
Comput. Sci.3109, Springer, 2004, 47 – 58.

[28] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller, A greedy algorithm
for aligning DNA sequences,J. Comput. Biol.7 (2000) 203 – 214.

