
THE STRUCTURE OF FACTOR ORACLES∗†

MAXIME CROCHEMORE‡

Institut Gaspard-Monge, Université de Marne-la-Vallée

F-77454 Marne-la-Vallée, Cedex 2, FRANCE

and

Department of Computer Science, King’s College London, London WC2R 2LS, UK

mac@univ-mlv.fr

LUCIAN ILIE§¶ EMINE SEID-HILMI

Department of Computer Science, University of Western Ontario

N6A 5B7, London, Ontario, CANADA

{ilie,eseidhil}@csd.uwo.ca

The factor oracle is a relatively new data structure for the set of factors of a string. It has
been introduced by Allauzen, Crochemore, and Raffinot in 1999. It may recognize non-
factors (hence the name “oracle”) but its implementational simplicity and experimental
behaviour are stunning; factor oracle based string matching has been conjectured opti-
mal on average. However, its structure is not well understood. We take important steps
in clarifying its structure by explaining how it can be obtained as a quotient of the trie
of the set of factors. When seen this way, all known properties of the factor oracle be-
come simple observations. Also, we introduce a framework where various oracles can be
compared. The factor oracle is better than several natural ones obtained from the trie
of the set of factors, the suffix and the factor automata, respectively.

Keywords: factor oracle; string matching; suffix trie; suffix tree; graph quotient

MSC: 68P05, 68P10, 68P20, 68Q45

1. Introduction

The factor oracle is a relatively new data structure for the set of factors of a string

which has been introduced by Allauzen, Crochemore, and Raffinot in [1, 2]. The

starting point was the notion of weak factor recognition which means constructing a

no-biased algorithm for detecting factors of a string. (That is, when testing whether

a string is a factor, a no answer is always correct.) In the string matching algorithms

based on reversed factors, identifying correctly nonfactors is enough. Therefore, the

factor oracle recognizes all factors of a string but may recognize some nonfactors as

∗An abstract of this work has been presented at the 11th CIAA, Taipei, 2006; see [8].
†This work has been completed during the second author’s stay at Institut Gaspard-Monge.
‡Research supported in part by CNRS.
§Corresponding author
¶Research supported in part by NSERC and CNRS.

1

2 M. Crochemore, L. Ilie, and E. Seid-Hilmi

well (hence the name “oracle”). On the other hand, the string-matching algorithms

based on it are as efficient as the best existing ones but far simpler to implement;

they also require less memory. According to the experimental results, it has been

conjectured in [1, 2] that these algorithms are optimal on average. A number of

other applications of the factor oracle to data compression, repetitions searching,

and learning have been investigated in [3, 9, 10, 11, 12].

The structure of the factor oracle is however not well understood. Proving var-

ious properties of it was, so far, rather difficult and therefore solving the open

problems concerning it difficult to attempt.

We present here a different way of looking at the factor oracle, namely as a quo-

tient of the trie for the set of factors. Using our construction, all known properties

of the factor oracle become simple observations. Moreover, we introduce the general

notion of an oracle for the set of factors of a string – the factor oracle is a particular

case here – and build a framework for comparing such oracles since, arguably, all of

them have to include a quotient of the trie.

Several other natural oracles can be obtained in this way and we prove that the

factor oracle is the best among those. Particular examples exist when the factor

oracle can be improved but whether there exists a general strategy for building

better oracles remains open.

We hope that the new approach will be of help in solving various open problems

concerning the factor oracle; see Section 9 for details.

The paper is structured as follows. We recall in the next section all basic con-

cepts needed and then present in Section 3 a variant of Ukkonen’s algorithm for

building tries in which some additional information is computed; this information

helps us later in constructing quotients of the trie. The very simple algorithm of

[1, 2] for constructing the factor oracles is described briefly in Section 4. Section 5

describes an oracle naturally obtained from the trie, called trie oracle. In Section 6

we show how the factor oracle can be obtained from the trie oracle and why it is

better. Two other natural oracles can be obtained from the suffix and the factor

automata, respectively. We show in Section 7 that they are the same as the trie

oracle and therefore never better than the factor oracle. Section 8 contains a direct

construction of the factor oracle as a quotient of the trie, which makes it very simple

to prove things about the factor oracle as done in Section 9. We conclude with a

brief discussion in Section 10.

2. Basic definitions

Let A be an alphabet; A∗ is the free monoid generated by A, that is, the set of all

finite strings over A. The empty string is ε. For a string w ∈ A∗, we denote by |w|

the length of w. If w = xyz, for w, x, y, z ∈ A∗, then x, y, z are a prefix, factor, and

suffix of w, resp. When different from w they are called proper. The set of all factors

(suffixes) of w is denoted Fact(w) (Suff(w), respectively).

For a string w, we shall denote by suf(w) the longest proper suffix of w, that

The structure of factor oracles 3

is the string obtained from w by removing its first letter; for the empty string we

have suf(ε) = nil. The ith letter of w is w[i] and, for 1 ≤ i ≤ j ≤ |w|, we denote

w[i..j] = w[i]w[i + 1] · · ·w[j].

A finite automaton is a directed graph. In an automaton the nodes are usu-

ally called states and the labelled edges are called transitions. where the edges are

labelled by letters from A; if we have an edge i
a

−→ j, then j is an a-son of i.

The automaton is deterministic if any node has at most one a-son, for any

letter a and nondeterministic otherwise. To define the language recognized by an

automaton, we need to identify an initial node and some final nodes. Then, the

strings recognized are precisely those labelling paths from the initial node to a final

node. The set of the strings recognized by an automaton M is denoted L(M). In

general, for a node i, the language L(i) is the set of all labels of paths starting from

i and ending in a final node. Unless otherwise specified, all our graphs, when seen

as automata, will have 0 or ε as initial node and all nodes are final.

The quotient of a graph G is any graph obtained from G by merging together the

nodes according to a given equivalence relation ≡. The edges are modified accord-

ingly, so that multiple edges labelled the same between two nodes are eliminated.

The quotient is denoted G|≡.

Inspired by the discussion of [1, 2] on the properties the factor oracle should

have, we introduce the notion of oracle for the set of factors of a string w; it is a

deterministic automaton which:

(o1) recognizes at least all factors of w;

(o2) is acyclic (it recognizes a finite set of strings);

(o3) has |w| + 1 states (lowest possible);

(o4) has linearly many edges (independent of alphabet size);

(o5) for each node, all incoming edges have the same label (for efficient imple-

mentation).

The criteria (o1)-(o4) appear in [1, 2]; (o5) is new but nevertheless satisfied by

the factor oracle; it is very important for implementation because it makes the

memorization of the edge labels unnecessary. Notice the difference between an oracle

for the set of factor of a string and the factor oracle of [1, 2]. As we shall work with

both automata and trees, we shall simply call them all graphs.

3. Ukkonen’s algorithm for tries

The trie of a string w ∈ A∗, denoted Trie(w), is the tree containing all factors of

w. Formally, it is a directed graph having as nodes the factors of w and (labelled)

edges u
a

−→ ua, where u, ua ∈ Fact(w), a ∈ A. Each factor is the label of a path

starting from the root. See Fig. 1 for an example. Whenever we discuss tries, we

shall identify each node with the corresponding path from the root.

The trie is, in some sense, the most basic data structure for strings as most of

the other ones – suffix trees, DAWGs, suffix automata – can be obtained from it.

4 M. Crochemore, L. Ilie, and E. Seid-Hilmi

As we show below, the factor oracle can also be obtained from it.

Ukkonen [14] gave a linear-time on-line algorithm for constructing suffix trees

which are tries with all chains (paths of nodes of outdegree 1) compacted. However,

his construction works also for the simpler case of tries. We describe it below as it

will be useful in constructing a number of oracles from the obtained trie.

We shall need suffix links, which are links from a node u to suf(u); we shall

represent them as dotted arrows; the regular edges are represented as solid arrows.

The suffix path from a node u is:

u, suf(u), suf2(u), . . . ,

continuing as long as the suffix links are defined; we shall denote it by suf∗(u).

The algorithm works sequentially, considering the letters of w one at a time. To

add one letter a, we start from the deepest node in the current trie and follow the

suffix links adding new a-sons with their suffix links; this is done until one node

having an a-son is found or the value of the suffix link becomes nil; see [7] for details.

Important for us later will be the time each node has been created, that is, the

index of the letter in the string which caused the addition of that node. This will be

denoted, for a node u, by time(u); we shall sometimes write the time as a subscript

to the label of the node: utime(u).

Here is the pseudocode for Ukkonen’s algorithm. We also compute the time

values and some S′-links which will be discussed later.

Ukkonen trie(w)

- given a string w = w[1]w[2] · · ·w[n], w[i] ∈ A, 1 ≤ i ≤ n;
- return Trie(w);

1. construct the two-node Trie(w[1]) with the suffix links
2. for i from 2 to n do

3. v ← deepest leaf of Trie(w[1..i − 1])

4. k ← min{i | suf
i(v) has a w[i]-son or it is nil}

5. for ℓ from 0 to k − 1 do

6. create suf
ℓ(v)

w[i]
−→ x

7. create a suffix link for x [to w[i]-son of suf
ℓ+1(v) (or ε if nil)]

8. time(x)← i

9. if suf
k(v) = nil then S

′(i)← 0

10. else u← w[i]-son of suf
k−1(v)

11. S
′(i)← time(u)

Notice that, at step 7, the w[i]-son of sufℓ+1(v) is created if it does not exist.

The trie obtained for the string baababbabc is shown in Fig. 1. The string has

been chosen to show the most important aspects of our constructions. Setting, by

convention, S′(0) = −1, the values of S′ for the example in Fig. 1 are:

i 0 1 2 3 4 5 6 7 8 9 10

S′(i) −1 0 0 2 1 2 4 1 2 6 0

The following remarks about Ukkonen’s trie construction algorithm are useful.

The structure of factor oracles 5

a

b

b

a

c

c

c

b

a a
c

b

c b a b

a b b

b b c a

b

c

b

c

a
c

b

b

a

a

a

a

a

c

b

b

b

b

b

b

10

5

6

7

8

9

10

10

10 4

6 7 5

0

2

3

4

1

2

3

4

5

6

8

7

9

108

9

10

7

10 7 8 6

9 7

8

9

10

109

10

8

Fig. 1. The trie built by the algorithm Ukkonen trie for the string baababbabc.

Remark 1. If v is the deepest node in the trie with time(v) = i, then all nodes in

the trie with time equal to i are found on the suffix path suf∗(v). The S′-link S′(i),

for i > 0, is the first node on the suffix path which has a time different from i (or 0

if such a node does not exist).

Remark 2. Notice that, if u with time(u) = j is a node on the suffix path suf∗(v),

then not all nodes with time equal to j need to be on the suffix path suf∗(v). In our

example we have the suffix path (the subscripts show the time values): baa3, aa3, a2,

but the node ba2 is not on the suffix path of baa. The shallowest (closest to root)

node with time value j must be on suf∗(v). This gives also that u ∈ suf∗(v) implies

time(u) ∈ S′∗(time(v)), but the converse need not be true. (Here S′∗(i) is the S′-

path of i, that is, i, S′(i), S′2(i),)

4. A simple algorithm for the factor oracle

We recall in this section the sequential algorithm of Allauzen, Crochemore, and

Raffinot (ACR, for short) for constructing factor oracles. However, we shall not

assume we know that the obtained graph is the factor oracle. We shall show later

6 M. Crochemore, L. Ilie, and E. Seid-Hilmi

that the same object can be obtained from the trie we described before and the

most important properties we need about the factor oracle will follow from there.

ACR factor oracle(w)

- given a string w = w[1]w[2] · · ·w[n], w[i] ∈ A, 1 ≤ i ≤ n;
- return Factor Oracle(w);

1. S(0)← −1
2. for i from 1 to n do

3. create i− 1
w[i]
−→ i

4. ℓ← S(i− 1)
5. while (ℓ 6= −1) and (ℓ has no w[i]-son) do

6. create ℓ
w[i]
−→ i

7. ℓ← S(ℓ)
8. if ℓ = −1 then S(i)← 0
9. else S(i)← the w[i]-son of ℓ

The factor oracle for the string baababbabc is shown in Fig. 2. Again, regular

edges are solid arrows whereas the S-links are dotted. Notice the string baabc which

is recognized but is not a factor. The S-links for the example are:

i 0 1 2 3 4 5 6 7 8 9 10

S(i) −1 0 0 2 1 2 4 1 2 4 0

a

b

c

c

c

bba

caa bbbbb a
9876543210 10

Fig. 2. Factor Oracle(baababbabc)

5. The trie oracle

We can obtain another oracle for Fact(w) from the Trie(w) in a natural way; we

simply merge all nodes with the same time value to obtain Trie(w)|time. Obviously,

time gives an equivalence relation on set of nodes. The nodes of Trie(w)|time are the

corresponding time values. The one for our string baababbabc is shown in Fig. 3.

The edges are shown as continuous arrows and the S′-links are dotted. There are

three differences with respect to the factor oracle – two edges and one S′-link; they

are shown in bold.

We notice first that it is nondeterministic; the node 2 has two b-sons. We make

it deterministic in the following way: eliminate any edge i
a

−→ j whenever we can

The structure of factor oracles 7

a a

b

b c

c

c

c

bba

caa bbbbb
98765432 1010

Fig. 3. Trie(baababbabc)|time

find i
a

−→ k with k < j. In our example the edge 2
b

−→ 6 is removed. Denote the

obtained graph Trie Oracle(w). The one for our example is shown in Fig. 4.

a

b

c

c

c

c

bba

caa bbbbb a
9876543210 10

Fig. 4. Trie Oracle(baababbabc)

We prove below that the trie oracle is an oracle for Fact(w). The trie oracle is

deterministic, acyclic, has |w| + 1 states, and for each node all incoming edges are

labelled the same. We prove next that it recognizes at least all factors of w. The

next lemma concerns Trie |time and is useful for our purpose.

Lemma 3. In Trie(w)|time, if j ∈ S′∗(i), then L(i) ⊆ L(j).

Proof. By induction on i from |w| to 1. For i = |w|, we have L(i) = {ε} and the

property holds. Assume it true for i+1, i+2, . . . , |w| and prove it for i. For any edge

i
a

−→ i′, there exists v
a

−→ va in Trie(w) with time(v) = i and time(va) = i′. We can

also find a node u ∈ suf∗(v) such that time(u) = j and there exists an edge u
a

−→ ua;

we can take for u the shallowest node with time value j. Now ua ∈ suf∗(va) and if

we put j′ = time(ua), then j′ ∈ S′∗(i′). By the inductive hypothesis, L(i′) ⊆ L(j′).

As this holds for every a-son of i, the claim follows.

Corollary 4. For any w, Trie Oracle(w) recognizes at least all factors of w.

Proof. It is clear that Trie(w)|time recognizes at least all factors of w. But whenever

an edge j
a

−→ i is removed to create Trie Oracle(w), there is another edge j
a

−→ ℓ,

8 M. Crochemore, L. Ilie, and E. Seid-Hilmi

with ℓ < i. In such a case we have ℓ ∈ S′∗(i) and Lemma 3 says that eliminating

the former edge does not affect the set of recognized strings.

What is left to show is property (o4) in the definition of an oracle.

Lemma 5. For any w, Trie(w)|time has at most 2|w| − 1 edges.

Proof. There are two types of edges in Trie(w)|time and Trie(w): (type 1) i
w[i]
−→ i+1

and (type 2) i −→ j, with j 6= i + 1; for Trie(w) we consider the time values of the

ends of an edge. There are |w| edges of type 1 in Trie(w)|time so we need to count

the other ones.

In Trie(w), each internal node has exactly one outgoing edge of type 1. Therefore,

the number of edges of type 1 is the same as the number of internal nodes. The total

number of edges equals the number of nodes minus one (it is a tree). Therefore, the

number of edges of type 2 is the number of leaves minus one. But the number of

leaves is at most the number of nonempty suffixes of w, that is, |w|. So, there are

at most |w| − 1 edges of type 2. The claim follows.

Note that this lemma also applies to Trie Oracle(w).

Corollary 6. For any w, the set of strings recognized by Trie Oracle(w) is closed

under taking factors.

Proof. The sequence of S′-links starting from any node of Trie Oracle(w) ends in

the initial node 0. Therefore, Lemma 3 implies that any string recognized starting

from some i is also recognized starting from 0.

The following proposition follows from the above results.

Proposition 7. For any w, Trie Oracle(w) is an oracle for Fact(w).

6. The factor oracle from the trie oracle

We show in this section how to obtain the factor oracle from the trie oracle by

removing certain edges. The differences between the two graphs in Figs. 2 and 4 are

shown in bold in the latter. The factor oracle recognizes strictly less strings than the

trie oracle in this case; for instance, baababc is recognized by the latter but not by

the former. Notice that we do not attempt to find a better algorithm for computing

the factor oracle (the simplicity of the one in [1, 2] we presented above seems almost

impossible to beat) but to understand its tricky structure and properties. Here is

the result.

Theorem 8. For any string w, we have

(i) for any i there is ei ≥ 1 such that S′ei(i) = S(i);

The structure of factor oracles 9

(ii) Factor Oracle(w) is obtained from Trie Oracle(w) by removing, for all i with

ei ≥ 2, all edges S′k(i)
w[i+1]
−→ i + 1, 1 ≤ k ≤ ei − 1.

Proof. We prove that the two assertions hold for any prefix of length n of w by

induction on n. The assertions are clear for n = 1. We assume they hold for n and

prove them for n + 1. Denote w[n + 1] = a and consider the path of S-links in

Factor Oracle(w[1..n]) starting from n and ending in the first node which has an

a-son:

n0 = ni0 = n, ni1 = S(n), ni2 = S2(n), . . . , nik
= Sk(n) , (4)

for some 0 = i0 < i1 < i2 < · · · < ik; that is, all niℓ
, 0 ≤ ℓ ≤ k − 1 do not have an

a-son but nik
has one, say m. If there is no node with an a-son on this path, then

we set m = 0. In our example in Fig. 2, the sequence (4) for n = 5 is 5, 2 (m = 4)

and for n = 9 it is 9, 4, 1, 0 (m = 0).

The steps 3–7 in the algorithm ACR factor oracle(w) will create the node

n + 1 and edges niℓ

a
−→ n + 1, 0 ≤ ℓ ≤ k − 1 and then, at step 9, S(n + 1) gets the

value m.

On the other hand, the inductive hypothesis says that in Trie(w[1..n]) there is a

path of suffix links starting from the deepest node such that the time values of the

nodes on this path look like this:

n0, . . . , n0, n1, . . . , n1, n2, . . . , n2, . . . , nik
, . . . , nik

, (5)

where the last nik
corresponds to the shallowest node with that time value. It will

have an a-son or else it is the root. Each sequence of ni, ni, . . . , ni could actually

contain a single ni. We have also S′(ni) = ni+1, for all 0 ≤ i ≤ ik − 1.a In our

example in Fig. 1, the sequence (5) for n = 5 is 5, 5, 5, 2, 2 corresponding to

the nodes baaba5, aaba5, aba5, ba2, a2; the node a has a b-son (w[4] = b) and

time(ab) = 4 = m; for n = 9 we have the sequence 9, 9, 9, 9, 9, 9, 6, 4, 1, 0

corresponding to the nodes baababbab9, aababbab9, ababbab9, babbab9, abbab9,

bbab9, bab6, ab4, b1, ε0; no node has a c-son. Notice the value 6 which does not

appear in (4). Also, there are other nodes with time values 6 and 4 which do not

appear on this path.

The steps 5–7 in the algorithm Ukkonen trie(w) will create a-sons with time

value n + 1 for all nodes corresponding to the time values in (5) which do not

have one. For each niℓ
, the nodes with the time value niℓ

will be merged in

Trie(w[1..n + 1])|time into one, so we obtain the same edges as those created in

Factor Oracle(w[1..n+1]). For each ni which is not among the niℓ
s, the edges added

will be removed by (ii) in the statement. This is the case for n = 9 in our example:

the edge 6
c

−→ 10 will be removed. Lastly, if there are any nik
s in (5) without

aAs the reader may have noticed, there is a relation between iℓs and the exponents eis in the
statement: S′eniℓ (niℓ

) = niℓ+1
, which means iℓ = eni0

+ eni1
+ · · · + eniℓ−1

but we don’t need

these exact values of iℓs.

10 M. Crochemore, L. Ilie, and E. Seid-Hilmi

a-sons, the edges they get are removed when constructing Trie Oracle(w[1..n + 1])

from Trie(w[1..n+1])|time. This is the case in our example for n = 5: the edge 2
b

−→ 6

is removed. In all cases Factor Oracle(w[1..n + 1]) is obtained as claimed by (ii).

About (i), if m = 0, then S′(n+1) = 0 = S(n+1). Assume m 6= 0 and denote the

node corresponding to the last nik
in (5) by u. We have then, by Remark 2 above,

that ua ∈ suf
∗(w[1..n + 1]) which gives m = time(ua) ∈ S′∗(time(w[1..n + 1])) =

S′∗(n + 1). In our example, for n = 9, we have S′(9) = 6 but S′2(9) = 4 = S(9).

7. Oracles from the suffix and the factor automata

Two other oracles for Fact(w) can be obtained naturally from the suffix and the

factor automata by merging the states that were split during construction. We recall

briefly the definition and the construction of the suffix automaton. For more details

we refer to [7].

The suffix automaton of a string w, denoted SA(w), is the minimal deterministic

automaton (not necessarily complete) that recognizes the set of suffixes of w, that

is, Suff(w). Its states are therefore classes of the right syntactic congruence ≡Suff(w).

The suffix automaton was introduced in [4].

In the (on-line) construction algorithm of SA(w), it is important to see how the

syntactic congruence changes from a prefix x of w to the next one, say xa, where

a is a letter. Let z be the longest suffix of xa that occurs in x and let z′ be the

longest string in the same ≡Suff(x)-class as z. The classes of ≡Suff(xa) are the classes

of ≡Suff(x) with two modifications:

- only when z 6= z′, the ≡Suff(x)-class of z and z′ is split into two ≡Suff(xa)-

classes: one containing the strings of the same length as z or shorter, the

other containing the remaining ones (including z′);

- a new class is added, that is, the ≡Suff(xa)-class of the whole new string xa.

Define the suffix function sw : Fact(w) −→ Fact(w) by sw(v) = the longest u ∈

Suff(v) such that u 6≡Suff(w) v. The function sw introduces the s-linksb among the

states of the suffix automaton. The suffix automaton for our running example is

shown in Fig. 5 where the dotted lines are the s-links.

In terms of the automaton, the splitting of the syntactic congruence classes

explained above translates into splitting of states. Preserving the above notation,

when a new state is added for the prefix xa, then we have sw(xa) = z and if z 6= z′,

then the state recognizing both z and z′ in SA(x) needs to be split in SA(xa) into

one state recognizing z and the shorter strings and another recognizing the ones

longer than z, including z′. This is the case, for instance, in Fig. 5, when state

number 9, corresponding to the prefix xa = baababbab (of length 9) is added. In

bOur suffix function s is called suffix link in [7] but we already used that term with a different
meaning.

The structure of factor oracles 11

this case we have z = bab is the longest suffix of xa that appears also in x, but

z′ = baabab. Therefore, state 6 is split into 6 and 6′.

An oracle for Fact(w) can be obtained from the suffix automaton by merging

together the states that were split during the algorithm constructing the suffix

automaton and then making the result deterministic, as we did with Trie(w)|time;

denote the new oracle SA Oracle(w). We prove that SA Oracle(w) is isomorphic with

Factor Oracle(w). What we actually show is that the result of merging the states of

SA(w) is isomorphic with Trie(w)|time.

An equivalence can be defined in an obvious way from the splitting of states.

There is no need to be very formal in that respect. Assume the states in the same

class are denoted i, i′, i′′, . . . , i(j), Because SA(w) can be obtained from Trie(w)

by merging together isomorphic subtrees, it is enough to prove that all strings

recognized at state i(j) by SA(w) have time equal to i. Assume xa is the prefix of

length i of w. When the state i is added to the automaton, the strings recognized

at i are precisely the suffixes of xa that did not appear so far (as factors of x).

That means, suffixes strictly longer than z. But then i is also the first (leftmost)

position where all these strings occur in w, that is, it is exactly the time at which

they are considered by Ukkonen’s algorithm. Later on, if the state i is split, the

strings accepted at i are simply distributed among various i(j)-states, but they all

preserve the former time = i.

2 3 4 5 6 7 8 9 100 1
b b ba a c

c

a b

c

a b

a
b

cb

2
′

4
′

6
′

c

b

a ab b

Fig. 5. SA(baababbabc)

The second oracle for Fact(w) is obtained in the same way from the factor au-

tomaton of w, that is, the minimal deterministic automaton the recognizes Fact(w).

The factor automaton was introduced in [6]. Its construction is similar to the one of

SA(w) and the oracle is again obtained by merging the split states plus determiniza-

tion. However, the proof that the same oracle is obtained is completely similar. For

our running example, baababbabc, the two machines are identical; the last letter c

does not appear anywhere else in the string, making the two syntactic congruences

≡Suff(w) and ≡Fact(w) equal. If this last introduced oracle is denoted FA Oracle(w),

then we proved

Theorem 9. For any string w, the oracles Trie Oracle(w), SA Oracle(w) and

12 M. Crochemore, L. Ilie, and E. Seid-Hilmi

FA Oracle(w) are isomorphic.

8. The factor oracle from the trie

We describe two ways of obtaining the factor oracle directly from the trie; different

from constructing the trie oracle and then performing the eliminations in Theo-

rem 8(ii). Both constructions here are similar to the one presented in Section 6 but

they are independent of the factor oracle; in particular, they do not make reference

to the S-links.

The first one uses the idea that the edges which the trie oracle has but the factor

oracle does not appear from the fact that we may add an a-son to a node v even

when there is already a node with the same time value as v which has an a-son.

In our example, this happens when adding the edge ba2

b
−→ bab6 when there is

already a2

b
−→ ab4 (subscripts show the time). Modifying Ukkonen’s algorithm for

tries so that such edges are not added would produce a graph whose quotient with

respect to the time values produces precisely the factor oracle. For our example this

new graph would look like the trie in Fig. 1 with the subtree rooted at bab removed.

The new S′-links would be the same as the S-links in the factor oracle. However,

the new suffix links would not be true suffix links but powers of those. Precisely,

the new suffix link for a node u would link to the longest suffix of u that exists in

the new graph. For instance, in our example, we would have the new (pseudo)suffix

link of bbab pointing to ab = suf2(bbab) as the suffix bab is no longer in the new

graph.

A better way to modify Ukkonen’s algorithm is to add an a-son to a node v

even if there exists another, say u, with the same time value and that has an a-son

but the (new) time value of v will not be the index of the current letter in w but

time(ua). This new version of the algorithm, say Ukkonen trie 2(w), would have

line 8 replaced by the following pseudocode (for clarity, denote the new time values

by time 2 and the new S′-links by S′′):

8. time 2(x)← i

8.1. if suf
k(v) 6= nil then

8.2. t← time 2(suf
k(v)); t

′ ← time 2(suf
k(v)w[i]); ℓ← k − 1

8.3. while time 2(suf
ℓ(v)) = t do

8.4. time 2(suf
ℓ(v)w[i])← t

′; ℓ← ℓ− 1

Denote the graph constructed by this algorithm Trie 2(w) and let Trie Oracle 2(w)

be the quotient Trie 2(w)|time 2. From the construction it should be clear that a

deterministic automaton is obtained.

Remarks 1 and 2 hold as well for Trie 2(w) with one exception. Not all nodes

with a given time 2 are found on the suffix path from the deepest node with that

time 2 value. The nodes with the same time 2 form a tree with the shallowest node

as root. In our example, this happens for the nodes with time 2 value 4; the root is

ab4.

The structure of factor oracles 13

The results in Lemma 3, Corollaries 4 and 6 and Proposition 7 hold also for

Trie Oracle 2(w). The proof of the next lemma is similar to the one of Lemma 3.

Lemma 10. In Trie Oracle 2(w), if j ∈ S′′∗(i), then L(i) ⊆ L(j).

Lemma 11. For any w, we have:

(i) Trie Oracle 2(w) recognizes at least all factors of w;

(ii) the set of strings recognized by Trie Oracle 2(w) is closed under taking factors.

Proof. For (i) there is nothing to prove as Trie Oracle 2(w) is obtained by merging

Trie 2(w). Lemma 10 implies (ii).

Proposition 12. For any w, Trie Oracle 2(w) is an oracle for Fact(w).

Proof. We have that Trie Oracle 2(w) fulfils all five conditions in the definition of

an oracle: (o1) comes from (i) of Lemma 11, (o2), (o3), and (o5) are clear, and (o4)

follows from Lemma 5.

For our string baababbabc, the differences between Trie 2 and Trie are: (i)

time 2(bab) = 4 6= 6 = time(bab) and (ii) S′′(9) = 4 6= 6 = S′(9). Therefore, the

two graphs Trie Oracle 2(baababbabc) and Factor Oracle(baababbabc) are identical.

The next theorem says that this is always the case.

Theorem 13. For any string w, we have

(i) for any i, S′′(i) = S(i);

(ii) Factor Oracle(w) and Trie Oracle 2(w) are the same.

Proof. The proof is similar to the one of Theorem 8 but simpler. We show the two

assertions to be true for each prefix of length n of w by induction on n. They hold

for n = 1. Let us assume they are true for n and prove them for n + 1. Denote

w[n + 1] = a. The path (4) of S-links from n to the first node with an a-son is here

n0 = n, n1 = S(n), n2 = S2(n), . . . , nk = Sk(n) . (6)

Denote by m the a-son of nk; if there is no node with an a-son on this path, then

we set m = 0.

The steps 3–7 in the algorithm ACR factor oracle(w) will create nℓ
a

−→

n + 1, 0 ≤ ℓ ≤ k − 1 and S(n + 1) = m.

The corresponding path (5) of time 2 values starting from the deepest node in

Trie 2(w[1..n]) is

n0, . . . , n0, n1, . . . , n1, n2, . . . , n2, . . . , nk, . . . , nk . (7)

The last nk corresponds to the shallowest node with that time value. It will have

an a-son or else it is the root. Also, S′′(ni) = ni+1, for all 0 ≤ i ≤ nk−1.

The steps 5–7 in the algorithm Ukkonen trie 2(w) will create a-sons for all

nodes corresponding to the time values in (5) which do not have one. Moreover, if

14 M. Crochemore, L. Ilie, and E. Seid-Hilmi

there is more than one nk in (7), then all the a-sons of such nodes will have time 2

value m. This can happen only when m 6= 0.

It is clear that Trie 2(w[1..n + 1])|time 2 produces Factor Oracle[1..n + 1]) and so

(ii) is proved.

For (i), we have S′′(n + 1) = m = S(n + 1).

A direct construction of the factor oracle from the trie has been shown in [5].

However the algorithm presented there is less eficient than our method.

9. Properties of the factor oracle

The properties of the factor oracle from [1, 2] can be very easily deduced using

Theorem 13. In Proposition 12 we proved that Factor Oracle(w) is an oracle for

the set of factors of w. Also Lemma 11 shows that the set of strings recognized by

Factor Oracle(w) is closed under taking factors.

Denote, for u factor of w, poccur(u, w) = min{|z| | z = xu, w = zy}.

Lemma 14. The shortest string recognized by Factor Oracle(w) in i is a factor of

w and is unique.

Proof. This is the string labelling the shallowest (closest to root) node with time 2

value i in Trie 2(w).

Denote the string in the above lemma by min(i). The next property is also clear.

Lemma 15. poccur(min(i), w) = i.

Proof. We know that poccur(min(i), w) = time 2(min(i)) = i.

Lemma 16. min(i) is a suffix of any string recognized by Factor Oracle(w) in i.

Proof. The shallowest node with time 2 value i, corresponding to min(i), is on the

suffix path of any node with time 2 i.

Lemma 17. Any factor u of w is recognized by Factor Oracle(w) in j ≤

poccur(u, w).

Proof. We have in Trie 2(w), time 2(u) ≤ poccur(u, w).

Lemma 18. Any path in Factor Oracle(w) whose label ends with min(i) leads to

j ≥ i.

Proof. Such a path in Trie 2(w) leads to a node v such that the shallowest node

of time 2 value i is on v’s suffix path. It follows that j = time 2(v) ≥ i.

The structure of factor oracles 15

Lemma 19. Let v be a factor of w recognized by Factor Oracle(w) in i. Then any

suffix of v is recognized in j ≤ i.

Proof. The suffix of v is in Trie 2(w) on the suffix path of v and therefore has a

lower, or equal, time 2 value.

Lemma 20. Factor Oracle(w) has at most 2|w| − 1 edges.

Proof. This follows from Lemma 5.

Denote repet(w, i) the longest suffix of w[1..i] that appears at least twice in

w[1..i].

Lemma 21. The reading of repet(w, i) in Factor Oracle(w) ends in S(i).

Proof. Starting from the deepest node of Trie 2(w) with time 2 value i; it corre-

sponds to the node w[1..i]. Moving up its suffix path, we encounter shorter suffixes

until one which is already in Trie 2(w) is found. That node has time 2 value S(i)

and its label is precisely repet(w, i).

10. Discussion and open problems

Our framework for discussing oracles for the set of factors of a string is provided by

the following result.

Proposition 22. Any oracle for the set of factors of a string w contains a quotient

of Trie(w) as a subgraph.

Proof. Let O be an oracle and define a relation on the nodes of Trie(w) by

u ≡O v iff the paths labeled u and v in O end in the same node .

We claim that O must contain as a subgraph the quotient Trie(w)|≡O
.

First, it is clear that ≡O is an equivalence relation with |w| + 1 classes. No two

prefixes of w are in the same ≡O-class and denote the ≡O-class of the prefix of

length i by i. Therefore, Trie(w)|≡O
has the nodes 0, 1, . . . , n.

Consider an edge i
a

−→ j of Trie(w)|≡O
. There must be then an edge u

a
−→ ua in

Trie(w) such that u ≡O w[1..i] and ua ≡O w[1..j]. Therefore, reading u in O from 0

leads to i whereas reading ua from 0 leads to j. As O is deterministic, there must

be an edge i
a

−→ j in O, proving the claim.

Remark 23. Notice that, in particular, for any oracle O, Trie(w)|≡O
is determin-

istic. Also, all edges in O which are not in Trie(w)|≡O
can be eliminated and it still

remains an oracle. Therefore, comparing oracles for the set of factors reduces to

comparing quotients of the trie.

16 M. Crochemore, L. Ilie, and E. Seid-Hilmi

There exist particular examples, such as the string abcacdace from [5], in which

the factor oracle is not the best possible oracle. The smaller oracle for the string

abcacdace has one transition less than the factor oracle. However it accepts 16

errors compared to 13 errors accepted by the factor oracle. There are strings, such

as abcacdaceacf for which there exists a smaller oracle which makes also less errors;

in this case 33 errors whereas the factor oracle makes 39; see Figs. 6 and 7.

d

2 4 5 6 7 8 101 120 1193
f

c
d

e
f

f
e

e
f

c

b ca a d ec ca a

b

c

Fig. 6. Factor Oracle(abcacdaceacf)

f

2 4 5 6 7 8 101 120 1193
f

c
d

e
f

e
d

c

b ca a d ec ca a

b

c

Fig. 7. A better oracle for the string abcacdaceacf .

Finally, we recall briefly the most important open problems about the factor

oracle; they apply to all oracles for the set of factors of a string:

(1) Are factor oracle based string matching algorithms optimal on average, as con-

jectured by [1, 2]?

(2) What is the number of errors (maximal and average), that is, nonfactors that

are recognized by the factor oracle? Examples were given in [13] where this

number is exponential but they are over an unbounded alphabet. There are

examples over a binary alphabet where it is still superpolynomial: for the string

abab2ab3 . . . abn, the number of errors is greater than n!.

(3) What is the average number of external transitions for the factor oracle or, put

otherwise, what is its average size?

(4) Is there a simple strategy for building better oracles? Our framework of quo-

tients of the trie allows comparing them.

(5) Characterize the set recognized by the factor oracle; not in terms of the factor

oracle itself, like in [13].

The structure of factor oracles 17

References

[1] C. Allauzen, M. Crochemore, and M. Raffinot, Factor oracle: a new structure for
pattern matching, SOFSEM’99: theory and practice of informatics (Milovy), Lecture
Notes in Comput. Sci. 1725, Springer, Berlin, 1999, 295 – 310.

[2] C. Allauzen, M. Crochemore, and M. Raffinot, Efficient experimental string match-
ing by weak factor recognition, Combinatorial Pattern Matching (Jerusalem, 2001),
Lecture Notes in Comput. Sci. 2089, Springer, Berlin, 2001, 51 – 72.

[3] G. Assayag and S. Dubnov, Using factor oracles for machine improvisation, Soft
Comput. 8(9) (2004) 604 – 610.

[4] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M.T. Chen, and J. Seiferas, The
smallest automaton recignizing the subwords of a text, Theoret. Comput. Sci. 40(1)
(1985) 31 – 55.

[5] L. Cleophas, G. Zwaan, and B. Watson, Constructing factor oracles, J. Au-
tom. Lang. Comb., to appear.

[6] M. Crochemore, Transducers and repetitions, Theoret. Comput. Sci. 45(1) (1986) 63
– 86.

[7] M. Crochemore and C. Hancart, Automata for matching patterns, in G. Rozenberg
and A. Salomaa, eds., Handbook of Formal Languages, Vol. II, Springer-Verlag, Berlin,
Heidelberg, 1997, 399 – 461.

[8] M. Crochemore, L. Ilie, and E. Seid-Hilmi, Factor oracles, in: O. Ibarra and H.-
C. Yen, eds., Proc. of CIAA’06, Lecture Notes in Comput. Sci. 4094, Springer, Berlin,
Heidelberg, 2006, 78 – 89.

[9] R. Kato and O. Watanabe, Substring search and repeat search using factor oracles,
Inf. Process. Lett. 93(6) (2005) 269 – 274.

[10] A. Lefebvre and T. Lecroq, Compror: On-line lossless data compression with a factor
oracle, Inf. Process. Lett. 83(1) (2002) 1 – 6.

[11] A. Lefebvre and T. Lecroq, A heuristic for computing repeats with a factor oracle:
application to biological sequences, Int. J. Comput. Math. 79(12) (2002) 1303 – 1315.

[12] A. Lefebvre, T. Lecroq, and J. Alexandre, An improved algorithm for finding longest
repeats with a modified factor oracle, J. Autom. Lang. Comb. 8(4) (2003) 647 – 657.

[13] A. Mancheron and C. Moan, Combinatorial characterization of the language recog-
nized by factor and suffix oracles, Int. J. Found. Comput. Sci. 16(6) (2005) 1179 –
1191.

[14] E. Ukkonen, Constructing suffix trees on-line in linear time, Proc. Information
Processing’92, Vol. 1, IFIP Transactions A-12, Elsevier, 1992, 484 – 492.

