
Reducing the size of NFAs by using equivalences

and preorders

Lucian Ilie⋆,⋆⋆, Roberto Solis-Oba⋆ ⋆ ⋆, and Sheng Yu†

Department of Computer Science, University of Western Ontario
London, Ontario, N6A 5B7, CANADA

ilie|solis|syu@csd.uwo.ca

Abstract. The efficiency of regular expression matching algorithms de-
pends very much on the size of the nondeterministic finite automata
(NFA) obtained from regular expressions. Reducing the size of these au-
tomata by using equivalences has been shown to reduce significantly the
search time. We consider the problem of reducing the size of arbitrary
NFAs using equivalences and preorders. For equivalences, we give an al-
gorithm to optimally combine equivalent states for reducing the size of
the automata. We also show that the problem of optimally using pre-
orders to reduce the size of an automaton is NP-hard.

Keywords: regular expression matching, finite automata, state com-
plexity, equivalences, preorders

1 Introduction

Regular expressions lie at the heart of many applications, such as linguistics,
computational biology, pattern recognition, text retrieval, and so on. A powerful
and elegant theory provides tools to easily and efficiently solve many complex
problems by mapping them to regular expressions, then obtaining nondeter-
ministic finite automata (NFA) that recognize them, and finally constructing
deterministic finite automata (DFA). However, a severe obstacle in any real
implementation of the above scheme is the size of the DFA, which can be expo-
nential in the length of the original regular expression. A simple algorithm for
minimizing DFAs exists [7], but it has the drawback of requiring first the con-
struction of the DFA to later minimize it. This might not be practical because
of memory requirements and construction cost of the DFA.

A more promising (and more challenging) alternative is directly reducing the
NFA before converting it into a DFA. This has the advantage of working over a
much smaller structure (of size polynomial in the length of the regular expres-
sion) and of building the smaller DFA without the need to go through a larger one
first. However, the NFA state minimization problem is hard (PSPACE-complete,

⋆ corresponding author; e-mail: ilie@csd.uwo.ca
⋆⋆ Research partially supported by NSERC.

⋆ ⋆ ⋆ Research partially supported by NSERC grant 227829-04.
† Research partially supported by NSERC.

2 L. Ilie, R. Solis-Oba, S. Yu

[14]) and, therefore, algorithms such as [15–17] cannot be used in practice. There
are also algorithms which build small NFAs from regular expressions, see [10, 6].
These algorithms consider the total size of NFAs, that is, they count both states
and transitions, and they increase artificially the number of states to reduce the
number of transitions. As the implementation crucially depends on the number
of states, such algorithms may not help.

The idea of reducing the size of NFAs by merging states was first introduced
by Ilie and Yu [12] who used left and right equivalence relations. Later, Cham-
parnaud and Coulon [2] modified the idea to work for preorders. An algorithm
to compute the equivalences in O(m log n) time on an NFA with n states and m

transitions and an O(mn) algorithm for computing preorders are presented in
[11].

The above mentioned algorithms identify sets of states that could be merged
without modifying the language accepted by the automaton. The number of
states of the resulting NFA depends on the order in which the states are merged.
Randomly choosing the order in which these mergings take place, as used so
far, does not guarantee that the smallest NFAs that can be built with these
techniques are produced.

In this paper we investigate optimal ways to use the information in equiv-
alences and preorders to reduce NFAs. We first give an efficient algorithm for
optimally combining the left and right equivalences for achieving the maximum
reduction in the size of an NFA. We show that the same problem for preorders,
however, is NP-hard. Since, potentially, preorders could produce a better reduc-
tion, a number of open problems remain, such as looking for alternative ways,
e.g., approximation algorithms, to reduce NFAs using preorders.

Notice that we do not claim that the above techniques achieve optimal reduc-
tion in the size of nondeterministic finite automata, as this problem is PSPACE-
complete. Rather, we use the adjective “optimal” to refer to the maximum re-
duction in size that these techniques can achieve. We will explain this more
precisely in the following sections.

We expect our results to have applications to regular expression matching. A
single equivalence was shown by Ilie et al. [11] to reduce significantly the search
time, more so than the special properties of the Glushkov automaton (see [18,
19]). It remains to be tested how much we can further speed up regular expres-
sion search using the present reduction algorithms. Several important research
directions are mentioned in the conclusions section.

2 Basic notions

We recall here the basic definitions we need throughout the paper. For further
details we refer to [9] or [21].

Let A be an alphabet of constant size and A∗ be the set of all words over A; ε

denotes the empty word. A language over A is a subset of A∗. A nondeterministic

finite automaton (NFA) is a tuple M = (Q, A, δ, I, F), where Q is the set of
states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states, and

Reducing the size of NFAs by using equivalences and preorders 3

δ : Q × A → 2Q is the transition mapping; δ is extended to δ : 2Q × A∗ → 2Q

by δ(S, a) =
⋃

q∈S δ(q, a), δ(S, ε) = S, and δ(S, aw) = δ(δ(S, a), w), for S ⊆ Q,
w ∈ A∗. The language recognized by M is

L(M) = {w ∈ A∗ | δ(I, w) ∩ F 6= ∅}.

For p, q ∈ Q, we denote

LL(M, p) = {w ∈ A∗ | p ∈ δ(I, w)},
LR(M, p) = {w ∈ A∗ | δ(p, w) ∩ F 6= ∅},
L(M, p, q) = {w ∈ A∗ | q ∈ δ(p, w)};

when M is understood, we simply write LL(p), LR(p), and L(p, q), respectively.
The reversed automaton of M is M r = (Q, A, δr, F, I), where q ∈ δr(p, a) iff
p ∈ δ(q, a).

3 NFA reduction with equivalences

The idea of reducing the size of NFAs by merging states was investigated first
by Ilie and Yu [12]; see also [13]. We describe it briefly in this section.

Let M = (Q, A, δ, I, F) be an NFA. We define ≡R as the coarsest equivalence
relation over Q that satisfies:

(P1) ≡R ∩(F × (Q − F)) = ∅,
(P2) ∀p, q∈Q, ∀a∈A,

(

p ≡R q ⇒ ∀q′∈δ(q, a), ∃p′∈δ(p, a), q′ ≡R p′
)

.

The equivalence ≡R is the largest equivalence over Q which is right-invariant
with respect to M ; see [12, 13]. Given ≡R, the algorithm to reduce the automaton
M is simple: while there are non-trivial equivalence classes, merge all states in
a non-trivial equivalence class and modify the transitions accordingly.

Symmetrically, the relation ≡L can be defined using the reversed automaton.
An automaton M can be reduced according to either equivalence.

Example 1. Consider, for example, the automaton in Figure 1(a) where the
equivalence classes are also shown. States 1, 2, and 3 belong to the same equiv-
alence class of ≡R, and so they would be merged into a single state as shown
in Fig 1(b). As Figure 1(c) shows, there are NFAs that can be reduced more by
simultaneously using both equivalences.

Furthermore, there might not be a unique way to use optimally both ≡R and
≡L as the following example (from [13]) shows.

Example 2. In Figure 2, the automaton from the left has only two pairs of equiv-
alent states: 1 ≡R 3 and 1 ≡L 2. We may either merge 1 with 3 or 1 with 2 but
not both, since merging all three states into one introduces the word bd which is
not in the language. Therefore, we have two different optimal ways of reducing
the automaton.

4 L. Ilie, R. Solis-Oba, S. Yu

Classes of ≡R: {0}
{1, 2, 3}
{4}, {5}
{6}, {7}

Classes of ≡L: {0}, {1}
{2}, {3}
{4, 5, 6}
{7} 70

(a)

(c)

(b)

4, 5, 6

ac,d,e

cb
4

70

e

d

b

b
5

6

a

a
d

c

a

2

1

c,d,eb

70

e

d

b

b
5

6

4

1, 2, 3

c,d,e a1, 2, 3

cb

e 3

Fig. 1. (a) An NFA. (b) Its reduced version using ≡R. (c) Its reduced version using
≡R and ≡L.

c

da

a,b
d

ca

b c

a 44

a 1,2

4

3

0

2

0

1,3

1

3

0 2

c

c,d

b

Fig. 2. An NFA, and its reduced versions using ≡R and ≡L.

In [13] it is posed as an open problem to find a best way to do the reduction
using both equivalences. In Section 4 we give an efficient algorithm for solving
this problem.

A classical algorithm of Paige and Tarjan [20] was used in [11] to compute
the equivalences fast. Given an automaton with n states and m transitions, the
algorithm of [11] runs in time O(m log n) and space O(m + n).

4 Efficient use of equivalences

We describe now an efficient algorithm for reducing the size of an NFA M =
(Q, A, δ, I, F) by merging states according to the equivalence classes ≡R and ≡L.
In a certain sense, to be made precise below, we use the information in the two
equivalences optimally.

Each of the two equivalences ≡R and ≡L defines a partition of the set Q of
states. Let these partitions be

ΠR = {X1, X2, . . . , Xr}
ΠL = {Xr+1, Xr+2, . . . , Xr+s},

Reducing the size of NFAs by using equivalences and preorders 5

respectively. Two states p, q belong to the same set Xi, i ≤ r (i > r), if and only
if p ≡R q (p ≡L q).

A reduction merges states belonging to the same equivalence class into a
single state. Let a reduction be X∗ = {X∗

1 , X∗
2 , . . . , X∗

ℓ }, where each X∗
i repre-

sents a set of equivalent states that is merged into a single state in the reduced
automaton. The reduced NFA has, then, ℓ states. Observe that each set X∗

i is a
subset of at least one of the sets Xj . Let X∗

i ⊆ Xπ(i), where 1 ≤ π(i) ≤ r + s.
Clearly, ℓ ≤ min{r, s}.

Note that ∪ℓ
i=1X

∗
i = Q, where Q is the set of states of the NFA. Then,

∪ℓ
i=1Xπ(i) = Q, and so {Xπ(1), Xπ(2), . . . , Xπ(ℓ)} is a set cover for Q from the

family of sets X = ΠR ∪ ΠL.

We can identify optimal use of the equivalences by finding an optimal solution
for the instance 〈Q, X = ΠR∪ΠL〉 of the set covering problem. In the set covering
problem, given a finite set Q and a family X of subsets of Q, the goal is to find
the smallest subset of X that includes all elements in Q. Any subset of X that
includes all elements in Q is called a set cover for Q.

Let S∗ be a smallest set cover for 〈Q, X〉. To achieve the maximum possible
reduction in the size of the NFA that can be obtained with the equivalences, we
first remove duplicated occurrences of the same state from the sets in S∗; i.e., if
state p belongs to two subsets S∗

i , S∗
j ∈ S∗, then we remove p from either S∗

i or
S∗

j so that p appears in only one subset of S∗. Then, all the states in the same
subset S∗

i ∈ S∗ are merged into a single state in the reduced NFA. The reduced
NFA will be called the eq-reduced NFA.

The set covering problem is NP-hard, so the above algorithm for reducing
NFAs might not be practical. Fortunately, the instance 〈Q, X〉 of the set covering
problem defined by ≡R and ≡L is not an arbitrary one, but it has a very special
structure. In particular, every state p ∈ Q belongs to at most two of the subsets
of X . Therefore, the algorithm of Bar-Yehuda end Even [1] gives a 2-approximate
solution for this problem.

We can do better than this, though. Let us model the set covering problem
as a bipartite graph GB = (L∪R, E). Each set Xi is a vertex in this graph. Put
vertices X1, . . . , Xr in L and the rest in R. Every edge p ∈ E corresponds to a
state p of the NFA and it joins the two sets containing it (see Figure 3).

An optimal set cover for 〈Q, X〉 corresponds to a minimum vertex cover for
GB (a vertex cover for GB is a subset of vertices incident on all edges). Since
the graph GB is bipartite, a minimum vertex cover can be easily derived from a
maximum matching, which can be computed in O(m′

√
n) = O(n3/2) time using

the algorithm of Hopcroft and Karp [8], where m′ is the number of edges in the
bipartite graph and n is the number of vertices. The number of edges is equal
to the number n of states in the NFA, and the number of vertices is the number
of equivalence classes in ≡R and ≡L, which is at most n.

The problem of computing a minimum vertex cover for a bipartite graph
has been widely studied in the literature. For completeness, we present a simple
algorithm for finding a minimum vertex cover for GB from a maximum matching
M∗ of GB. First, build the residual network GM∗ corresponding to the matching:

6 L. Ilie, R. Solis-Oba, S. Yu

2

1,2,3

4

5

6

0

7 7

0

4,5,6

3

1

Fig. 3. Bipartite graph GB for the NFA of Figure 1(a).

– Add a source node ns to GB and connect it to every vertex in L.
– Add a sink node nt to GB and connect it to every vertex in R.
– Direct every edge in the matching from R to L. Direct every edge (ns, u),

where u is incident to an edge in the matching, from u to ns. Direct every
edge (v, nt) incident on the matching from nt to v.

– All other edges are directed from left to right.

Do a depth first search traversal on this graph starting at vertex ns, marking
every vertex that can be reached from ns. A minimum vertex cover C∗ is formed
by all marked vertices in R plus all un-marked vertices in L. Every marked vertex
v ∈ R is incident on an edge of the matching, because otherwise the path ns, u, v

used to reach v would include an edge (u, v) not incident on M∗, contradicting
that M∗ is maximum. Also, every un-marked vertex u ∈ L must be incident
on M∗ since the edge between s and u must be directed from u to s. Hence,
|C∗| ≤ |M∗|. This procedure requires linear time.

Lemma 1. C∗ is a minimum vertex cover for the bipartite graph GB, and the

size of C∗ is equal to the size of M∗.

Proof. The above algorithm simply finds a cut of capacity C∗ for a flow network
G that has the same topology as GM∗ , but in which all edges (of unit capacity)
are directed from left to right. By the max-flow min-cut theorem, we know that
the size of M∗ is equal to the capacity of a minimum cut, and thus, that the size
of M∗ is equal to the size of C∗. To see that C∗ is a vertex cover, note that a
minimum cut of G intersects every path from ns to nt. Therefore, for every edge
(u, v) of G, the path ns, u, v, nt is intersected by a minimum cut and, thus, in
the residual network GM∗ either v (but not nt) is reachable from ns or u is not
reachable from ns. This implies that either u or v belong to C∗, so edge (u, v)
is covered by C∗.

We have proved the following result.

Theorem 1. Given an NFA with n states and m transitions, there is an al-

gorithm that computes the corresponding eq-reduced automaton in O(n3/2 +
m log n) time.

Reducing the size of NFAs by using equivalences and preorders 7

5 NFA reduction with preorders

Champarnaud and Coulon [2] noticed that a better reduction can be obtained
if the axioms (P1) and (P2) above are used to construct a preorder relation
instead of an equivalence. Let us denote the largest (w.r.t. inclusion) preorder
which satisfies (P1) and (P2) by ⊆R. It is then immediate that p ⊆R q implies
LR(p) ⊆ LR(q).

As in the case of equivalences, the relation ⊆L is symmetrically defined using
the reversed automaton. Then, p ⊆L q implies LL(p) ⊆ LL(q).

The reduction with preorders is more complicated than with equivalences.
We can merge two states p and q as soon as any of the following conditions is
met:

(i) p ⊆R q and q ⊆R p,

(ii) p ⊆L q and q ⊆L p,

(iii) p ⊆R q, p ⊆L q, and L(p, p) = {ε}.

However, after merging two states, the preorders ⊆R and ⊆L must be updated
such that their relation with the languages LR and LL (see above) is preserved.
For instance, in the case (i), assuming the merged state of p and q is denoted q,
the update amounts to removing from ⊆L all pairs (q, s) for which p 6⊆L s. Case
(ii) is handled similarly and (iii) does not need any update.

The condition (iii) appears in [2, 3] without the requirement L(p, p) = {ε}
and, as noticed by [4], it is incorrect. In fact [4] removes this condition because
its proof is incorrect. We give below a counterexample showing that, indeed,
condition (iii) without the requirement L(p, p) = {ε} does not work.

Example 3. Consider the automaton in Figure 4. We have LL(1) = ab∗ ⊆ ab∗ ∪
{x} = LL(2) and LR(1) = b∗c ⊆ b∗c∪ {y} = LR(2), but we cannot merge states
1 and 2 as this would add xb∗y to the language.

0

1

3

2

4

5

b

b

b

b

a c

a,x c,y

a
b

c

Fig. 4. The condition (iii) without L(p, p) = {ε}; 1 and 2 cannot be merged.

8 L. Ilie, R. Solis-Oba, S. Yu

Let us prove that our condition (iii) as stated above is correct. Denote the
initial automaton by M and the one obtained after merging p and q by M ′.
Denote also the merged state in M ′ by q. We need to prove that L(M ′) ⊆ L(M).
The only problem might come from a word w ∈ L(M ′) such that w1 ∈ LL(M ′, q)
for some prefix w1 of w. This word w can be decomposed as w = w1w2w3 such
that: there is a path labelled w1 in M ′ from an initial state to q which does not
pass through q twice; there is a path labelled w3 in M ′ from q to a final state
which does not pass through q twice; and, there is a path labelled w2 in M ′

which starts and ends in q. We have then

w1 ∈ LL(M, p) ∪ LL(M, q) = LL(M, q),
w3 ∈ LR(M, p) ∪ LR(M, q) = LR(M, q), and
w2 ∈ (L(M, p, p) ∪ L(M, p, q) ∪ L(M, q, p) ∪ L(M, q, q))∗.

Since L(M, p, p) = {ε}, at least one of L(M, q, p) and L(M, p, q) must be empty.
Assume L(M, q, p) is empty. (The other case is similarly proved.) Then, using

L(M, q, q)LR(M, q) ⊆ LR(M, q) and
L(M, p, q)LR(M, q) ⊆ LR(M, p) ⊆ LR(M, q),

we obtain w ∈ LL(M, q)LR(M, q) ⊆ L(M), as claimed.
Since the preorder requirement is weaker than the equivalence requirement,

p ≡R q implies that p ⊆R q and q ⊆R p. The converse is not true in general
(see [2] for an example). Therefore, using preorders we have a chance to obtain a
better reduction of the NFA. It remains to investigate how much better. Notice
that the experiments in [3] are no longer valid since one of the conditions they
used in the reduction was invalid. The preorders ⊆R and ⊆L can be computed
in time O(mn) and space O(n2); see [11] and [3].

6 Optimal use of preorders is hard

Contrary to the case of equivalences, it is hard to find the optimal way to use
preorders to achieve best possible reductions. Again, what we mean by “optimal”
is precisely defined below. All proofs in this section will be omitted due to lack
of space.

As mentioned above, two states p, q of an automaton M can be merged into
a unique state if any of the conditions (i)-(iii) is satisfied. Given the preorders
⊆R and ⊆L, we let

p ∼=R q iff p ⊆R q and q ⊆R p, and

p ∼=L q iff p ⊆L q and q ⊆L p.

These new equivalences, ∼=R and ∼=L, are coarser than ≡R and ≡L, and they
induce two partitions πR and πL of the set of states of M . Condition (iii) induces
a partial order � on the set of states, where

p � q iff p ⊆R q, p ⊆L q and L(p, p) = {ε}.

Reducing the size of NFAs by using equivalences and preorders 9

This partial order induces a family πP of state subsets P1, P2, . . . , Pk, k ≤ n,
where each Pi has a unique maximal element mi, and two sets p, q belong to
the same set Pi iff p � mi and q � mi. Note that sets Pi cover all sates of M ,
but they are not necessarily a partition of Q.

We formulate the “optimal” use of preorders ⊆R and ⊆L for merging the
states of M as an instance 〈Q, π〉 of the set covering problem: given a set Q of
states and a family of state subsets π = πR ∪ πL ∪ πP , the goal is to find the
smallest subset S∗ of π that includes all states of Q.

Consider an optimal solution S∗ for the above set covering problem. Let
S∗ = {S∗

1 , S∗
2 , . . . , S∗

ℓ }; we reduce the automaton by merging all states in each
set S∗

i into a unique state. Care must be taken that a state p ∈ Q belonging
to two different sets S∗

i , S∗
j is not merged twice. To ensure this, the sets S∗ are

considered in order. First, the set S∗
1 is contracted to a single new state, and

all states that belong to S∗
1 are removed from the remaining sets S∗

2 , . . . , S∗
ℓ .

Then, S∗
2 is contracted and all states in S∗

2 are discarded from the remaining
sets S∗

3 , . . . , S∗
ℓ , and so on. The number of states in the final NFA M∗ is ℓ; we

call this automaton the pre-reduced NFA.

The pre-reduced NFA M∗ has minimum size among those obtained by reduc-
ing M using preorders as explained above. This is because if there were another
NFA, say M ′ with ℓ′ < ℓ states, that could be obtained from M by merging
states as indicated by (i)-(iii), then the way in which the states are merged to
produce M ′ defines a solution for the set covering problem 〈Q, π〉 of size ℓ′ < ℓ,
contradicting the optimality of S∗.

Observe that 〈Q, π〉 is a restricted instance of the set covering problem and,
thus, the problem of optimally using preorders for reducing the number of states
of a NFA might be simpler to solve than the general set covering problem. We
show now that despite its restricted structure the set covering problem 〈Q, π〉
is still NP-hard. In fact, we show that an even more restricted version of the
problem is NP-hard.

Let us consider only instances 〈Q, π〉, π = πR ∪ πL ∪ πP , where the family
πP is a partition of Q. For these instances each state p appears in precisely 3
sets of π (one set belonging to each of πR, πL, and πP). This particular class of
instances of the set covering problem can be modeled as 3-partite hypergraphs

HM = (Vπ , EQ), where each vertex v ∈ Vπ corresponds to a subset in π and
each hyperedge ep ∈ EQ is incident on the vertices corresponding to the three
sets Ap ∈ πR, Bp ∈ πL, and Cp ∈ πP containing p. A hypergraph is said to be
3-partite if its vertices can be partitioned into 3 disjoint sets such that every
hyperedge is incident on exactly one vertex from each partition.

Note that every set cover of 〈Q, π〉 corresponds to a vertex cover (set of
vertices incident on all hyperedges) of HM . The vertex covering problem on 3-
partite hypergraphs can be shown to be NP-hard via a reduction from the 3-SAT
problem. We explain very briefly the idea.

Recall the 3-SAT problem. Given a boolean formula f(x1, . . . , xn) = C1 ∧
C2 ∧ · · · ∧Cm, where each clause Ci contains exactly 3 literals (a literal is either
a variable xi or its negation x̄i), the problem is to decide whether there is an

10 L. Ilie, R. Solis-Oba, S. Yu

assignment of values to the variables that satisfies all clauses. The 3-SAT problem
is known to be NP-hard [5].

Given a boolean formula f(x1, . . . , xn) we build a 3-partite hypergraph Hf =
(Vf , Ef) as follows. Let ni be the number of occurrences of xi (either as xi or
as x̄i) in f . For each variable xi we create 8ni nodes: xi1, . . . , xi ni

, x̄i1, . . . , x̄i ni
,

di1, . . . , di ni
, d̄i1, . . . , d̄i ni

, si1, . . . , si 4ni
. Nodes xij , x̄ij represent the j-th occur-

rence of the variable xi (in its j-th occurrence xi can be either negated or not).
Dummy nodes dij , d̄ij , and sij are used to ensure that the resulting hypergraph
is 3-partite. These nodes are connected forming a cycle. Each hyperedge spans
3 nodes.

Furthermore, for each clause Ck = ℓk1∨ℓk2∨ℓk3, we add a hyperedge incident
on the 3 nodes corresponding to the literals ℓki (note that different occurrences of
the same variable are represented by different nodes). A very simple hypergraph,
for the formula f(x1, x2, x3) = x1 ∨ x̄2 ∨ x3, is shown in Fig. 5.

s

34s

31

32s

31d

31x

31

31x

_
d

_

23s

24s

21

22

33

11

_
d

_
x

s

12s

11

14s

11x

11d

13s

11

s

_
d

_

s

21d

21x

21s

21x

Fig. 5. Hypergraph corresponding to formula f(x1, x2, x3) = x1 ∨ x̄2 ∨ x3.

The next step is to consider those 3-partite graphs as described above, which
we call 3-SAT hypergraphs, and show that the vertex cover problem on 3-SAT
hypergraphs reduces to the problem of optimally using preorders for NFA re-
duction.

Consider a hypergraph Hf built from a boolean formula f . We construct an
automaton Mf for which its preorders ⊆′

R and ⊆′
L define a hypergraph identical

to Hf , but for 2 additional, isolated hyperedges. Denote the 3 partitions of the
vertices of Hf by Rf , Lf , Pf . Let ∼=′

R, ∼=′
L, and �′ be the equivalence relations

and partial order, respectively, defined by the preorders ⊆′
R and ⊆′

L.
The idea of the construction is as follows. The automaton is built so that each

node of Hf corresponds to a set of states of Mf . Specifically, a vertex u ∈ Rf

Reducing the size of NFAs by using equivalences and preorders 11

defines a set of states that are equivalent under ∼=′
R, a vertex v ∈ Lf corresponds

to an equivalence class under ∼=′
L, and a vertex w ∈ Pf corresponds to a member

of the family of state subsets induced by the partial order �′. Furthermore, each
hyperedge of Hf incident on vertices u, v, and w, corresponds to a state of the
automaton that belongs to classes u, v, and w of Rf , Lf , and Pf , respectively.
The details of the construction are omitted due to lack of space.

The main result of this section is

Theorem 2. Given an NFA, the problem of computing the corresponding pre-

reduced automaton is NP-hard.

7 Conclusions and further research

We wish to point out that our algorithm for computing the eq-reduced NFA
only finds the best way of merging states with respect to the equivalence classes
ΠR and ΠL. It is possible to reduce the size of an NFA by first merging some
equivalent states in ΠR ∪ΠL to get a new NFA and new equivalence classes Π ′

R

and Π ′
L. Then, some equivalent states in Π ′

L ∪ Π ′
R could be merged to produce

new equivalence classes, and so on. It is an open problem to find the best way
of reducing an NFA by using this method.

We note that our algorithm for equivalences can be iterated for better results,
but this does not solve the above problem. After reducing the size of an NFA
using the equivalences, we can compute the new right and left equivalences Π̃R

and Π̃L for the reduced automaton. Then, we apply the algorithm to Π̃R and
Π̃L. We can continue this process until no further reduction is achieved.

For preorders, we proved that the problem of optimally (as defined above)
using them to attain the maximum possible reduction in the size of the automa-
ton is NP-hard. Therefore, reductions with preorders, potentially more powerful
than those with equivalences, might be too expensive to compute. This opens a
new research topic: designing efficient approximation algorithms for using pre-
orders in reducing NFAs, and testing their performance in practice.

More theoretical and experimental work is needed to determine which of the
two relations, equivalences or preorders, is better in practice and which approach
achieves greatest speedup for regular expression matching.

References

1. Bar-Yehuda, R., and Even, S., A linear-time approximation algorithm for the
weighted vertex cover problem, Journal of Algorithms 2, 1981, 198–203.

2. Champarnaud, J.-M., and Coulon, F., NFA reduction algorithms by means of reg-
ular inequalities, in: Z. Ésik, Z. Fülöp, eds., Proc. of DLT 2003 (Szeged, 2003),
Lecture Notes in Comput. Sci. 2710, Springer-Verlag, Berlin, Heidelberg, 2003,
194 – 205.

3. Champarnaud, J.-M., and Coulon, F., NFA reduction algorithms by means of reg-
ular inequalities, Theoret. Comput. Sci. 327(3) 241 – 253.

12 L. Ilie, R. Solis-Oba, S. Yu

4. Champarnaud, J.-M., and Coulon, F., NFA reduction algorithms by means of reg-
ular inequalities – correction, Theoret. Comput. Sci., to appear.

5. Garey M.R. and Johnson D.S., Computers and intractability: a guide to the theory

of NP-completeness, W.H. Freeman and Company, New York, 1979.
6. Hagenah, C., and Muscholl, A., Computing ǫ-free NFA from regular expressions in

O(n log2(n)) time, Theor. Inform. Appl. 34 (4) (2000) 257 – 277.
7. Hopcroft, J., An n log n algorithm for minimizing states in a finite automaton,

Proc. Internat. Sympos. Theory of machines and computations, Technion, Haifa,
1971, Academic Press, New York, 1971, 189–196.

8. Hopcroft, J.E., and Karp, R., An n5/2 algorithm for maximum matchings in bi-
partite graphs, SIAM Journal on Computing, bf 2(4) (1973), 225–231.

9. Hopcroft, J.E., and Ullman, J.D., Introduction to Automata Theory, Languages,

and Computation, Addison-Wesley, Reading, Mass., 1979.
10. Hromkovic, J., Seibert, S., and Wilke, T., Translating regular expressions into small

ǫ-free nondeterministic finite automata, J. Comput. System Sci. 62 (4) (2001) 565
– 588.

11. Ilie, L., Navarro, G., and Yu, S., On NFA reductions, in: J. Karhumaki, H. Maurer,
G. Paun, G. Rozenberg, eds., Theory is Forever (Salomaa Festschrift), Lecture
Notes in Comput. Sci. 3113, Springer-Verlag, Berlin, Heidelberg, 2004, 112 – 124.

12. Ilie, L., and Yu, S., Algorithms for computing small NFAs, in: K. Diks, W. Rytter,
eds., Proc. of the 27th MFCS, (Warszawa, 2002), Lecture Notes in Comput. Sci.,
2420, Springer-Verlag, Berlin, Heidelberg, 2002, 328 – 340.

13. Ilie, L., and Yu, S., Reducing NFAs by invariant equivalences, Theoret. Comput.

Sci. 306 (2003) 373 – 390.
14. Jiang, T., and Ravikumar, B., Minimal NFA problems are hard, SIAM J. Comput.

22(6) (1993), 1117 – 1141.
15. Kameda, T., and Weiner, P., On the state minimization of nondeterministic finite

automata, IEEE Trans. Computers C-19(7) (1970) 617 – 627.
16. Melnikov, B. F., A new algorithm of the state-minimization for the nondetermin-

istic finite automata, Korean J. Comput. Appl. Math. 6(2) (1999) 277 – 290.
17. Melnikov, B. F., Once more about the state-minimization of the nondeterministic

finite automata, Korean J. Comput. Appl. Math. 7(3) (2000) 655–662.
18. Navarro, G., and Raffinot, M., Compact DFA Representation for Fast Regular

Expression Search, Proc. WAE’01, Lecture Notes Comput. Sci. 2141, Springer-
Verlag, Berlin, Heidelberg, 2001, 1 – 12.

19. Navarro, G., and Raffinot, M., Flexible Pattern Matching in Strings. Practical On-

Line Search Algorithms for Texts and Biological Sequences, Cambridge University
Press, Cambridge, 2002.

20. Paige, R., and Tarjan, R.E, Three Partition Refinement Algorithms, SIAM J. Com-

put. (1987) 16(6) 973 – 989.
21. Yu, S., Regular Languages, in: G. Rozenberg, A. Salomaa, Handbook of Formal

Languages, Vol. I, Springer-Verlag, Berlin, 1997, 41 – 110.

