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ABSTRACT

Motivation: Homology search finds similar segments between two
biological sequences, such as DNA or protein sequences. The
introduction of optimal spaced seeds in PatternHunter, Ma et al.
(2002), has increased both the sensitivity and the speed of homology
search and it has been adopted by many alignment programs
such as BLAST. With the further improvement provided by multiple
spaced seeds in PatternHunterll, Li et al. (2004), Smith-Waterman
sensitivity is approached at BLASTn speed. However, computing
optimal multiple spaced seeds was proved to be NP-hard and current
heuristic algorithms are all very slow (exponential).

Results: We give a simple algorithm which computes good multiple
seeds in polynomial time. Due to a completely different approach,
the difference with respect to the previous methods is dramatic. The
multiple spaced seed of PatternHunterll, with 16 weight 11 seeds, Li
et al. (2004), was computed in 12 days. It takes us 17 seconds to find
a better one. Our approach changes the way of looking at multiple
spaced seeds.

Contact: ilie@csd.uwo.ca

1 INTRODUCTION

Homology search finds similar segments between two biological
sequences, such as DNA or protein sequences. A significant fraction
of computing power in the world is dedicated to performing such
tasks. The increase in genomic data is quickly outgrowing computer
advances and hence better mathematical solutions are required. As
the classical dynamic programming techniques of Needleman and
Wunsch (1970); Smith and Waterman (1981) became overwhelmed
by the task, popular programs such as FASTA (Lipman and Pearson,
1985) and BLAST (Altschul et al., 1990) used heuristic algorithms.
BLAST used a filtration technique in which positions with short
consecutive matches, or hits, were identified first and then extended
into local alignments. Speed was traded for sensitivity since longer
initial matches missed many local alignments, hence decreasing
sensitivity, whereas short initial matches produced too many hits,
thus decreasing speed.

A breakthrough came with PatternHunter (Ma et al., 2002) where
the hits were no longer required to consist of consecutive matches.
More precisely, PatternHunter looks for runs of 18 consecutive
nucleotides in each sequence such that only those specified by 1’s in
the string 111+1+x1x1%x11x111 are required to match. Such a
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string is called a spaced seed and the number of 1’s in it is its weight.
Using this notion, BLAST required a hit according to a consecutive
seed suchas 11111111111.

The filtration principle has been used before in approximate
string matching (Karp and Rabin, 1987; Pevzner and Waterman,
1995; Burkhardt and Kérkiinen, 2001) but the important novelty of
PatternHunter was the use of optimal spaced seeds, that is, spaced
seeds that have optimal sensitivity. Impressively, the approach of
PatternHunter increases both the speed and sensitivity. The idea has
been adopted since by the new versions of BLAST, MegaBLAST,
BLASTZ, and other software programs (Brejova et al., 2004; Noé
and Kucherov, 2005; Kisman et al., 2005).

As noticed in Ma et al. (2002), multiple spaced seeds—sets of
seeds that hit whenever one of the components does so—are better,
and with their introduction in PatternHunterlIl, Li et al. (2004),
(Smith and Waterman, 1981) sensitivity is approached whereas the
speed is that of BLASTn.

Quite a few papers have been written about spaced seeds,
evaluating the advantages of spaced seeds over consecutive ones
(Buhler et al., 2003; Keich et al., 2004; Choi and Zhang, 2004;
Li et al., 2006), showing that the relevant computational problems
are NP-hard (Li et al., 2004, 2006), giving exact (exponential)
algorithms for computing sensitivity (Buhler et al., 2003; Li et
al., 2004; Keich et al., 2004; Choi and Zhang, 2004; Choi et al.,
2004), polynomial time approximation schemes (Li et al., 2006)
or heuristic algorithms (Li et al., 2004; Choi et al., 2004; Yang. et
al., 2004; Preparata et al., 2005; Ilie and Ilie, 2007; Kong, 2007),
adapting the seeds for more specific biological tasks (Brejova et
al., 2004; Kucherov et al., 2004; Sun and Buhler, 2004; Noé and
Kucherov, 2005), or building models to understand the mechanism
that makes spaced seeds powerful (Buhler et al., 2003; Sun and
Buhler, 2004; Preparata et al., 2005).

Finding optimal (multiple) spaced seeds is NP-hard but even
finding good ones is very difficult. Exhaustive search involves two
exponential-time steps: (i) there are exponentially many seeds to be
tried and (ii) computing the sensitivity of each takes exponential
time as well. Several approaches (Buhler et al., 2003; Li et al.,
2004; Keich et al., 2004) tried to deal with the latter exponential by
approximating the sensitivity. For the former, the number of seeds
to be considered has been reduced by various heuristics (Choi et al.,
2004; Yang. et al., 2004; Preparata et al., 2005; Kong, 2007) but it
remained exponential.
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The approach here is based on the overlaps between the hits of a
multiple seed. A new measure, overlap complexity, is introduced
and shown to be experimentally well correlated with sensitivity.
Since the new measure is computable in (low) polynomial time, we
shall use overlap complexity instead of sensitivity and this takes care
of the exponential in (ii). A similar approach has been introduced in
[lie and Ilie (2007) for single seeds. Also, Yang. et al. (2004); Kong
(2007) contain some other measures well correlated with sensitivity
for multiple seeds. However, we take care also of the exponential
at (i), that is, the exponential number of candidate seeds. We give
a simple algorithm which improves quickly the overlap complexity
of an initial multiple seed, thus providing a good multiple seed in
polynomial time.

We provide some results showing the good correlation between
overlap complexity and sensitivity for single seeds. Our polynomial-
time algorithm produces single seeds of sensitivity very close to
optimal. For the multiple seed case such comparison cannot be
made since no optimal multiple seeds are known. We shall compare
our multiple seeds with previous ones and show them to have
better sensitivity while our algorithm is much faster. The most
important test is to compare against the multiple seed implemented
in PatternHunterIl, which contains 16 weight 11 seeds. While it took
Li et al. (2004) 12 days to compute this multiple seed, we obtain a
better multiple seed in 17 seconds. The dramatic improvement is due
to a completely different approach. As discussed in the last section,
our approach allows looking at multiple seeds in a totally different
way.

A number of problems remain to be investigated such as proving
guarantees about the correlation between overlap complexity and
sensitivity, approximation ratio and exact running time of our
heuristic algorithm for approximating the overlap complexity.
However, such problems may be mostly of theoretical interest as
in practice our algorithms produce very good multiple seeds in very
short time.

The paper is organized as follows. The next section formally
introduces multiple spaced seed and all concepts needed later.
Our new measure is introduced in Section 3. Section 4 shows
good correlation between overlap complexity and sensitivity. Our
polynomial-time algorithm for computing good multiple seeds is
given in Section 5. In Section 6 we compute better seeds than all
previous ones. We conclude with a brief discussion in Section 7.
More seeds whose sensitivity is discussed in the text are provided in
the Appendix.

The content of the paper can be read in several ways, according
to the goal of the reader. First, we computed a number of multiple
spaced seeds that are ready to be used. No understanding of our
algorithm is necessary for that purpose. Second, our algorithm is
simple and explained in detail for the reader interested in producing
a more efficient implementation and/or modifying the algorithm
in order to solve different problems, such as computing more
specialized seeds. Finally, we provide explanation of the intuitive
ideas behind our algorithm in order to provide the interested reader
with in-depth understanding of our approach.

2 SPACED SEEDS

We start with some basic definitions. An alphabet is a finite
nonempty set, denoted by A. The set of finite strings over A is

denoted by A*. For a string x € A*, the length of z is denoted
by |z|. For 1 < ¢ < |z|, the ith letter of x is denoted by z[i]. If
u = xy, for some z,y € A", then x (y, resp.) is called a prefix
(suffix, resp.) of u. For two strings u and v, an overlap between u
and v is any string that is both a suffix of u and a prefix of v.

A spaced seed is any' string over the alphabet {1, x}; 1 stands
for a ‘match’ and * for a ‘don’t care’ position. For a seed s, the
length of s is £ = |s| and the weight, w, of s is the number of 1’s
in s. A multiple spaced seed S is any finite nonempty set of spaced
seeds.

The quality of the spaced seeds is given by their sensitivity, which,
intuitively, is a measure of their ability to detect similar segments
between biological sequences; see Ma et al. (2002). This is done
as follows. Given two DNA sequences and a seed s, we say that s
simultaneously matches (hits) the two sequences at given positions
if each 1 in s corresponds to a match between the corresponding
nucleotides in the two sequences; see Fig. 1 for an example using
PatternHunter’s seed. Such a match is then extended using classical
methods to a local alignment.

DNA seq. S AGGCA GTA TATATC
DNA seq. Sa AGGCA GCA TAAATC
matches/mism. === = =#4= ==#f===
Bernoulli seq. R 111 1 1 1 11 111
spaced seed s 111 1 1 1 11 111

Fig. 1. Anexample of a hit using PatternHunter’s spaced seed. All 1°s in the
seed (the last row) must correspond to matches between the sequences. The
spaced seed s hits the Bernoulli sequence R (ending) at the third position
from the right.

However, in order to be able to compare spaced seeds and
ultimately compute good ones, we need a precise mathematical
setting. The above process will therefore be reformulated as follows,
see Ma et al. (2002); Keich et al. (2004). Assume there are two
DNA sequences S; and S2 such that the events that they are
identical at any given position are jointly independent and each
event is of probability p, called the similarity level. The sequence of
equalities/inequalities between the two DNA sequences translates
then into a sequence R of 1’s (corresponding to matches) and 0’s
(corresponding to mismatches) that appear with probability p and
1 — p, respectively. Therefore, given an (infinite) Bernoulli random
sequence R and a seed s, we say that s hits R (ending) at position
k if aligning the end of s with position k of R causes all 1’s in s to
align with 1’s in R; see Fig. 1.

We are now in the position to give a rigorous definition for
sensitivity of a spaced seed. The sensitivity of a seed s is the
probability that s hits R at or before position n; see Ma et al. (2002);
Keich et al. (2004). Note that the sensitivity depends on both the
similarity level p and the length of the random region n.

An intuitive explanation of the reason for which seeds have
different sensitivities follows. Recall that the sensitivity of a seed
is the probability of hitting a random region of a given length. For

! From biological point of view only strings starting and ending with 1 are
spaced seeds. The seeds we shall eventually compute satisfy this condition.
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two spaced seeds of the same weight, the expected number of hits is
the same but their sensitivities need not be the same. This happens
as the hits of one seed may appear more clustered. A good intuitive
example is searching for the strings aaa and abc in a random text.
For each occurrence of aaa, the chance of having another one
sharing two letters with it is 1/26 whereas starting afresh would
require (1/26)3. Therefore, the occurrences of abc are more evenly
distributed and it is more likely to see first an abc in the text.

A multiple spaced seed hits a sequence R if and only if one of its
seeds hits R. The sensitivity of a multiple spaced seed .S is defined
similarly, that is, the probability that at least one seed of S hits R at
or before position n.

In the light of the tradeoff between search speed and sensitivity, it
makes sense to consider only multiple seeds in which all seeds have
the same weight (they may have different lengths).

3 OVERLAP COMPLEXITY

We introduce in this section our complexity measure, the overlap
complexity, which will turn out to be well correlated with sensitivity
but much easier to compute. Therefore, it will replace sensitivity
in our computations. Before introducing it, we give some intuitive
explanation why overlapping hits of a seed are undesirable.

The hits of a seed can overlap but overlapping hits will detect
a single local alignment. An example showing such a situation is
shown in Fig. 2.

hit of good seed 111+1 11 11+-111

local alignment 1111101111101111111101
1st hit of bad seed 11+11+11+11+11+1

2nd hit of bad seed 11+11+11+11+11+1

3rd hit of bad seed 11+11+11+11+11+1

Fig. 2. Anexample showing the intuition behind overlap complexity; a local
alignment is detected by one hit of a good seed whereas a bad seed “wastes”
three hits to detect the same alignment.

Therefore, the sensitivity of a seed is inversely proportional with
the number of overlapping hits, since the expected number of
hits is the same. Thus, good seeds should have a low number of
overlapping hits. The definite proof that (non-uniformly) spaced
seeds are better than consecutive seeds, due to Li et al. (2006),
involves estimating the expected number of non-overlapping hits.
However, computing this number in general is as difficult as
computing sensitivity. Therefore, we look here for simpler ways to
detect low numbers of overlapping hits.

We shall define a measure that is independent of the similarity
level p. Consider two seeds s1 and s2 and denote by a[z’] the number
of pairs of 1’s aligned together when a copy of s shifted by ¢
positions is aligned against s;. The shift ¢ takes values from 1 — |s2|
to |s1]| — 1, where a negative shift means ss starts first. Precisely, if
we denote

t = *\82|*181*|52|*1’
to,; = #1521 I igoulstl=i=1 for 1 —|so| < i < |s1| — 1,

then

oli] = card{j | 1 <j < |si] + 2[s2| = 2,t1[j] = t2.[s] = 1} .

The overlap complexity for two seeds is defined as

[s1]—1

OC(Sl,Sz) = Z QU[i].

i=1—|s2|

An example is shown in Fig. 3. Note that the measure is symmetric,
that is, OC(s1, s2) = OC(s2, s1), for any seeds s1 and s2.

shift i ofi]

11x%x1x1
1x11 -3 1
1%11 —2 2
1x11 -1 1
1x11 0 1
1«11 1 2
111 2 1
1x11 3 1
1%11 4 2
1+x11 5 0
1x11 6 1

Fig. 3. An example of the overlap complexity of two seeds:
OC(11%#1%1,1%11) = 320,200 = 25,

The definition of the overlap complexity deserves a few
comments. Note that the “importance” (we should say “weight” but
that would be confused with the weight of the seeds) of the number
of pairs of 1’s aligned together for each shift doubles with each pair
of 1’°s. While this may look as a reasonably natural definition, there
is a good intuitive reason behind it. For a shift ¢, denote by o.[i]
the number of 1’s aligned against ’s and by 0. [i] the number of
pairs of «’s aligned together. For our example, these arrays are given
below:

i | -3 -2 -1

i 15 3 &5
owlt) | T8 T

~N Uy O
0 W =
~ U N
~ Oy w
0 WO
D 3| Ot
~N U

The number of overlapping hits (with shift ¢) is then proportional to
p [ (p? 4+ (1 — p)2)7=+l where p is the similarity level; p”* [ is
the probability that ¢, [i] +’s take value 1 and (p* + (1 — p)?)7==[1]
is the probability that o [i] pairs of *’s take the same value, O or 1.
Choosing p = 0.5 makes this quantity equal to 27+ [[1=o==[] Tt js
reasonable to assume that a fixed-size window in considered when
evaluating the overlapping hits, that is, the sum o [i] + 0« [¢] + 04[]
is assumed to be a constant, say c; in our example ¢ = 13. Then,
the number of overlapping hits is proportional to 277~ [i=oeelil —
20lil—e — %QUM. Since ¢ is constant, this is proportional with 271
which gives our definition of overlap complexity.

It is important to mention that the freedom to conveniently choose
the value p = 0.5 is due to the fact that, even if the optimal seed
may change with p (see Table 1 below), the sensitivity changes very
little.

For a multiple seed S = {s1, s2, . .
is defined by:

., Sk }, the overlap complexity

0C(S)= > OC(si,s;).

1<i<j<k




Lucian llie and Silvana llie

Note that the overlap complexity is invariant with respect to the
order of the seeds and reversal (assuming all seeds are reversed
simultaneously). This is expected of any measure well correlated
with sensitivity.

4 SENSITIVITY OF LOW-OVERLAP SEEDS

We show here that the overlap complexity is, experimentally, well
correlated with sensitivity for single seeds. We consider in Table 1
the top sensitivity seeds of Choi et al. (2004) (that is, seeds
with highest sensitivity among those with a given weight); their
sensitivity ranks for similarity levels 65%, 70%, . . ., 90% are given
in columns 2,3,...,7, respectively. As mentioned earlier, the top
sensitivity seed may change with the similarity level p. For instance,
the first line for weight 11 corresponds to PatternHunter’s seed
which is the best for similarity levels 65% and 70%, second best
for 75%, 80%, and 85%, and only third best for 90%. However, the
differences between the sensitivities of these top seeds for any of the
similarity levels considered is very small, a crucial observation for
our approach, which is independent of similarity level.

The last column of Table 1 gives the overlap complexity rank. In
all cases, at least one top sensitivity seed is on top of the overlap
complexity ranking. Note that the seeds with the lowest overlap
complexity are on top of the overlap complexity ranking.

The opposite is shown in Table 2 where the highest sensitivity
of the seeds with lowest overlap complexity is shown. (There
may be several seeds with lowest overlap complexity.) Almost all
differences are zero. The correlation between the two measures is
remarkable.

We cannot make the same comparison for multiple spaced seeds
since there are no optimal multiple spaced seeds known.

5 A POLYNOMIAL-TIME ALGORITHM

The exact algorithms for computing sensitivity are all exponential,
see Buhler et al. (2003); Keich et al. (2004); Choi and Zhang (2004),
which is expected since the problem is NP-hard, Li et al. (2006).
The one of Choi and Zhang (2004) runs in time O (nf2%¢“=*)), for
seeds of length ¢ and weight w. The other two have running times
O(nf*2°=*) for Keich et al. (2004) and O (nw2°~™) for Buhler et
al. (2003).

For multiple seeds, Li et al. (2004) gave a dynamic programming
algorithm that runs in time O ((k + L +n) 3% | £,2%7"), where
k is the number of seeds, ¢;’s are the lengths of the seeds and L =
maxi<i<k & .

Therefore, finding optimal seeds by trying all seeds of a given
weight (and length) and selecting the best is computationally very
expensive. In fact, it has been shown by Li et al. (2004) to be NP-
hard for an arbitrary distribution.

Some heuristic algorithms for computing good multiple seeds are
presented in Yang. et al. (2004) and Kong (2007). As with our
approach, they find some measures that are well correlated with
similarity but they still need to consider exponentially many seeds.
We shall compare our seeds with theirs in the next section.

The heuristic algorithm we derive from our overlap complexity is
very simple: compute the seed with the lowest overlap complexity.
This produces very good multiple seeds but we need to consider
exponentially many candidates. To reduce the complexity of this
step, we shall start with a fixed seed and repeatedly modify it

Table 1. The top sensitivity seeds from Choi et al. (2004); a ‘-’ means not
in top 20. The last column gives the overlap complexity rank. Only rankings
are shown, not the seeds. Each line corresponds to one seed.

sensitivity rank overlap
weight under a similarity level complexity
65% 70% 75% 80% 85% 90% rank

1 1 1 1 1 1 1
9 2 02 2 2 2 2 1

4 4 4 4 4 4 1

11 1 1 1 1 1
10 2 2 4 6 8 9 1

8 6 2 2 2 5 1

11 2 2 2 3 1
11 2 2 1 1 1 1 2

6 3 3 5 5 6 2

11 1 1 1 1 1
12 2 2 2 5 3 2 2

6 3 3 2 4 4 1

1 3 7 - - 2
13 2 1 1 2 2 2 1

7 2 2 11 6

13 7 - - - 1
14 2 1 1 1 1 1 1

5 2 2 3 3 6 1

1 2 - - 4
15 14 1 5 5 4 39

-5 1 1 1 1

1P 9 - - - - 11

7 1 2 6 13 20 1
16 -7 1 1 1 3 1

- -5 2 2 1 26

1 - - - - 1
17 6 1 2 4 4 5 1

- - 1 1 1 1 2

1 4 - - - 36
18 -1 1 2 3 1

- - 4 3 1 1 142

to improve its overlap complexity. Each improvement consists of
swapping a 1 with a » as long as the overlap complexity improves.
Moreover, we greedily choose a swap that produces the greatest
improvement. The number of such swaps in each seed will be
bounded by the weight of the seeds.

We shall say that 1 flipped is » and vice versa. For a seed
s and two positions ¢,j, we denote by flip(s,,7) the seed
obtained from s by flipping the letters in positions ¢ and j. For
instance, flip(1¥x11%11,3,5) = 1xx1111. With this notation,
the algorithm MULTIPLESEEDS is described in Fig. 4. Remarkably,
PatternHunter’s seed is obtained by performing only 4 swaps in the
algorithm MULTIPLESEEDS(11, 18); see Fig. 5. This can be done
by hand!

Let us discuss briefly our choice of the initial seeds in step 6.
These are consecutive seeds and have very low sensitivity. One
would imagine that starting from different seeds, e.g., random,
would produce better results. Somewhat unexpectedly this does not
seem to be the case and we preferred to keep a simple, deterministic,
and ultimately reliable choice.

Concerning the swapping technique, it is trickier to give a
good intuitive explanation. First, such swaps may change very
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Table 2. The sensitivity of the top overlap complexity seeds for weights 9
to 18, similarity 70%, and length of random region 64.

. optimal sensitivity of a  difference
weight . .

sensitivity  top overlap seed to optimal
9 0.729156 0.729156 0.000000
10 0.595740 0.595740 0.000000
11 0.467122 0.467122 0.000000
12 0.356430 0.356430 0.000000
13 0.264750 0.264750 0.000000
14 0.193514 0.193514 0.000000
15 0.138660 0.138333 0.000327
16 0.098942 0.098942 0.000000
17 0.070004 0.070004 0.000000
18 0.049146 0.049146 0.000000

MULTIPLESEEDS(w, k)

- given: the weight w and the number of seeds &
- returns: a multiple seed S’ with k seeds of weight w and high
sensitivity
// find the length of the seeds — half are equally spaced
// in the interval m.. M, the others have length M

1. m = round_up (%) // shortest seed
2. M =25 // longest seed
3. h=2-m) /1 float
4. forifrom 1to k do
5. £; < min(round_up(m + i X h), 25)
6. S; — *liiwlw
7. S(—{Sl,SQ,...,Sk}

/l swap 1’s and *’s to improve sensitivity
8. swaps < 0

9. while ((3 ryi,j with OC({s1, ..., sr_1,flip(sr,,7), Sri1,
..., 8k}) < OC(9)) and (swaps < k X w)) do

10. choose a triple (r, ¢, j) that reduces OC(.S) the most
11. S+ {s1,...,8r—1,flip($r,4,7), Srg1,s-.., Sk}
12. swaps <— swaps + 1
13. return(S)
Fig. 4. The MULTIPLESEEDS algorithm which, given the weight and

lengths of the seeds, computes a multiple seed with low overlap complexity
and, therefore, high sensitivity.

much the overlaps and thus have the potential of improving the
overlap complexity. Second, any seed can be transformed into
any other seed with the same length and weight using few such
swaps and therefore we may potentially reach those seeds with
very low overlap complexity we are looking for. Finally, and most
convincingly, it works very well in practice.

It is possible that the swaps can be improved, or done differently.
For instance, we did not perform more than one swap at the time
as that would slow down the algorithm, even if it would remain
polynomial.

Note that our whole approach with overlap complexity works
within fixed length for seeds. When given only a fixed weight and
number of seeds, a problem we need to solve is finding a good

intermediate seeds pairs swapped

xxxxxx11111111111 (1,12)
lss*xxxx1111x111111 (3,15)
1+ 1% x%%x1111%x11%111 (2,9)
111x+%xx1%x11%x11%x111 (5,11)

111+ 1 x*x1x1l*xx11%x111

Fig. 5. Intermediate seeds computed by MULTIPLESEEDS(11, 18) to find
PatternHunter’s seed 111+1x%1x1%x11x111. The flipped positions are
given in the right column..

length set of the seeds. Trying all possible lengths is impractical.
We came up with a simple but efficient choice, see steps 1 to 5 in
the algorithm. Essentially, we set half of the lengths equal to 25 and
the other half “equally” spaced between 47“’ and 25. (The code in
lines 1 to 5 makes our choice precise.) The number 25 depends on
the computer. Our tests were performed on a laptop with only 512
MB of RAM which prevented us from computing the sensitivity of
longer seeds. We believe that the addition of longer seeds to some
of our multiple seeds would increase the sensitivity but this needs to
be tested.

Our choice of seed lengths turns out to be very good as we shall
see below. However, for one seed we need to consider all lengths in
an interval. In a few cases below we shall do the same for two seeds.

‘We have shown in the previous section good correlation between
overlap complexity and sensitivity but now we compute an
approximation of the overlap complexity. Still, the seeds we obtain
have high sensitivity as shown in Table 3. We give also the time
required for computing each seed.

Table 3. The sensitivity of the single spaced seeds computed by
MULTIPLESEEDS compared to the optimal sensitivity for weights 9 to 18,
similarity 70%, and length of random region 64. For each weight w, the best

length in the interval %’J%ﬂ was chosen.
. optimal swap difference time
weight . . .
sensitivity ~ sensitivity to optimal (sec)
9 0.729156  0.726279  0.002877 0.01
10 0.595740 0.594758 0.000981 0.01
11 0467122 0.467122 0.000000 0.01
12 0.356430 0.354035 0.002395 0.04
13 0.264750 0.264512  0.000238  0.04
14 0.193514 0.192711  0.000803  0.09
15 0.138660 0.138333  0.000327 0.16
16 0.098942 0.098865 0.000076 0.17
17 0.070004 0.069874  0.000130 0.33
18 0.049146  0.048946  0.000200 0.58

Let us consider the time complexity of the MULTIPLESEEDS
algorithm. Computing the lengths and initial seeds in steps 1 to 6
takes O(kw) time. To perform a swap, all possibilities for the triple
(r,1,7) in step 9 are considered, that is, 3" w(¢; — w). For each,
we compute the new overlap complexity in O(¢, Zle £;) time.
(This is because the overlap complexity of two seeds is computed in
time the product of their lengths and here we need only to update
the pairs containing the seed s,.) If we set L = maxi<i<x ¢i,
then the total time complexity of the MULTIPLESEEDS algorithm
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is O(k® L*w?(L — w)). If we assume that, in practice, k is bounded
and L is linear in w, then it becomes O(w®).

It may be useful to briefly summarize the steps of our approach
to constructing multiple spaced seeds. Finding the optimal multiple
spaced seed for a given weight and number of seeds involves two
exponential stages: (i) there are exponentially many candidate seeds
and (ii) computing the sensitivity of each requires exponential time
as well. The exponential at (i) hides in fact two exponentials: (i.1)
there are exponentially many lengths sets and (i.2) for each length
set, there are exponentially many multiple seeds. First, we guess
the length set (steps 1-5 of MULTIPLESEEDS); this takes care of the
exponential at (i.1). Second, we start with some fixed values for the
seeds (step 6), and this eliminates the exponential at (i.2). Finally,
we repeatedly modify (polynomially many times) this multiple seed
using overlap complexity that is computable in polynomial time as
well. This way the exponential at (ii) is avoided. Instead of testing
candidates we directly build a multiple spaced seed as required. This
is totally different from previous approaches.

6 BETTER MULTIPLE SEEDS

We compare in this section our multiple seeds with the ones
computed by other approaches. In Table 4 we compare our seeds
with the best of Yang. et al. (2004) and Kong (2007). We picked
the best multiple seed of Yang. et al. (2004) and compared it
with ours for several similarity levels. The ones of Kong (2007)
were computed for a specific similarity level and we give the
sensitivity for those. Our seeds are better for all levels. Note that our
method for choosing the length set in steps 1 to 5 of the algorithm
MULTIPLESEEDS worked well even for two or three seeds. Only in
the second last line the lengths given by it would produce a multiple
seed of slightly lower sensitivity and we had to use an interval of
lengths. This is still very fast.

Table 4. Comparing the seeds computed by MULTIPLESEEDS with
previous multiple seeds; first group (lines 1 to 5): best of Yang. et al. (2004),
8 seeds, weight 12; second group (lines 6 and 7): best of Kong (2007), 3
seeds of weight 9; third group (lines 8 and 9): best of Kong (2007), 2 seeds
of weight 11. The similarities for which Kong’s seeds were computed are
given in parentheses. For the second last line, we considered the interval
16..19 for lengths.

former their sensitivity of  time
multiple seeds sensitivity our multiple seed (sec)
0.287255 (60%) 0.313090 (60%)
Yang. et al. (2004) 0.500277 (65%) 0.538023 (65%)
8 seeds of 0.727770 (70%) 0 .765212 (70%) 2.50
weight 12 0.897822 (75%) 0.920984 (75%)
0.977895 (80%) 0.985577 (80%)
Kong (2007) 0.185211 (50%) 0.185472 (50%) 0.06
3 (2) seeds of 0.972460 (75%) 0.977626 (75%) 0.05
weight 9 (11)  0.038393 (50%)  0.038554 (50%) 0.29
0.815865 (75%) 0.823314 (75%) 0.02

The most difficult test is comparing with the multiple seeds of
Li et al. (2004), the sensitivities of which were kindly provided
by the authors (Li, 2007; Ma, 2007). The multiple seed of 16

weight 11 seeds in Li et al. (2004) — which is implemented in the
best homology search software, PatternHunterll — took 12 days to
compute greedily, that is, assuming the first ¢ seeds are known, the
(¢ + 1)th seed is selected by exhaustive search in a length interval
so that it maximizes the sensitivity of all ¢ + 1 seeds. Remarkably,
MULTIPLESEEDS computes a better multiple seed in 17 seconds!
It is shown in Table 5 and the comparison with the one of Li et al.
(2004) is provided in columns two and three of Table 6. The last
column of Table 6 contains the sensitivity (significantly higher) of a
multiple seed consisting of 32 weight 11 seeds which we computed
in less than 3 minutes. The multiple seed itself is given in the
Appendix.

Table 5. Our multiple seed with 16 weight 11 seeds. It was computed in 17
seconds and it has higher sensitivity than PatternHunterII’s multiple seed;
see Table 6.

16 seeds of weight 11

{ 111%11x%11x1111,
111x1x11%xx1%x1111,
T1x1#*11*1x1xx1111,
11111 xxxlxxlwlxlxll,
T11#1 %11 xlxxxlw**x111,
T1w1xTlxxxxlllwx11xx11,
N I T I e I I
I R A I A I I
N A A A I I N
Tl 11 xkrnltnrxlhxlxxlx111,
T11 %1 lnhkxlkrrxlxlxl*1l,
T I A A A N I I N
T11x*1lrkrknrxllaklslslnl,
T11lkkxlsloslosxlkrrxxx1111,
T I A N A N
Tl %]l *Tlxkdkrxlkrxlkx]llrrxx111 }

Table 6. The sensitivity of our multiple seed of weight 11 from Table 5
compared to that of Li et al. (2004) for length of random region 64.

sensitivity of  sensitivity of  sensitivity of

similarity the 16 seeds of our 16 seeds  our 32 seeds

Lietal. (2004)  in Table 5 (see Appendix)
60% 0.566640 0.578242 0.699776
65% 0.781508 0.792108 0.877349
70% 0.924114 0.930081 0.967602
75% 0.984289 0.986152 0.995271
80% 0.998449 0.998716 0.999702
85% 0.999951 0.999963 0.999995
90% 1.000000 1.000000 1.000000
time 12 days 17 sec 171 sec

We computed then, for the same weight 11, any number of seeds
between 1 and 16 and compared their sensitivity for similarity level
70% with those of Li et al. (2004) in Table 7. We give also the
time required by each computation. The multiple seeds are given in
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the Appendix. Note that the sensitivity of our multiple seeds with
13, 14, and 15 seeds are higher than the sensitivity of the ones of
Li et al. (2004) with an extra seed, that is, 14, 15, and 16 seeds,
respectively.

We should mention that the implementation of MULTIPLESEEDS
is straightforward and we used the dynamic programming algorithm
of Li et al. (2004) for computing sensitivity. The running times can
probably be improved but our focus is on fast algorithms and not on
efficient implementation.

Table 7. The sensitivity of our multiple seeds with i seeds, 1 < ¢ < 16, of
weight 11, compared to that of Li et al. (2004) for similarity 70% and length
of random region 64. The ones for ¢+ > 3 are computed by the algorithm
MULTIPLESEEDS as given whereas for ¢ = 1, 2 an interval for lengths was
considered.

7 sensitivity of sensitivity of time to
number the first 7 seeds of i seeds compute
of seeds Lietal. (2004) computed here ¢ seeds (sec)

1 0.467122 0.467122 0.01

2 0.620034 0.621992 0.88

3 0.701920 0.705694 0.09

4 0.754809 0.758224 0.20

5 0.791461 0.797473 0.52

6 0.818647 0.825245 0.82

7 0.839900 0.845990 1.33

8 0.856520 0.863893 1.96

9 0.870671 0.877309 2.95

10 0.882106 0.888385 3.89

11 0.891927 0.898855 5.40

12 0.900161 0.907064 7.50

13 0.907335 0.914018 9.87

14 0.913581 0.920340 11.68

15 0.919134 0.925966 16.17

16 0.924114 0.930081 17.26

7 CONCLUSION AND FURTHER RESEARCH

The introduction of optimal spaced seeds in Ma et al. (2002)
followed by multiple spaced seeds in Li et al. (2004) revolutionized
homology search. It is therefore important to compute good multiple
spaced seeds fast. The optimal ones are hard to compute and
research has been done for finding faster ways to compute less
than optimal but still good seeds. Our approach is much faster and
produces better multiple seeds than the existing ones. This was
shown by comparing our results with the best previous ones.

We believe that the dramatic improvement brought by our
approach allows looking at multiple seeds in a different way, beyond
the improvement in homology search simply due to better multiple
seeds. So far, as computing good multiple spaced seeds was a
very time-consuming task, the seeds were first computed and then
hard-coded in the homology search software. With our approach
testing of many seeds for a given purpose becomes possible. Also,
the swapping technique we used for fast improvement of overlap
complexity may be useful for fast improvement of other, specific,
properties as well.

While our experimental results are very good, the theory
to support them needs development. Problems include proving
guarantees for the correlation between overlap complexity and
sensitivity, finding bounds on the approximation ratio of our
heuristic algorithm and approximating the number of swaps needed.
(The bound we set for the number of swaps in the algorithm was
never reached in practice.) On one hand, these theoretical questions
are not easy to solve and they are not essential for the practical
aspect of our study; we simply build better multiple spaced seeds
than all previous ones using a much faster algorithm. On the other
hand, they may bring new ideas to further improve our approach.

From practical point of view, the best way of using the overlap
complexity is an open problem and should be further investigated.
Also the way the lengths are computed could be improved. As
mentioned, this is computer dependent in our case. We plan to make
more experiments on a computer with a larger RAM. However, all
these improvement, important as they might be, are most likely to
be incremental, nowhere near the dramatic improvement presented
here.
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APPENDIX

The multiple seed used in Table 4 for comparison with the one of
Yang. et al. (2004):

111%1%11%1x11111
I1x11%111%1x1%x111

T111 I wwwxlwxllaxlxl1l
Tla*T1lwlwslanksxl 1x1111
T11# 1w lkkkkllonnxlaoxllxll
T1lwxlloxwrxclalloxlolnrll
I A I R I I I R
T1x11xlkkklknlnrxllrrxll]

The multiple seeds used in Table 4 for comparison with the ones
of Kong (2007); they are given in the same order in which the
sensitivities are given in Table 4:

11%x1%111%111
T1lxTlkkkklokrnlorxlrxll
T1Tlkskrxlorrrxloxlaornrxlnrll

11%1%111%111
111 T1kskxloxxloxxlnrll

T1lkxkklrrkrrxlkxlhroxlxl]

11x1%11%%11%1111
T11x11**x1x1x1xx111

111111 #%1%1111
11#l#lkhknxllosrrrxloxlnlll

Our multiple seed of 32 weight 11 seeds the sensitivity of which
is given in the last column of Table 6; the time needed to compute
all 32 seeds was 171 seconds:

111%11#11%%1111
111111411 %%111
111%%11%1x11%111

11111 %11#%x1*1x11

111 %%11#*1#*11%111
11%11#*%x11x1%111%1
T111#1x*1#1#1xx*111
11#11#1xlkxxx1x1111

111D xxwrxlxxl1llx1x11

I B I B I Y I

I A B B I I i A

R A A I I e R R

Tl lwxxllwlonsxlnxx1111
TlxT1lkkhxlxllrrxrxxllx1]
R R A I I I e
B e N N I R
TlxTlskklonoxllorrlrlrrxxlxl]
TIx1Tlwxrlwloknknnklalsx11l
I R R N N R R
Tl1xT1lwswrxlorlrrrxlrrxxlx111
Tl xllowloxlorxrnxllnlnxll
I B N B I R
T1x1lwwloknnknlalulanlnll
11 %1 %11 kwkrklolorxxllrxll
T1lkkklknlnlorrrrxlrclnxl]1]
111l *wxsllnkxvxloxlnlnrxll
I R R N N N N S
11l xrrxlklokkklokrxllrlrxlnrl
Talalaxlloxxlokxxklaxllnxll
I N R N N N N
A R A ey e e I A I
11l *1lwkrklkxllorxxx111x1

The seeds used to obtain the sensitivities in Table 7; the first is

PatternHunter’s seeds; the set of 16 seeds is given in Table 5:

1 seed

111 %1 **1*1#*11%111

2 seeds

T11xT1#1x*1x11%111

1111 *xxlxxlkxx1x1%111

4 seeds

111%111%%1%1111
11xllwlonkxlslux1111

I A e I R I I I
11x11kkkloksknmnlonrxlxlxlll

6 seeds

111%11%11x1%111
11#x1#1x%x11x%1%1111

A R N N T R
TI1lsnlkwvxlorrxllrrrrxlxlxl]
B B o I O S I
11%11k*lwlkknnknrnxlnoloxxlll

8 seeds

11%111%1x1x1111

1111 #T1xxlwx11%x111
1111wk 1lawlwxlx111
TI11l#%Tllwexrxxlxlrxxlx111
TlaTlwloknnkllonnmnxlax1111
N N A I I I A
R R R I I I R
I B A o I I I A

3 seeds

111%111%*1%1111
11x11xlskxrlkxx1lx1x111
R B R B N I R N

5 seeds

111%11%x11x1%111

11114 *1x1 1x*x*11x11
TlwlwlwrklaxTloxlsxx1111
I N N RN N I
111 x1lxkxlrklnrkrrxlxlrxxll]
7 seeds

111%11%1%1%1111
I11T#%xx11xxlx1x111
I11%Twxxkllxlaxllexll
Tx11lkkxlxlhhrloxrrxlrxll]
N o I I IR I I
I N I I R I
T11#T1kwklonrrlonxxlnllxll
9 seeds

111x11%1%1%1111
11#1%1111%%1%%111
Tlxllwxxxlxllsxx1111

1111 *xlkxxlslxlx*xlx11

B R N N I I Y I
Tl 1w lhkwlonxlalonnxloxlll
Ix11Tlxlavsrrloxkxlxxllx11
111w *Tlwsloslorrrxlaoxlllx]
T1lkkkllokkhhhnlrlrlrrxll]
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10 seeds

111%1#11%111%11
1#111#%x11%1x%x1111

1111 *kxx11ax1lx1x11

R R N N i T
A R R IR I I R R
I e e S e N A
Tlaxlslo*lxrsklallaxxx111
TI1xlxTlwlhknlomnrnlslnlsxll
T1xTlhklklokskloknknknrxlloxlll
Tl w*lnsnlnklalonnslaxlll

12 seeds

111#11%x1%1x1111
111#1%111#*1%x111
111x11xx**11%1%111

I O T I N T I

11# 1 x11lkxxxlsxlrx*x11x11
R R R A R I I A
TI1lwkwklnlknloknlovnxl* 111
TlxTlwxlksoxlorlrorlrlrrxrxl]1]
Tlwxlanlakxlolansxllsx111
I N N R R
Tlkxllksorrlorrxlrrxlxllx11
I R B N T T Y

11 seeds

111x11%1%1%1111
111x1x111%%%x11%11
T1lxl#laxlwxllxx1111
11111k *lwlknxlnlnll
I1Tlx#lwxxxlloxluxllx11
111 %lkkkklnlhrorxlrorrxlxll]
Tlwk1lwknlornrxlallonrxlll
11 11w *Tlwxlorxloxrxlrlnrll
Tx11xlkxlxklnrkrxrxllrxl11]
I B R S o N P
R B o R e I I I
13 seeds

111%11%11%1%111
T1#11x1*1%1x%1111
I11xTlxTlx*1x%x11%111
T11#11xxllwwkxlslnll

1111 xlwrnlnlrluxxl1l
I1#1Txkxxxxlloxxlnlx111
N s B B o R I T I
T1lwxlkslnlkhrrrrxrlrxll]l]
N B B T I N Y I
Tlwwklwklornrxlorxxlloxloxl11]
Tlxlkkknxlloknnlloxlrorxlaxl]l
T 11 #lskxlorrrxxllaxxllx11
111 %l xlkkkklkrlhrrrrxllxl]

14 seeds

111%11%1%%11111

1111 #%11%1x1%111
IT1x1# 111 H%xx11x111
T1lwlwwxxlloxlx1111
LTlxllwwxlwllorxlxlnll
111k xlxsklaxlslrx*x1111
B B L R R A
Talslwrlwlonknonloxllolarll
1111l %kl kkkklkkrrlorxllrxl]l
T1IwTlwwkslonslonsxlalaxlll
T1#l#lwxlurlosloxnloxxlll
Tlxxllkxlxlkhorrlorrxllxl]
T11#*L1xlwlorxlonrnxlrlnxll
T1#Tlwwlorxloxlorxllaxlxll

15 seeds

111%%1%1111%111
11x111x1%1xx1111

1111 %% 11%1x1x1wx1l
11#1%1%x11%*x1*%%x1111

T11 %1 1wsx*x1Tx*x1x1x11

R B N A A
T11 1l xxlokrrxloxllsxlnll
B B B e I I I R
T11lxTlkkknlnrrlrlrrxloxlxl]
Tl lxlowlorlovlonrslnlsxll
R N I A
TlxTllkkkrhxllrorrxlrxlrxxl11]
B R A I I I A
Tx1Tlwklkloknklonksloxlaxlll
T1lksxlloknrlrlrrrrxllxl]




