
WORD COMPLEXITY AND REPETITIONS IN WORDS1

LUCIAN ILIE2, SHENG YU3, and KAIZHONG ZHANG4

Department of Computer Science, University of Western Ontario
N6A 5B7, London, Ontario, CANADA
e-mails: ilie|syu|kzhang@csd.uwo.ca

ABSTRACT

With ideas from data compression and combinatorics on words, we introduce a
complexity measure for words, called repetition complexity, which quantifies the amount
of repetition in a word. The repetition complexity of w, r(w), is defined as the smallest
amount of space needed to store w when reduced by repeatedly applying the following
procedure: n consecutive occurrences uu . . . u of the same subword u of w are stored as
(u, n). The repetition complexity has interesting relations with well-known complexity
measures, such as subword complexity, sub, and Lempel-Ziv complexity, lz. We have
always r(w) ≥ lz(w) and could even be that the former is linear while the latter is
only logarithmic; e.g., this happens for prefixes of certain infinite words obtained by
iterated morphisms. An infinite word α being ultimately periodic is equivalent to: (i)
sub(pref

n
(α)) = O(n), (ii) lz(pref

n
(α)) = O(1), and (iii) r(pref

n
(α)) = lg n + O(1).

De Bruijn words, well known for their high subword complexity, are shown to have
almost highest repetition complexity; the precise complexity remains open. r(w) can be
computed in time O(n3(log n)2) and it is open, and probably very difficult, to find fast
algorithms.

Keywords: repetitions in words, Lempel-Ziv complexity, subword complexity, iterated
morphisms, de Bruijn words

1. Introduction

The repetitions in words is one of the properties of words studied longest. The
study of repetitions dates back to the pioneering work of Thue [22, 23] at the begin-
ning of the last century. He was concerned with infinite repetition-free words. Ever
since, various aspects of repetitions in words were quite extensively investigated,
see, e.g., [15], [4], [16] and the references therein.

In the present paper we investigate repetition in words from a new perspective:
word complexity. Several measures of the complexity of words were proposed in
the literature. The complexity of a word can be considered from different points of
view: the shortest program to generate it (Kolmogorov [12], see also [19, 3]), the
shortest compressed form (Lempel and Ziv [14]), the number of subwords ([15, 2]),
the number of maximal repetitions ([13]), the highest order of repetitions ([9]). The
new complexity measure we introduce concerns the amount of repetition in a word;
we call it repetition complexity. The basic idea is that the more the repetitions, the
less the complexity. However, measures related with classical properties of words,
such as the number of repetitions or highest order of repetitions, seem to be less
appropriate.

Our complexity measure takes ideas from both data compression theory and
combinatorics on words. Essentially, from a repetition of a word we remember only

1An extended abstract of this paper has been presented at The 8th Annual International
Computing and Combinatorics Conference (COCOON’02), Singapore, 2002.

2cooresponding author; Research partially supported by NSERC grant R3143A01.
3Research partially supported by NSERC grant OGP0041630.
4Research partially supported by NSERC grant OGP0046373.

1

the base and the exponent; that is, we replace n consecutive occurrences of the
same word uu · · ·u by (u, n). The complexity is the minimum size to which a word
is reduced by iteratively applying this procedure. As we shall see, the problem of
doing optimally such reductions can be very intricate.

We investigate the repetition complexity from several points of view. It turns
out that, aside from introducing challenging combinatorial problems, it is closely
connected with well-known complexity measures, such as Lempel-Ziv complexity
and subword complexity.

Due to the optimal compression it produces, [24, 11], the Lempel-Ziv complexity
turns out to be always lower than the repetition complexity. Moreover, there are
arbitrarily long words for which Lempel-Ziv complexity is much smaller. To prove
this, we use prefixes of infinite words obtained by iterating exponential prolongable
morphisms. The general result we use here, interesting in its own, says that prefixes
of such infinite words have logarithmic Lempel-Ziv complexity.

Next, we give a result which relates all three complexities: subword, Lempel-Ziv,
and repetition. Certain orders of these complexities for prefixes of infinite words
turn out to be equivalent with ultimate periodicity. Precisely, an infinite word being
ultimately periodic is equivalent to any of the following three properties, where n

stands for the length of the prefixes:
(i) the subword complexity of its prefixes is linear in n,
(ii) the Lempel-Ziv complexity of prefixes is constant, and
(iii) the repetition complexity of prefixes is lg n plus a constant.
In particular, these provide new characterizations of ultimate periodicity of in-

finite words.
Another connection with the subword complexity is done via de Bruijn words.

These are well known as having very high repetition complexity. We give a lower
bound on their repetition complexity which is close to linear, that is, highest. We
believe they have actually linear repetition complexity. However, this remains open.

Finally, we present an algorithm for computing the repetition complexity in
time O(n3(log n)2). Although this might seem slow, we give clear insight on why
it seems a very difficult problem to find fast algorithms to compute the repetition
complexity. Other open questions are proposed at the end.

2. Repetition complexity

We give here the basic definitions and notations we need in the paper. For basic
results in combinatorics on words we refer to [15, 4, 16].

Let A be a finite alphabet and A∗ the free monoid generated by A with the
identity ε; A+ = A∗ − {ε}. For u, v ∈ A∗, we say that v is a subword of u if
u = u′vu′′, for some u′, u′′ ∈ A∗; v is a prefix (resp., suffix) of u if u′ = ε (resp.,
u′′ = ε). The prefix relation is denoted ≤pref and the prefix of length n of w is
denoted prefn(w).

For any word w ∈ A∗, the length of w is denoted by |w|. If w = a1a2 · · · a|w|,
where ai ∈ A, then any integer i, 1 ≤ i ≤ |w|, is called a position in w; for 1 ≤
i ≤ |w|, i ≤ j ≤ |w|, w[i, j] denotes the subword aiai+1 · · · aj of w; it has length
j − i + 1. For n ≥ 0, the nth power of w, denoted wn, is defined inductively by
w0 = ε, wn = wn−1w. w is primitive if there is no n ≥ 2 such that w = un, for
some word u. The primitive root of w, denoted ρ(w), is the unique primitive word

2

u such that w ∈ u+. The order of w is ord(w) = |w|
|ρ(w)| ; we have w = ρ(w)ord(w). A

period of w is p such that ai = ai+p, for any 1 ≤ i ≤ |w| − p.
A repetition in w is a subword of w of the form un for some nonempty word u

and integer n ≥ 2; n is the order and |u| is the period of the repetition. For technical
reasons, we formally define a repetition in w as a triple of positive integers (i, p, e)
such that the word (w[i, i + p − 1])e is a subword of w starting at position i; that
is, we have at position i a repetition of order e and period p.

We use repetitions to reduce the representation of a word, that is, we iteratively
replace n consecutive occurrences of the same word uu · · ·u by u and n. While the
former takes n|u| units of space to represent, we assume that the latter needs only
|u|+ ⌈lg(n + 1)⌉ (where lg stands for base 10 logarithm). We shall assume decimal
representation for exponents but the results hold essentially unchanged for any base
greater than or equal to two. Notice that, if n is in decimal then un is shorter than
or equal to n consecutive u’s, for any word u, as soon as n ≥ 2; this helps avoiding
special irrelevant cases in our reasoning.

We shall call this procedure a reduction; un is a reduced form of uu · · ·u. A
word w can be iteratively reduced using the above procedure for repetitions inside
w. However, some repetitions cannot be reduced simultaneously (because of over-
lapping), while further reductions can be applied inside already reduced repetitions.
We formally define the repetition complexity below.

Let D = {0, 1, . . . , 9} be the set of decimal digits, D ∩ A = ∅, and let 〈, 〉, ∧ be
three new letters; put T = A ∪ D ∪ {〈, 〉, ∧}. For a positive integer n, dec(n) ∈ D∗

is the decimal representation of n. (For a word w, |dec(|w|)| = ⌈lg(|w| + 1)⌉ is the
length of the decimal representation of the length of w.) Define the binary relation
⇒⊆ T ∗ × T ∗

u ⇒ v iff u = u1x
nu2, v = u1〈x〉∧〈dec(n)〉u2,

for some u1, u2 ∈ T ∗, x ∈ A+, n ≥ 2.

Let ⇒∗ be the reflexive and transitive closure of ⇒; if u ⇒∗ v, then v is a reduced
form of u. Define also a morphism h : T ∗ → (A∪D)∗ which simply erases all letters
from {〈, 〉, ∧} and keeps those in A ∪ D unchanged. The repetition complexity of a
word w ∈ A∗, denoted r(w), is formally defined as

r(w) = min
w⇒∗u

|h(u)|.

Such an u with r(w) = |h(u)| is called a shortest reduced form of w and w ⇒∗ u is
an optimal reduction of w.

We notice that our reduction relation ⇒ is not confluent. For instance, if w =
ababcbc, then we have two reductions which cannot be continued any further: w ⇒
〈ab〉∧〈2〉cbc and w ⇒ aba〈bc〉∧〈2〉. Actually, both are optimal reductions.

Example 1 Consider the word w = ababaabababbbabb. Several possible reductions
for w are shown below (the first is optimal and so r(w) = 10):

w ⇒〈ababa〉∧〈2〉bbbabb ⇒〈ababa〉∧〈2〉〈b〉∧〈3〉abb ⇒〈〈ab〉∧〈2〉a〉∧〈2〉〈b〉∧〈3〉abb

w ⇒∗ 〈ab〉∧〈2〉aaba〈babb〉∧〈2〉
w ⇒∗ a〈ba〉∧〈2〉〈ab〉∧〈2〉a〈b〉∧〈3〉a〈b〉∧〈2〉

The next lemma gives the bounds for the r-complexity.

3

Lemma 2 For any w ∈ A∗ with |w| ≥ 2, 1 + |dec(|w|)| ≤ r(w) ≤ |w|.
Proof. By induction on |w| using the definition of r(w). The upper bound

is clearly optimal. The lower bound can be shown to be optimal. Also, the only
words which reach it are of the forms: an, ab10n−1, and (ab)k with ⌈lg(2k + 1)⌉ =
|dec(k)| + 1. 2

The next result concerns words with highest repetition complexity. Using results
from combinatorics of words we show that there are many of such words.

Theorem 3 The number of words over three (or more) letters of maximum repe-
tition complexity is exponential in terms of the length.

Proof. For any w, r(w) = |w| if and only if w is square-free or has only squares
of a single letter. We have from [4] that the number SFn(3) of square-free words of
length n over three letters verifies the inequalities 6 · 1.032n ≤ SFn(3) ≤ 6 · 1.38n.

The claim follows. 2

A property expected from a complexity measure is subadditivity. The complex-
ity we introduced has it.

Lemma 4 For any u, v, r(uv) ≤ r(u) + r(v).

3. The definition of repetition complexity

We discuss here our choice of defining the repetition complexity. Another choice
could have been the highest order of a repetition. This is a local property which
does not necessarily affect the whole word. If the highest order is very low, then it
becomes more relevant. For instance, if it is less than 2, then we obtain our highest
complexity, but for higher values we can have totally different words. For instance,
the word ((· · · (a2

1a2)
2 · · · an)2 has highest order of repetition 2 but it clearly contains

a lot more repetition than a prefix of a 2−-free word (see [4]). The difference with
respect to the highest order of repetition is smallest but the repetition complexities
are quite different: logarithmic for the former and linear for the latter.

The number of repetitions is another candidate. A good example here is the
Fibonacci word defined by f = limn→∞ fn(a), where f(a) = ab, f(b) = a. By
[6], any prefix of length n of f has Θ(n lg n) maximal repetitions (i.e., repetitions
which cannot be extended). A much less complex word, an has only one maximal
repetition. For further results concerning the number of repetitions in words, see
[13] and the references therein.

Of course, the repetition in an is very long. We should therefore take into
account both the number of repetitions and their lengths. But our complexity does
it. Moreover, it takes implicitly into account overlappings among the repetitions by
the fact that overlapping repetitions cannot be reduced simultaneously.

Finally, one could argue that the exponents should be counted as one unit of
space each, as in a RAM model. But then, an infinite word like aaa . . . would have
all prefixes reduced to size two which is unreasonable.

4. Subword and Lempel-Ziv complexities

We recall two basic complexity measures of words to which we compare the rep-
etition complexity. These are the subword complexity and Lempel-Ziv complexity.

For a word w, the subwords complexity of w is the number of subwords of w,
denoted by sub(w). The next lemma gives the optimal range for the subword

4

complexity.

Lemma 5 For any w, we have |w| + 1 ≤ sub(w) ≤ 1 + 1
2 (|w|2 + |w|).

Proof. The lower bound is attainable for powers of a single letter and the
upper bound for words in which no letter occurs twice. 2

Essential for us in the above lemma is the fact that, on fixed alphabets, sub(w)
is at least linear and at most quadratic; e.g., for w = anbn, sub(w) = Θ(|w|2).

One of the most famous complexity measures is the one introduced by Lempel
and Ziv [14] in connection with their algorithm for data compression, see [24, 25, 7].

For a word w, we define the e-decompositiona of w as the (unique) decomposition
w = w1w2 · · ·wk such that, for any 1 ≤ i ≤ k (with the possible exception of i = k),
wi is the shortest prefix of wiwi+1 · · ·wk which does not occur before in w; that is,
wi does not occur as a subword of π(w1w2 · · ·wi), where the application π removes
the last letter of its argument.

The complexity measure introduced by Lempel and Ziv represents the number
of subwords in the e-decomposition of w; we denote it by lz(w).

Example 6 Consider the word w = aababbabbabb. The e-decomposition of w is
w = a.ab.abb.abbabb, where the subwords are marked by dots. Therefore, lz(w) =
4.

We notice that the e-decomposition can be defined in the same way for infinite
words; at each step we take the longest prefix of the remaining infinite suffix which
does not appear before; this prefix may be the remaining suffix of the infinite word,
in which case it is the last element of the decomposition. This definition will be
used in Lemma 12.

The next lemma is a weak form of a result of [14] which states the bounds for
the lz-complexity (for fixed alphabet).

Lemma 7 lz(w) = O
(|w|

lg |w|
)

.

5. Relation with Lempel-Ziv complexity

We shall compare in this section our complexity with the Lempel-Ziv complexity.
We start by investigating closer the r-complexity. As defined above, r(w) is the
size of h(v) for an optimal reduction u ⇒∗ v. At each step in this reduction, we use
a repetition (i, p, e) in w to decrease the size; denote the space saved by reducing
w according to this repetition by red(w, i, p, e) = (e − 1)p − |dec(e)|. When w is
understood, we write simply red(i, p, e). Of course, the saving in space does not
depend on the position of the repetition in w, but we still keep i as an argument in
order to be able to identify precisely what repetition we are talking about.

The next lemma shows how an optimal reduction is obtained.

Lemma 8 For any word w, there is an ordered sequence of m ≥ 0 repetitions in w

(i1, p1, e1), (i2, p2, e2), . . . , (im, pm, em) (1)

such that

r(w) = |w| −
m

∑

k=1

red(ik, pk, ek), (2)

a‘e’ comes from ‘exhaustive’; Lempel and Ziv [14] called this decomposition the exhaustive
production history of w; it is called f-factorization by [7] and s-factorization by [18].

5

and any two repetitions (ik, pk, ek) and (il, pl, el), 1 ≤ k < l ≤ m, are
(i) either disjoint, i.e., [ik, ik + pkek − 1] ∩ [il, il + plel − 1] = ∅,
(ii) or the one appearing later in (1) is contained in the first period of the other,

i.e., ik ≤ il and il + plel ≤ ik + pk.

Proof. According to the definition, there exists a word u ∈ T ∗ such that
w ⇒∗ u and r(w) = |h(u)|. The proof is by induction on the number of steps n of

the reduction w
n⇒ u. If n = 0, then u = w and r(w) = |w|. We may then choose

the empty sequence for (1). Notice that (2) and (i), (ii) are fulfilled.
We assume the statement true for any reduction in n− 1 steps or less and prove

it for reductions in n ≥ 1 steps. Emphasising the first step, the reduction is

w = w1w
e
2w3 ⇒ w1〈w2〉∧〈dec(e)〉w3 ⇒∗ u = u1〈u2〉∧〈dec(e)〉u3.

and we have also the following three reductions, each having at most n − 1 steps:

wj
<n⇒ uj , for any 1 ≤ j ≤ 3.

Using the inductive hypothesis, we have the statement true for any of wj , 1 ≤
j ≤ 3. If the ordered sequence (1) corresponding to wj is (i

(j)
l , p

(j)
l , e

(j)
l)1≤l≤mj

,
then the ordered sequence (1) corresponding to w will be

(i
(1)
1 , p

(1)
1 , e

(1)
1), . . . , (i

(1)
m1 , p

(1)
m1 , e

(1)
m1), (|w1| + 1, |w2|, e),

(i
(2)
1 , p

(2)
1 , e

(2)
1), . . . , (i

(2)
m2 , p

(2)
m2 , e

(2)
m2), (i

(3)
1 , p

(3)
1 , e

(3)
1), . . . , (i

(3)
m3 , p

(3)
m3 , e

(3)
m3).

(3)

Since r(w) =
∑3

j=1 r(wj) + |dec(e)|, it follows from the inductive hypothesis that
the relation (2) is satisfied for w and (3). Also from the inductive hypothesis, we
get that (3) satisfies (i) and (ii). 2

We give next an example of an application of Lemma 8.

Example 9 For the word

w = aabbbabbbbaaababbbabbbbaaabbababab,

an ordered sequence (1) can be (2, 13, 2), (2, 4, 2), (3, 1, 3), (11, 1, 3), (29, 2, 3). The
space saved by each of them is, in order, 12, 3, 1, 1, 3. Finally, r(w) = |w| − (12 +
3 + 1 + 1 + 3) = 34 − 20 = 14; w can be written as w = a((ab3)2ba3b)2b(ab)3.

We establish next the connection in one direction with the Lempel-Ziv complex-
ity and give some non-trivial examples showing the optimality of the result.

Theorem 10 For any word w, r(w) ≥ lz(w).

Proof. By Lemma 8, we may assume a sequence (1) of repetitions in w such
that r(w) is given by (2) and (1) fulfills (i) and (ii) in the lemma. Starting from
(1), we construct the following decomposition of w:

(a) - for any repetition (ij , pj, ej) in (1), consider w[ij + pj , ij + pjej − 1] as
subword in the decomposition;

(b) - for any position l in w which is contained in no interval [ij + pj , ij +
pjej − 1], 1 ≤ j ≤ m, consider the letter at position l, w[l, l], as a subword in the
decomposition.

It is worth noticing that the conditions (i) and (ii) in Lemma 8 show that there is
no contradictory decomposition at (a); this follows because for any 1 ≤ j 6= l ≤ m,
the two intervals [ij + pj , ij + pjej − 1] and [il + pl, il + plel − 1] are disjoint.

6

Denoting the number of subwords in this decomposition (let us call it, for this
proof only, d-decomposition) by d, we have r(w) ≥ d. Indeed, the set of subwords
in the d-decomposition can be partitioned into two subsets, according to the step
at which they were obtained. Now, those obtained at (b) are in one-to-one corre-
spondence with the letters which actually occur in the reduced form of w of size
r(w). Those obtained at (a) are in one-to-one correspondence with the exponents
e1, e2, . . . , em. Since any exponent counts at least one for r(w), the claim follows.

We show next that d ≥ lz(w). Assume d < lz(w). Then, there will be one
subword in the d-decomposition, u = w[p, q], and another in the e-decomposition,
v = w[l, r], such that p ≤ l < r < q. So |u| ≥ 2 and, by our construction of
the d-decomposition, u occurs before in w, i.e., starting at a position before p − 1.
Therefore, π(v), which is a subword of u, occurs also before l− 1, contradicting the
definition of the e-decomposition. Thus, d ≥ lz(w) and the theorem is proved. 2

Example 11 Consider n ≥ 1 and n different letters ai, 1 ≤ i ≤ n, and construct
the word

wn = ((. . . (a9
1a2)

9a3)
9 · · · an−1)

9an.

We have |wn| = 9n−1
8 and r(wn) = 2n−1 = Θ(lg |wn|). Denoting xn = w8

n−1an, we
have wn = wn−1xn. The e-decomposition of wn is wn = a1.x2.x3.x4. · · · .xn and so
lz(wn) = n = Θ(lg |wn|). Therefore the result in Theorem 10 cannot be improved
by more than a constant.

We now consider the relation in the opposite direction. We show that we have
the opposite case: there are words of high r-complexity but low lz-complexity. We
shall need a result about infinite words which is interesting in itself. We denote by
Aω the set of infinite words over A. For w ∈ A∗, we denote wω = www · · ·.

A morphism ϕ : A∗ → A∗ is called prolongable on a ∈ A if ϕ(a) ∈ aA+. If ϕ is
prolongable on a, then limn→∞ ϕn(a) ∈ Aω exists and we denote it by ϕ∞(a). ϕ is
called exponential if there are an integer n0 ≥ 1 and a real c > 1 such that, for any
w ∈ A∗, |ϕn0(w)| ≥ c|w|.
Lemma 12 Let ϕ : A∗ → A∗ be an exponential morphism prolongable on a ∈ A

and denote α = ϕ∞(a). Then, lz(prefn(α)) = O(lg n).

Proof. If the e-decomposition of α has finitely many elements, then we
have lz(prefn(α)) = O(1) and we are done. Assume this is not the case. Since
ϕ is exponential, there is a subword w in the e-decomposition such that w =
w′′w′a, a ∈ A, w′ 6= ε, and the image of w′ by ϕ occurs in α after w, that is,
α = u.w′′w′a.xϕ(w′)ϕ(a)α′, x ∈ A∗, α′ ∈ Aω. (We have marked by dots only
the subword w in the e-decomposition of α.) We may also assume that any letter
occurring in axϕ(w′)ϕ(a)α′ occurs also in uw′.

Consider the decomposition of xϕ(w′) induced by the e-decomposition of α,
say xϕ(w′) = w1.w2. · · · .wk, k ≥ 1; in case there is no decomposition position
inside xϕ(w′), then k = 1. Put wi = w′

iai, ai ∈ A. Consider then the following
decomposition of α, which we call (for this proof only) d-decomposition:

α = u.w.w′
1a1.w

′
2a2. · · · .w′

kak.ϕ(a).ϕ(w′
1).ϕ(a1). · · · .ϕ(w′

k).ϕ(ak).
ϕ2(a).ϕ2(w′

1).ϕ
2(a1). · · · .ϕ2(w′

k).ϕ2(ak).ϕ3(a).ϕ3(w′
1).ϕ

3(a1). · · ·
The decomposition of u is the one induced by the e-decomposition of α and not
shown. We should say also that we consider only the nonempty words among the
subwords in the above d-decomposition. In fact, wi 6= ε, for all 1 ≤ i ≤ k − 1.

7

The d- and e-decompositions for the prefix uww1w2 · · ·wk−1 of α coincide, while
wk might be a subword or only a prefix of a subword in the e-decomposition. For the
remaining part ϕ(a)α′, we claim that any subword in the d-decomposition occurs
also before in α. This is true for any ϕ(a), ϕ(ai), 1 ≤ i ≤ k, since a and ai occur
also in u. Therefore, it is also true for any ϕj(a), ϕj(ai). Then, for any 1 ≤ i ≤ k,
w′

i is a subword of uw1w2 · · ·wi−1π(w′
i), by the definition of the e-decomposition.

It follows that any ϕj(w′
i) occurs before as well.

Now, consider any n ≥ 0. We claim that the number of subwords in the d-
decomposition of prefn(α) is larger than or equal to the number of subwords in the
e-decomposition of prefn(α). (Clearly, we talk about the induced decompositions.)
This is obvious for n ≤ |uw|. For larger n, we use an argument similar to the one
in the proof of Theorem 10. But, the number of subwords in the d-decomposition
is logarithmic in n because ϕ is exponential. Therefore, so is lz(prefn(α)). 2

Remark 13 We notice that the condition on ϕ being exponential in Lemma 12
is essential as shown by the following example. Take ϕ : {a, b, c}∗ → {a, b, c}∗,
given by ϕ(a) = a, ϕ(b) = ba, ϕ(c) = cba. ϕ is prolongable on c and we have the
e-decomposition of ϕ∞(c)

ϕ∞(c) = c.b.a.baa.baaa.baaaa.baaaaa.baaaaaa · · ·

Hence lz(prefn(ϕ∞(c))) = Θ(
√

n).

Lemma 12 gives a relation in the other direction between r and lz.

Theorem 14 There are arbitrarily long words w for which r(w) = |w| and lz(w) =
O(lg |w|).

Proof. Consider the morphism m : {a, b, c}∗ → {a, b, c}∗ given by m(a) = abc,
m(b) = ac, m(c) = b. m is prolongable on a and denote m = m∞(a). It is
a well known fact that m is square-free; see, e.g., [20]. Because m is square-
free, we have r(prefn(m)) = n. Applying Lemma 12 to the word m gives that
lz(prefn(m)) = O(lg n). 2

It is also worth noticing here that our repetition complexity is the same for a
word and its reversed version, while the same is not necessarily true for Lempel-
Ziv complexity. It is probably interesting to investigate the difference between the
Lempel-Ziv complexity of a word and that of its reverse. This is, however, outside
the scope of this paper.

6. Periodic infinite words and complexity of prefixes

We show in this section a strong connection between all low r-, lz-, and sub-
complexities for prefixes of infinite words. This gives us also new characterizations of
ultimately periodic infinite words. (The characterization (ii) resembles the famous
one by Coven and Hedlund [5].)

Theorem 15 For any infinite word α, the following assertions are equivalent:
(i) α is ultimately periodic,
(ii) sub(prefn(α)) = O(n),
(iii) lz(prefn(α)) = O(1),
(iv) r(prefn(α)) = lg n + O(1).

Proof. (i) ⇔ (ii). If α = uvω is ultimately periodic, then, for any n ≥ 1, we
have that sub(prefn(α)) ≤ n|uv|.

8

Conversely, assume sub(prefn(α)) ≤ cn, for any n ≥ 1. Consider some n ≥ 2
and let v be the shortest suffix of prefn(α) which is not a subword of prefn−1(α);
denote α = uvaα′, u, v ∈ A∗, a ∈ A. Any proper suffix of v appears as a subword
in prefn−1(α) while any suffix of prefn(α) which has v as suffix does not. Thus,
denoting diffn(α) = sub(prefn(α)) − sub(prefn−1(α)), we have diffn(α) = |u| + 1.

Also, va is not a subword of prefn(α). Thus, diffn+1(α) ≥ |u| + 1 and hence
the sequence (diffn(α))n≥2 is increasing. We claim that diffn(α) ≤ c, for all n ≥ 1.
Indeed, if this is not true for some n, then sub(prefn(c+1)+1(α)) ≥ (n(c + 1) + 1)c,
a contradiction. Therefore, there is c′ ≤ c, such that diffn(α) = c′, for any n. Now,
any long enough prefix of α will have a period shorter than c′ which implies that α

is ultimately periodic.
(i) ⇔ (iii). (iii) is equivalent with the fact that the e-decomposition of the whole

α has finitely many elements, the last of which must be an infinite word. This is
equivalent with α being ultimately periodic.

(i) ⇔ (iv). If α = uvω is ultimately periodic, then, for any n ≥ 1,

r(prefn(α)) ≤ lg n + r(u) + r(v) + max
v′≤prefv

r(v′).

Consider an arbitrary long enough word w such that r(w) ≤ lg(|w|) + c and those
repetitions in the sequence (1) corresponding to w which are not included in any
other repetitions from (1). We may assume, according to (i) and (ii) in Lemma 8,
that these repetitions appear at the beginning of the sequence; assume they are
the first m0. Assume also the number of letters which do not belong to any of the
repetitions in (1) for w is o. Then, using the relation (2), Lemma 2, and the fact
that

m0
∑

j=1

pjej = |w| − o,

we have

r(w) = o +

m0
∑

j=1

(

r(w[ij , ij + pj − 1]) + ⌈lg(ej + 1)⌉
)

≥ o + m0 + lg
(

m0
∏

j=1

(pjej)
)

= o + m0 + lg(|w| − o) + lg
(

m0
∏

j=1

(pjej)
)

− lg
(

m0
∑

j=1

(pjej)
)

.

Now, r(w) ≤ lg(|w|) + c implies that m0 ≤ c, o ≤ 2c, and

m0
∏

j=1

(pjej) ≤ 10c
m0
∑

j=1

(pjej).

Therefore, if prer is largest among pjej , 1 ≤ j ≤ m0, then all others pjej are
bounded by 2 · 10c.

Assume now r(prefn(α)) ≤ lg n + c, for any n ≥ 1. Applying the above to
w = prefn(α), what we proved is that, in any long enough prefix of α, there is a
repetition not included in others which may be arbitrarily long, while everything

9

else is bounded by c′ = 2c + 2(c − 1)10c; that is, we have prefn(α) = uwev with
|uv| ≤ c′. If we take also prefn+c′+1(α) = xyrz, |xz| ≤ c′, then we 6= yr. Put
w = (ρ(w))f , y = (ρ(y))s. If one of ef and rs is at least 3 and n is large enough,
then Fine and Wilf’s lemma, see [15, 16], will imply that both we and yr are powers
of a word shorter than c′. On the other hand, for any large enough n, we can find
such a situation because of the following result due to Chrochemore and Rytter [8]:
if u2 <pref v2 <pref w2 (<pref is the proper prefix relation), u is primitive, and
v 6∈ u∗, then |u| + |v| ≤ |w|. 2

Remark 16 We notice that in Theorem 15 we have at (ii) and (iii) the order of the
lower bound for the respective complexity from Lemmas 5 and 7 while at (iv) we
have a stronger condition: the lower bound in Lemma 2 plus a constant instead of
O(lg n). In fact, O(lg n) is not good as shown by the following example. Consider

the word wk = ((· · · (bab)10)ba2b)10
2

ba3b)10
3 · · · bakb)10

k

. We have wk ≤pref wk+1,
so we can construct the infinite word w = limk→∞ wk. It can be shown that
r(prefn(w)) = O(lg n). But w is not ultimately periodic. Therefore, we have from
the r-complexity a slightly finer characterization of ultimately periodic words.

7. De Bruijn words and subword complexity

We next investigate the case of words with high subword complexity. We con-
sider de Bruijn words bk (see [2]) which have very high sub-complexity. For
k ≥ 1, a de Bruijn word bk ∈ A∗ has the properties |bk| = card(A)k + k − 1
and sub(bk) ∩ Ak = Ak; that is, bk has as subwords all words of length k and
any two subwords of length k of bk starting from different positions are different.
(There are many such words but our result holds for all of them.)

If card(A) = l, then the number of all subwords of bk is sub(bk) = lk−1
l−1 +

lk(lk+1)
2 . So, not only that sub(bk) is of the order of maximal subword complexity

in Lemma 5, but also the difference between the upper bound in Lemma 5 and
sub(bk) is of strictly lower order: O(|bk| lg |bk|). We show that de Bruijn words
have also high repetition complexity.

Theorem 17 r(bk) = Ω
(

|bk| lg lg |bk|

lg |bk|

)

.

Proof. Since no two subwords of length k in bk are the same, it follows that
any repetition (i, p, e) in bk verifies |pe| < 2k. Using Lemma 8 for bk and the
bounds in Lemma 2, we have, for some 1 ≤ m0 ≤ m,

r(bk) ≥
m0
∑

i=1

(⌈lg(piei + 1)⌉ + 1) ≥ lg((2k)n/2k) = Ω
(n lg lg n

lg n

)

.

2

8. Computing the repetition complexity

We show in this section that the repetition complexity can be computed in time
O(n3(log n)2). Due to the very intricate nature of repetitions, this problem is by no
means trivial. (A good example of how complex the repetitions in a word can be
are the Fibonacci words.) In fact, it can be seen as a restricted case of the optimal
data compression which is NP-complete; see [21, 10].

10

We give next another example which, although simple from algorithmic point
of view, shows that a word can have exponentially many optimal reductions; which
again makes the problem hard. Consider the Morse-Hedlund infinite word m, [20],
defined as m = m∞(a), where m : {a, b, c}∗ → {a, b, c}∗, m(a) = abc, m(b) = ac,
m(c) = b. For the morphism ϕ given by ϕ(a) = ababa, ϕ(b) = a′b′a′b′a′, ϕ(c) =
a′′b′′a′′b′′a′′, we have that ϕ(prefn(m)) has length 5n and 2n optimal reductions.

We present next our method to compute r(w). The following observation is the
basis of our algorithm. For any non-empty word w, we have

r(w) = min

(

min
w=uv

(

r(u) + r(v)
)

, min
k|ord(w)

(

r(ρ(w)
ord(w)

k) + |dec(k)|
)

)

. (4)

Based on (4), we use then dynamic programming to compute the repetition com-
plexities of all subwords of w.

Theorem 18 The repetition complexity of w, for |w| = n, can be computed in time
O(n3(log n)2).

Proof. We prove first the equality (4). The complexity r(w) can be derived
in two ways, depending on whether the first repetition (i1, p1, e1) in a sequence (1)
yielding an optimal reduction covers the whole w or not; that is, w[i1, i1+p1−1]e1 =
w.

When this repetition does not cover the whole w, we have either 1 < i1 or
i1 + p1e1 − 1 < |w|. In the former case take u = w[1, i1 − 1], v = w[i1, |w|], in the
latter u = w[1, i1+p1e1−1], v = w[i1+p1e1, |w|]. In either case r(w) = r(u)+r(v).

When this repetition consists of the whole w, then e1 must divide the order

of w and w[1, p1] = ρ(w)
ord(w)

e1 . (Notice that i1 = 1 and ord(w) ≥ 2.) This is a
well-known fact in combinatorics on words; see [15, 16]. Briefly, the argument of
the proof is that w[1, p1]

e1 = ρ(w)ord(w) for e1 ≥ 2, ord(w) ≥ 2, implies, by Fine
and Wilf’s lemma, that w[1, p1] and ρ(w) are powers of the same word z. Since
ρ(w) is primitive, it cannot be a nontrivial power of a word and so z = ρ(w).

The equality (4) is used in Algorithm 19 to compute r(w).

Algorithm 19 (computing the repetition complexity)
Input: w with |w| = n

Output: r(w)
1. compute p(i, j) = |ρ(w[i, j])| and ord(i, j) = ord(w[i, j]), for all 1 ≤ i ≤ j ≤ n

2. compute (steps 3..12) r(i, j) = r(w[i, j]), for all 1 ≤ i ≤ j ≤ n

3. for i from n downto 1 do

4. r(i, i) = 1; r(i, i + 1) = 1
5. for j from i + 2 to n do

6. r(i, j) = j − i + 1
7. for k from i to j − 1 do

8. r(i, j) = min
(

r(i, j), r(i, k) + r(k + 1, j)
)

9. if p(i, j) 6= j − i + 1 then

10. for k from 1 to ord(i, j) do

11. if (k | ord(i, j)) then

12. r(i, j) = min
(

r(i, j), r(i, i + k ∗ p(i, j) − 1) + |dec(ord(i,j)
k)|

)

13. output r(w) = r(1, n)

11

Here is a description of the first step of the algorithm. It computes the shortest
periods of all subwords w[i, j], 1 ≤ i ≤ |w|, i ≤ j ≤ |w|. For a fixed i, this can be
done in time O(n − i) using a linear pattern matching algorithm. This is done as
follows. A border of w is a subword of w which is both prefix and suffix of w. There
is a one-to-one correspondence between borders and periods: p is a period of w iff
w has a border of length |w|−p. By matching w shifted j positions against w itself,
the length l of the longest common prefix (of w and w[j + 1, |w|]) gives the longest
border of prefj+l(w), which, in turn, gives its shortest period. Therefore, we have
the shortest periods of all prefixes of w in time O(|w|). Knowing the shortest period
p of w, we can compute both the order and the length of the primitive root in time
O(log2 |w|): if the shortest period divides the length of w, then the ρ(w) = prefp(w),

ord(w) = |w|
p , otherwise, ρ(w) = w, ord(w) = 1. For all w[i, j], this can be done in

time O(|w|2 log2 |w|).
Then, using (4), we compute the repetition complexities for all subwords of w.

The complexity of this step is seen in the Algorithm 19 to be O(n3(log n)2). The
algorithm is presented in pseudocode. Its correctness comes from (4). 2

9. Conclusions and further research

We investigate the repetitions in words from the point of view of complexity of
words. Our work is related to the study of repetitions in words in general, see, e.g.,
[13], but our goals are different. We want to measure the complexity of words using
their repetitions. We introduce the notion of repetition complexity of a word and
discuss its appropriateness by comparison with other potential candidates.

We give results which relate our complexity to well-known complexity measures
like subword or Lempel-Ziv complexity. These turn out to give interesting results
about infinite words. We mention here several problems which deserve further
investigation.

The algorithm we gave for computing the repetition complexity is, of course,
not very fast (compared to usual algorithms dealing with repetitions in words, e.g.,
[6, 1, 17, 13]), but it seems difficult to give very fast algorithms. Notice that we
used dynamic programming and, based on this idea, we cannot find algorithms with
sub-quadratic time. Completely new ideas and properties of words are needed for
fast algorithms.

Another problem is that the algorithm is not of much use if we try to compute
(or only approximate) the repetition complexity of some families of words, say all
prefixes of the Fibonacci infinite word. Some different tools for lower bounds are
needed.

We showed in Theorem 17 that de Bruijn words have high repetition complexity.
We believe they have in fact linear complexity, that is, r(bk) = Θ(|bk|).

A related complexity which we did not discuss here can be naturally defined
using rational repetitions. For instance, consider the words abcdabc and abcdefg.
Both have r-complexity 7 as none contains any integer repetitions, although the
former contains clearly more repetition than the latter. Using rational powers, we
may write abcdabc = (abcd)7/4 which takes only 6 units of space.

Finally, a problem which we have not approached concerns the connection be-
tween our complexity and randomness. It should be investigated how random are
the words with high repetition complexity, in particular the square-free words.

12

References

1. A. Apostolico and F. Preparata, “Optimal off-line detection of repetitions in a
string,” Theoret. Comput. Sci. 22 (1983) 297 – 315.

2. N.G. de Bruijn, “A combinatorial problem,” Proc. Kon. Ned. Akad. Wetensch. 49

(1946) 758–764.

3. G.J. Chaitin, “Information-theoretic limitations of formal systems,” J. Assoc. Com-
put. Mach. 21 (1974) 403 – 424.

4. C. Choffrut and J. Karhumäki, “Combinatorics of Words,” in Handbook of Formal
Languages, Vol. I, eds. G. Rozenberg and A. Salomaa (Springer-Verlag, Berlin,
1997) pp. 329 – 438.

5. E.M. Coven and G. Hedlund, “Sequences with minimal block growth,” Math. Sytems
Theory 7 (1973) 138 – 153.

6. M. Crochemore, “An optimal algorithm for computing the repetitions in a word,”
Inform. Proc. Lett. 12 (5) (1981) 244 – 250.

7. M. Crochemore and W. Rytter, Text Algorithms (Oxford Univ. Press, 1994).

8. M. Crochemore and W. Rytter, “Squares, cubes, and time-space efficient string
matching,” Algorithmica 13 (1995) 405 – 425.

9. F. Dejean, “Sur un théorème de Thue,” J. Combin. Theory, Ser. A 13 (1972)
90–99.

10. M.R. Garey and D.S. Johnson, Computers and Intractability. A Guide to the
Theory of NP-completeness (W.H. Freeman and Co., San Francisco, 1979).

11. G. Hansel, D. Perrin, and I. Simon, “Compression and entropy,” Proc. of
STACS’92, Lecture Notes in Comput. Sci. 577, Springer-Verlag, 1992, 515 – 528.

12. A.N. Kolmogorov, “Three approaches to the quantitative definition of information,”
Probl. Inform. Transmission 1 (1965) 1 – 7.

13. R. Kolpakov and G. Kucherov, “Finding maximal repetitions in a word in linear
time,” Proc. of FOCS’99, 596 – 604.

14. A. Lempel and J. Ziv, “On the complexity of finite sequences,” IEEE Trans. In-
formation Theory 22(1) (1976) 75–81.

15. M. Lothaire, Combinatorics on Words (Addison-Wesley, Reading, MA, 1983).

16. M. Lothaire, Algebraic Combinatorics on Words (Cambridge Univ. Press, 2002).

17. M. Main and R. Lorentz, “An O(n lg n) algorithm for finding all repetitions in a
string,” J. Algorithms 5 (1984) 422 – 432.

18. M. Main, “Detecting leftmost maximal periodicities,” Discrete Appl. Math. 25

(1989) 145 – 153.

19. P. Martin-Löf, “The definition of random sequences,” Inform. and Control 9 (1966)
602 – 619.

20. M. Morse and G. Hedlund, “Unending chess, symbolic dynamics and a problem in
semigroups,” Duke Math. J. 11 (1944) 1 – 7.

21. J.A. Storer and T.G. Szymanski, “The macro model for data compression,” Proc.
of 10th STOC, 1978, 30 – 39.

22. A. Thue, “Uber unendliche Zeichenreihen,” Norske Vid. Selsk. Skr. Mat.-Nat. Kl.
(Kristiania) 7 (1906) 1 – 22.

23. A. Thue, “Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen,” Norske
Vid. Selsk. Skr. Mat.-Nat. Kl. (Kristiania) 5 (1912) 1 – 67.

13

24. J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
IEEE Trans. Information Theory 23 (3) (1977) 337 – 343.

25. J. Ziv and A. Lempel, “Compression of individual sequences via variable length
encoding,” IEEE Trans. Information Theory 24 (5) (1978) 530 – 536.

14

