
Follow automata?Lu
ian Ilie??;? ? ? and Sheng YuyDepartment of Computer S
ien
e, University of Western OntarioN6A 5B7, London, Ontario, CANADAe-mails: ilie|syu�
sd.uwo.
aApril 22, 2003Abstra
t. We give two new algorithms for 
onstru
ting small nonde-terministi
 �nite automata (NFA) from regular expressions. The �rst
onstru
ts NFAs with "-transitions ("NFA) whi
h are smaller than allthe other "NFAs obtained by similar 
onstru
tions. Their size is at most32 j�j+ 52 , where � is the regular expression. This is very 
lose to optimalsin
e we prove also the lower bound 43 j�j + 52 . The se
ond 
onstru
tsNFAs. It uses "-elimination in the "NFAs we just introdu
ed and buildsa quotient of the well-known position automaton w.r.t. the equivalen
egiven by the follow relation; therefore giving the name of follow automa-ton. The new automaton uses optimally the information from the posi-tions of a regular expression. We 
ompare the follow automaton with thebest 
onstru
tions to date and show that it has important advantagesover those.Keywords: regular expressions, nondeterministi
 �nite automata, algo-rithms, positions, partial derivatives, quotients, right-invariant equiva-len
es, "-elimination1 Introdu
tionThe importan
e of regular expressions for appli
ations is well known.They des
ribe lexi
al tokens for synta
ti
 spe
i�
ations and textual pat-terns in text manipulation systems. Regular expressions have be
ome thebasis of standard utilities su
h as s
anner generators (lex), editors (ema
s,vi), or programming languages (perl, awk), see [ASU86,Fr98℄. While reg-ular expressions provide an appropriate notation for regular languages,their implementation is done using �nite automata. The size of the au-tomata is 
ru
ial for the eÆ
ien
y of the algorithms using them; e.g.,? An extended abstra
t of this paper has been presented at The 13th Annual Sympo-sium on Combinatorial Pattern Mat
hing (CPM'02) (Fukuoka, 2002); see [IlYu02a℄.?? 
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ian Ilie and Sheng Yu April 22, 2003for regular expression mat
hing. Sin
e the deterministi
 �nite automataobtained from regular expressions 
an be exponentially larger in size, inmany 
ases nondeterministi
 �nite automata are used instead. Minimiza-tion of NFAs is PSPACE-
omplete, see [Yu97℄, so other methods need tobe used to obtain small NFAs. Probably the most famous su
h 
onstru
-tions are the ones of Thompson [Th68℄ whi
h builds a nondeterministi
�nite automaton with " transitions ("NFA) and the one of Glushkov andM
Naughton-Yamada [Gl61,M
NYa60℄ whi
h outputs a nondeterministi
�nite automaton without "-transitions (NFA), 
alled position automaton.While Thompson's automaton has linear size (in terms of the size of theregular expression), the position automaton has size at most quadrati
and 
an be 
omputed in quadrati
 time by the algorithm of Br�ugemann-Klein [BrK93℄. We note that throughout the paper the size of automatawill in
lude both transitions and states.Antimirov [An96℄ generalized Brozozowski's derivatives and built thepartial derivative automata. Champarnaud and Ziadi [ChZi01a,ChZi01b℄improved very mu
h Antimirov's O(n5) algorithm for the 
onstru
tion ofsu
h NFA; their algorithm runs in quadrati
 time. They proved also thatthe partial derivative automaton is a quotient of the position automatonand so it is always smaller than or equal to the position automaton.The best worst 
ase 
omes with the 
onstru
tion of Hromkovi�
 etal. [HSW01℄; their NFA, 
alled 
ommon follow sets automaton, has sizeat most O(n(log n)2) and, by the algorithm of Hagenah and Mus
holl[HaMu00℄, it 
an be 
omputed in time O(n(log n)2). This 
onstru
tionarti�
ially in
reases the number of states in order to redu
e the numberof transitions.In this paper, we propose new algorithms to 
onstru
t very small non-deterministi
 �nite automata, with or without "-transitions, from regularexpressions. Our �rst algorithm 
onstru
ts "NFAs whi
h are smaller thanall the others obtained by similar 
onstru
tions; e.g., the one of Thomp-son [Th68℄ or the one of Sippu and Soisalon-Soininen [SiSo88℄ (whi
hbuilds a smaller "NFA than Thompson's). Given a regular expression �,the size of our "NFA for � is at most 32 j�j + 52 . This is very 
lose to theoptimal; we prove a lower bound of 43 j�j+ 52 .We give then a method for 
onstru
ting NFAs. It uses "-elimination inthe "NFA newly introdu
ed. The obtained NFAs have several remarkableproperties. First, although the 
onstru
tion of this NFA has, apparently,nothing to do with positions, it turns out, unexpe
tedly, that the NFAis a quotient of the position automaton with respe
t to the equivalen
egiven by the follow relation; therefore giving the name of follow automa-
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ond, we show that the follow automaton uses optimally the in-formation from the positions of the regular expression and thus it 
annotbe improved this way. Third, the follow automaton is, 
on
eptually, thesimplest 
ompared to the best similar 
onstru
tions. Finally, the followautomaton seems to perform very well in pra
ti
al appli
ations. Even ifthe worst 
ase is quadrati
 in what 
on
erns both the size of the automa-ton and the running time of the algorithm, in pra
ti
e it performs mu
hbetter. For instan
e, it seems to outdo on most examples the 
ommonfollow sets automaton whi
h, as we mentioned, has the best worst 
asesize and running time. The worst 
ase seems to be quite irrelevant here.On the other hand, it seems very diÆ
ult to 
ompute the average 
asesize and running time of su
h 
onstru
tions. Therefore, we have to rely onexamples to make 
omparisons. For most examples, the 
ommon followsets automaton rea
hes its upper bound of O(n(log n)2), while the followautomaton is linear. (Pre
isely, we 
onsider parameterized examples.)The paper is organized as follows. Se
tion 2 
ontains the basi
 def-initions we need. In Se
tion 3 we give an algorithm to redu
e regularexpressions su
h that many redundant elements are eliminated. Se
tion 4gives our 
onstru
tion of "NFAs. It also gives the proof that it is alwayssmaller than the well known 
onstru
tions of [Th68,SiSo88℄ and the lowerbound showing that it is very 
lose to optimal. Se
tion 5 re
alls the posi-tion and partial derivative automata. The fa
t that the partial derivativeautomaton is a quotient of the position automaton is given a simpler proofin Se
tion 6. The 
onstru
tion of our follow NFAs is given in Se
tion 7.Se
tion 8 
ontains the proof that our NFA is a quotient of the positionautomaton. The optimal use of positions in the 
onstru
tion of the followNFA is shown in Se
tion 9. Some examples are given in Se
tion 10 to 
om-pare our 
onstru
tions with the position, partial derivative, and 
ommonfollow sets automata. Finally, we dis
uss in Se
tion 11 some of the mostimportant problems whi
h should be 
lari�ed about follow automata andrelated 
onstru
tions.2 Regular expressions and automataWe re
all here the basi
 de�nitions we need throughout the paper. Forfurther details we refer to [HoUl79℄ or [Yu97℄.Let A be an alphabet and A� the set of all words over A; " denotes theempty word and the length of a word w is denoted jwj. A language overA is a subset of A�. A regular expression over A is ;, ", or a 2 A, or isobtained from these applying the following rules �nitely many times: for
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ian Ilie and Sheng Yu April 22, 2003two regular expressions � and �, the union, �+ �, the 
atenation, � � �,and the star, ��, are regular expressions. The regular language denotedby a regular expression � is L(�). Also, we de�ne "(�) to be " if " 2 L(�)and ; otherwise. The size of � is denoted j�j and represents the numberof symbols in � when written in post�x (parentheses are not 
ounted).A �nite automaton is a quintupleM = (Q;A; Æ; q0; F ), where Q is theset of states, A is the input alphabet, q0 2 Q is the initial state, F � Q isthe set of �nal states, and Æ � Q�(A[f"g)�Q is the transition mapping;we shall denote, for p 2 Q; a 2 A [ f"g, Æ(p; a) = fq 2 Q j (p; a; q) 2 Æg.The automaton M is 
alled deterministi
 (DFA) if Æ : Q � A ! Q isa (partial) fun
tion, nondeterministi
 (NFA) if Æ � Q � A � Q, andnondeterministi
 with "-transitions ("NFA) if there are no restri
tions onÆ. The language re
ognized by M is denoted L(M). The size of a �niteautomaton M is jM j = jQj+ jÆj; we 
ount both states and transitions.Let �� Q�Q be an equivalen
e relation. For q 2 Q, [q℄� denotes theequivalen
e 
lass of q w.r.t. � and, for S � Q, S=� denotes the quotientset S=� = f[q℄� j q 2 Sg.We say that � is right invariant w.r.t. M i�(i) �� (Q�F )2[F 2 (�nal and non-�nal states are not �-equivalent)and(ii) for any p; q 2 Q, a 2 A, if p � q, then Æ(p; a)=� = Æ(q; a)=�.If � is right invariant, the quotient automaton M=� is 
onstru
ted asM=� = (Q=�; A; Æ�; [q0℄�; F=�) where Æ� = f([p℄�; a; [q℄�) j (p; a; q) 2Æg; noti
e that Q=� = (Q � F )=� [ F=�, so we do not merge �nal withnon-�nal states. Noti
e that L(M=�) = L(M).3 Redu
ed regular expressionsWe give in this se
tion an algorithm for redu
ing regular expressions.The intent is to redu
e the number of ;'s and "'s, as well as the total sizeof the expression. Su
h redu
tions are often mentioned in literature, butwe want to make things more pre
ise here. The redu
ed form of regularexpressions is used later in the paper where pre
ise assumptions aboutthe stru
ture of the regular expressions are needed. As it will be seen, ourresults hold as well for expressions whi
h are not redu
ed.We �rst introdu
e several notations. For a regular expression � overA, we denote by j�jA and j�j" the number of o

urren
es in � of lettersfrom A and ", respe
tively.Given a regular expression � over A, assume we have the syntax treefor it; when building the tree we assume 0+0 left asso
iative (that is,
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 = (a + b) + 
), whi
h will enable us to redu
e further thenumber j�j". We also assume that ea
h vertex in the tree is labelled bythe 
orresponding symbol from A[ f";+; �; �g and has asso
iated with itthe subexpression 
orresponding to the subtree rooted at the vertex.The regular expressions are redu
ed a

ording to the algorithm below.Algorithm 1 (a) ;-redu
tion: 
ompute, for ea
h vertex �, whether ornot L(�) = ; and then modify � su
h that, at the end, either � = ; or �
ontains no ;.(b) "-redu
tion: 
ompute, for ea
h vertex �, whether " 2 L(�) andwhether L(�) = f"g; for ea
h vertex � with L(�) = f"g, repla
e thesubtree rooted at � by " and then:- if the parent of � is labelled by 0�0, then repla
e the parent by theother 
hild- if the parent is labelled by 0�0, then repla
e the parent by the 
hild- if the parent of � is labelled 0+0 and " is in the language of theother 
hild, then repla
e the parent by the other 
hild.(
) 0�0-redu
tion: for any vertex labelled by 0�0, if its 
hild is alsolabelled by 0�0, then repla
e it by its 
hild.We shall 
all � obtained after applying Algorithm 1 redu
ed. We givenext two observations 
on
erning the size of redu
ed regular expressionsfollowed by some examples proving their optimality.Proposition 2 For any redu
ed regular expression � su
h that � 62 f;; "g,we have(i) j�jA � j�j",(ii) j�j � 6j�jA � 2.Proof. (i) We prove by stru
tural indu
tion that, for any redu
ed� 6= ", if " 62 L(�), then j�jA � j�j"+1 and if " 2 L(�), then j�jA � j�j".The property is true for � = a, a 2 A. When � has at least oneoperator, we assume the property true for all subexpressions of � di�erentfrom " and prove it for �.First, assume � = � + 
. If both � and 
 are di�erent from ", theproperty is shown true for � by the indu
tive hypothesis on � and 
.If � = " (the 
ase 
 = " is symmetri
), then, sin
e � is redu
ed, wehave " 62 L(
). The indu
tive hypothesis gives j�jA = j
jA � j
j" + 1 =j�j" + j
j" = j�j".If � = � � 
, then none of � and 
 
an be ", and the property followsfrom the indu
tive hypothesis.



6 Lu
ian Ilie and Sheng Yu April 22, 2003If � = ��, then � 6= " and, by the indu
tive hypothesis, j�jA = j�jA �j�j" = j�j".(ii) We prove the following assertions simultaneously by stru
turalindu
tion:- if " 62 L(�), then j�j � 6j�jA � 5,- if the root of �'s tree is labelled by 0�0, then j�j � 6j�jA � 2,- if the root of �'s tree is labelled by 0+0 or 0�0, then j�j � 6j�jA � 3.For � = a, a 2 A, the property is true. Assume the property true forall subexpressions of � di�erent from " and prove it for �.First, take � = � + 
. If both � and 
 are di�erent from ", thenthe property follows by the indu
tive hypothesis on � and 
. If � = "(similarly for 
 = "), then the indu
tive hypothesis gives j�j = j
j + 2 �6j
jA � 5 + 2 = 6j�jA � 3.Assume � = � � 
. If " 62 L(�), then at least one of L(�) and L(
)does not 
ontain " and the indu
tive hypothesis gives j�j = j�j + j
j +1 � 6j�jA + 6j
jA � 5 � 2 + 1 < 6j�jA � 5. If " 2 L(�), then " mustbe in both L(�) and L(
) and we have, by the indu
tive hypothesis,j�j = j�j+ j
j+ 1 � 6j�jA � 2 + 6j
jA � 2 + 1 = 6j�jA � 3.Finally, if � = ��, then � 6= " and j�j = j�j + 1 � 6j�jA � 3 + 1 =6j�jA � 2. �Example 3 Consider �1 = (a1+ ")� and de�ne indu
tively, for all i � 1,�i+1 = (�i + �i)�, where �i is obtained from �i by repla
ing ea
h aj byaj+j�ijA . For instan
e,�3 = (((a1 + ")� + (a2 + ")�)� + ((a3 + ")� + (a4 + ")�)�)�:Then, for any n � 1, �n is redu
ed and j�njA = 2n�1, j�nj" = 2n�1, andj�nj = 6 � 2n�1 � 2.We shall assume that all regular expressions throughout the paperare redu
ed. This will not a�e
t the 
omplexity of our algorithms sin
eredu
ing an expression takes only linear time and the size of the redu
edexpression is less than or equal to the size of the initial expression. Also,Proposition 2 says that all 
omplexities 
an be expressed in terms of thenumber of letters in the regular expression, that is, j�jA.4 Small "NFAs from regular expressionsWe give in this se
tion our new 
onstru
tion of "NFAs from regular ex-pressions. As in the previous 
onstru
tions, we 
onstru
t the "NFA byindu
tion using the stru
ture of the regular expression.



April 22, 2003 Follow automata 7Algorithm 4 Given a regular expression �, the algorithm 
onstru
tsan "NFA for � indu
tively, following the stru
ture of �, and is shownin Fig. 1. The steps should be 
lear from the �gure but we bring somefurther improvements at ea
h step:(a) After 
atenation (Fig. 1(v)): denote the state 
ommon to the twoautomata by p; (a1) if there is a single transition outgoing from p, sayp "! q, then the transition is removed and p and q merged; otherwise (a2)if there is a single transition in
oming to p, say q "! p, then the transitionis removed and p and q merged.(b) After iteration (Fig. 1(vi)), denote the middle state by p. If thereis a 
y
le 
ontaining p su
h that all its transitions are labelled by ", thenall transitions in the 
y
le are removed and all states in the 
y
le aremerged.(
) After the end of all steps in Fig. 1; if there is only one transitionleaving the initial state and is labelled ", say q0 "! p, then the transitionis removed and q0 and p merged.(d) In 
ase of multiple transitions, that is, transitions with the samesour
e, target, and label, only one transition is kept, the others are re-moved.
"(vi) iteration(iv) union (v) 
atenation "a"(ii) "(i) ; (iii) a

Fig. 1. The 
onstru
tion of A"fExample 5 An example of the 
onstru
tion in Algorithm 4 is given inFig. 2. The regular expression � used there will be our running examplethroughout the paper. The example was 
arefully 
ontrived su
h that anytwo 
onstru
tions whi
h are, in general, di�erent will be di�erent on � ."a; b a; bba"Fig. 2. A"f (� ) for � = (a+ b)(a� + ba� + b�)�



8 Lu
ian Ilie and Sheng Yu April 22, 2003We 
all the automaton returned by Algorithm 4 follow "NFA (thereason for this name will be 
lear later) and denote itA"f (�) = (Q"f ; A; Æ"f ; 0f ; qf ):The next theorem proves the 
orre
tness and running time of theAlgorithm 4.Theorem 6 For any regular expression � we have:(i) L(A"f (�)) = L(�) and(ii) A"f (�) 
an be 
omputed in time O(j�j).Proof. (i) is 
lear by 
onstru
tion. For (ii), we just point out howthe improvements at (b) 
an be done in linear time. Anytime a 0�0 
or-responding to a subexpression �� of � is pro
essed, we attempt �nding"-
y
les. Be
ause all previous "-
y
les have been removed, the only pos-sible 
y
les are those 
ontaining the state obtained by merging the initialand �nal state of the follow "NFA for �. We 
an do a 
omplete sear
husing ba
ktra
king on the "-transitions in �'s automaton; when a 
y
leis found, it is removed and the states are merged; when we ba
ktra
k onan "-transition, we mark that "-transition su
h that it will not be triedse
ond time. This is 
orre
t be
ause su
h "-transitions 
annot be involvedin other "-
y
les during the remaining of the 
onstru
tion. Consequently,all improvements at (b) 
an be done together in time O(j�j). �The next theorem says that this "NFA is always smaller than theones obtained by the 
onstru
tions of Thompson [Th68℄ and Sippu andSoisalon-Soininen [SiSo88℄. We give also an example showing that it 
anbe mu
h smaller. Noti
e that in the example we do not use the improve-ments (a)-(d) at all sin
e we want to emphasize the superiority of the 
oreof our 
onstru
tion. (It is easy to 
onstru
t arti�
ial expressions for whi
hour 
onstru
tion, using (a)-(d), gives an arbitrarily smaller automaton.)Theorem 7 For any regular expression �, the size of A"f (�) is smallerthan the size of the "NFAs obtained from � using the 
onstru
tions ofThompson or Sippu and Soisalon-Soininen.Proof. Re
all �rst the other two 
onstru
tions. They are indu
tive andshould be 
lear from Figs. 3 and 4.All three 
onstru
tions start the same way and at ea
h indu
tive step(a

ording to the stru
ture of the regular expression), ours adds less tran-sitions and less states. Pre
isely, the total number of states and transitionsadded by ea
h of the three 
onstru
tions for an operation 0+0, 0�0, and 0�0,respe
tively, is (a negative number means that the size de
reases):
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onstru
tion: �2, �1, 3;- for Thompson's 
onstru
tion: 6, 1, 6;- for Sippu and Soisalon-Soininen's 
onstru
tion: 2, �1, 5; �
"" "(vi) iteration""(ii) "(i) ; (iii) a" a

(v) 
atenation"""" (iv) unionFig. 3. The 
onstru
tion of Thompson [Th68℄
(vi) iteration"""" "(iv) union (v) 
atenation(i) ; (iii) a" a(ii) "

Fig. 4. The 
onstru
tion of Sippu and Soisalon-Soininen [SiSo88℄Example 8 For the regular expression � = a1+a2+ � � �+an, A"f (�) hassize n + 2 (2 states, n transitions), Thompson's has size 9n � 6 (4n � 2states, 5n � 4 transitions), and Sippu and Soisalon-Soininen's has size5n� 2 (2n states, 3n� 2 transitions).We dis
uss next an upper bound on the size of our "NFA.A �rst remark 
on
erns the following invariant of our 
onstru
tion.For any subexpression of �, the automaton 
onstru
ted by our algorithmhas one starting state of indegree zero and one �nal state of outdegreezero, ex
ept for the improvement at (
) whi
h is done only at the veryend of the 
onstru
tion.A te
hni
al remark 
on
erns the indu
tive proofs about the follow"NFA. When using indu
tion, we shall ta
itly work with A"f obtainedwithout the improvement (
), as this is the way indu
tion is done.The improvements in the above steps (a)-(d) are a
tually very impor-tant sin
e they 
an redu
e signi�
antly the size of the A"f ; espe
iallythe one at (b). As a 
onsequen
e, for any subexpression of the form(��1 + � � � + ��m + ��1��2 � � ���n)�, the 0�0s for �i's and �i's do not in
rease
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ian Ilie and Sheng Yu April 22, 2003the size of the automaton. For instan
e, the 
onstru
ted automata for theexpressions (a�+b�)�, (a�b�)�, and (a+b)� are identi
al. The same is truefor any " in an expression like (�1 + � � �+ "+ � � �+ �m)�.We see next a very general 
ase when 0�0s in the regular expressiondo not 
hange the size of the automaton and we shall be able to makeimportant assumptions on the stru
ture of the expressions. We say thata regular expression � is �-avoidable if there is a path in �'s tree from theroot to a leaf su
h that no vertex on this path (in
luding the root andthe leaf) is labelled by 0�0. Otherwise � is 
alled �-unavoidable.Assume � is �-unavoidable and 
onstru
t a regular expression, denotedremove(�), as follows. For any path from the root of �'s tree to a leaf,
onsider the 0�0 whi
h is 
losest to the root (there is at least one 0�0). Weremove this 0�0 and 
hange all 0�0s on the path from the removed 0�0 tothe root into 0+0s. For instan
e, if � = a�b� + 
�, then remove(�) = a +b+ 
. Now, for any regular expression �, we 
onstru
t another expressionavoid(�) as follows. As long as there are subexpressions of the form ��in � with � �-unavoidable, we 
hoose a minimal su
h �, i.e., � has nosubexpression 
� with 
 �-unavoidable, and repla
e � by remove(�). Asan example, if � = �(a�(b
)�+d�)�+(
(a+ b))�b���a+ b, then avoid(�) =(a+ b
+ d+ 
(a+ b) + b)�a+ b.The idea is to remove 0�0s from � su
h that the language of � remainsun
hanged but the size de
reases. As we shall see in a moment, the au-tomaton "NFA remains the same but for an expression of smaller size.This will help us when proving an upper bound on the size of A"f .Lemma 9 For any regular expression �, A"f (��) and A"f (avoid(�)�) areidenti
al.Proof. It is enough to show that, for any �-unavoidable expression �,A"f (��) and A"f (remove(�)�) are the same. As � is �-unavoidable, thereare �i; i � i � n, subexpressions of � su
h that � is obtained from��i ; 1 � i � n, by using only 0+0 and 0�0. When building the follow "NFAfor ��i , the initial and �nal states of the follow "NFA for �i are merged toa single state, say qi. This qi is on a path labelled " from the initial to the�nal state of the follow "NFA for �. Therefore, in the automaton of ��,all qis will be merged. Clearly, the same happens in the follow automatonof remove(�)�. �Before proving the upper bound on the size of the follow "NFA, weneed several notations and a te
hni
al lemma. For a regular expression� over A, we denote by j�j+; j�j.; j�j� the number of o

urren
es in � of0+0, 0�0, 0�0, respe
tively. Thus j�j = j�jA + j�j" + j�j+ + j�j. + j�j�.



April 22, 2003 Follow automata 11We partition the set of verti
es in �'s tree that are labelled by 0�0 intofour 
lasses: the �rst 
ontains the root, if labelled by 0�0, and those whoseparent is labelled by 0�0 and whose sibling is not labelled by 0�0 { let theirnumber be 
1; the se
ond 
ontains those whose parent is labelled by 0�0and whose sibling is also labelled by 0�0 { their number is 2
2; the thirdand fourth sets are de�ned as the previous two by repla
ing the label 0�0of the parent by 0+0 { their numbers are p1 and 2p2, respe
tively.Lemma 10 Let � be a regular expression su
h that for any subexpression�� of it, � is �-avoidable. Then j�j� + p2(�) � 12(j�j + 1).Proof. We prove the following properties, whi
h imply the statement;it is assumed that � below has the property in the statement, i.e., for anysubexpression �� of it, � is �-avoidable:(1) - if � is �-unavoidable and the root of �'s tree is not labelled by0�0, then j�j� + p2(�) � 12(j�j + 1),(2) - if the root of �'s tree is labelled by 0�0, then j�j� + p2(�) � 12 j�j.(3) - if � is �-avoidable, then j�j� + p2(�) � 12 (j�j � 1),We use stru
tural indu
tion. If � 2 f;; "g [ fa j a 2 Ag, then j�j� +p2(�) = 0 and (3) is satis�ed. When � has at least one operator, weassume the properties true for all subexpressions of � and prove them for�. (1) Consider �rst the 
ase � = � + 
. If at least one of � and 
 hasthe root of the syntax tree not labelled by 0�0, then, by the indu
tivehypothesis, j�j� + p2(�) = j�j� + j
j� + p2(�) + p2(
) � 12(j�j + 1) +12(j
j + 1) = 12 (j�j + 1). If both roots of the syntax trees of � and 
are labelled by 0�0, then the indu
tive hypothesis gives j�j� + p2(�) =j�j� + j
j� + p2(�) + p2(
) + 1 � 12 j�j + 12 j
j + 1 = 12(j�j + 1). The 
ase� = � � 
 is similar.(2) Put � = ��. Then, by hypothesis, � is �-avoidable and we have,using the indu
tive hypothesis, j�j� + p2(�) = j�j� + 1 + p2(�) � 12(j�j �1) + 1 = 12 j�j.(3) In this 
ase, either � = � �
 or � = �+
 and at least one out of �and 
 is �-avoidable. In parti
ular, p2(�) = p2(�) + p2(
). We have thenj�j�+p2(�) = j�j�+ j
j�+p2(�)+p2(
) � 12 j�j+ 12 j
j+ 12� 12 = 12 (j�j�1).�Theorem 11 For any redu
ed regular expression � we have jA"f (�)j �32 j�j+ 52 :Proof. Using the notations introdu
ed above, we havejA"f (�)j � 3j�jA + 3j�j" � 2j�j+ � j�j. + 
1 + 4
2 + 3p1 + 6p2:



12 Lu
ian Ilie and Sheng Yu April 22, 2003Using the equality j�jA + j�j" � 1 = j�j+ + j�j., we 
an writejA"f (�)j � j�j+2�j�j++2
2+2p1+4p2 = j�j+2�j�j++j�j��
1+p1+2p2:By Lemma 9, we may assume � has no subexpression �� with � �-unavoidable (as otherwise we have the same automaton but for a longerexpression) and may apply Lemma 10. Using also the inequality p1+p2 �j�j+, we get jA"f (�)j � j�j + 2 + j�j� + p2 � 32 j�j + 52 , whi
h was to beproved. �We move next to proving a lower bound whi
h is very 
lose to theupper bound in Theorem 11.Theorem 12 Let �n = (a�1+ a�2)(a�3 + a�4) � � � (a�2n�1 + a�2n). Every "NFAa

epting L(�n) has size at least 8n� 1 = 43 j�j+ 13 .Proof. Let An be an "NFA a

epting L(�n). For any i; 1 � i � 2n,there must be a state qi of Ai and a 
y
le 
ontaining qi and labelled by anontrivial power of ai. Moreover, all qis are di�erent and all these 
y
lesare disjoint. Also, for any i; 1 � i � n� 1, there is a path from either ofq2i�1 and q2i to either of q2i+1 and q2i+2. The �rst transitions on thesepaths belong to no others. So far we have shown that jAnj � 4n+4(n�1).The rest 
omes from the fa
t that we have only one initial state. �Using the results in Theorem 11 and Proposition 2(ii), we obtain thatjA"f (�)j � 9j�jA � 12 . However, this result does not seem to be 
lose tooptimal and investigating upper bounds for the size of A"f (�) in terms ofthe number of letters in � remains to be further investigated.5 Positions and partial derivativesWe re
all in this se
tion two well-known 
onstru
tions of NFAs from reg-ular expressions. The �rst is the position automaton, dis
overed indepen-dently by Glushkov [Gl61℄ and M
Naughton and Yamada [M
NYa60℄.Let � be a regular expression. Put pos(�) = f1; 2; : : : ; j�jAg andpos0(�) = pos(�) [ f0g. All letters in � are made di�erent by markingea
h letter with its position in �; denote the obtained expression � 2 A�,where A = fai j a 2 A; 1 � i � j�jAg. For instan
e, if � = a(baa + b�),then � = a1(b2a3a4+b�5). Noti
e that pos(�) = pos(�). The same notationwill also be used for removing indi
es, that is, for unmarked expressions�, the operator � adds indi
es, while for marked expressions � the sameoperator � removes the indi
es: � = �. We extend the notation for arbi-trary stru
tures, like automata, in the obvious way. It will be 
lear fromthe 
ontext whether � adds or removes indi
es.



April 22, 2003 Follow automata 13Three mappings �rst, last, and follow are then de�ned as follows. Forany regular expression � and any i 2 pos(�), we have:�rst(�) = fi j aiw 2 L(�)glast(�) = fi j wai 2 L(�)gfollow(�; i) = fj j uaiajv 2 L(�)g (1)The three mappings have also an indu
tive de�nition, whi
h we shallgive later, when needed in the proofs. For future reasons, we extendfollow(�; 0) = �rst(�). Also, let last0(�) stand for last(�) if "(�) = ;and last(�) [ f0g otherwise.The position automaton for � isApos(�) = (pos0(�); A; Æpos; 0; last0(�))with Æpos = f(i; a; j) j j 2 follow(�; i); a = ajg. As shown by Glushkov[Gl61℄ and M
Naughton and Yamada [M
NYa60℄, L(Apos(�)) = L(�).Br�uggemann-Klein [BrK93℄ gave an algorithm to 
ompute the positionautomaton in quadrati
 time.Example 13 Consider the regular expression � = (a+b)(a�+ba�+b�)�.The marked version of � is � = (a1 + b2)(a�3 + b4a�5 + b�6)�. The values ofthe mappings �rst, last, and follow for � and the 
orresponding positionautomaton Apos(�) are given in Fig. 5.�rst(�) = f1; 2glast(�) = f1; 2; 3; 4; 5; 6gi follow(�; i)1 f3; 4; 6g2 f3; 4; 6g3 f3; 4; 6g4 f3; 4; 5; 6g5 f3; 4; 5; 6g6 f3; 4; 6g 4 5a0 32 6 bb aab 1 abbab b
ab b bab b ba a

Fig. 5. Apos(�) for � = (a+ b)(a� + ba� + b�)�The se
ond 
onstru
tion we re
all in this se
tion is the partial deriva-tive automaton, introdu
ed by Antimirov [An96℄. Re
all the notion ofpartial derivative introdu
ed by him. For a regular expression � and aletter a 2 A, the set �a(�) of partial derivatives of � w.r.t. a is de�ned
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ian Ilie and Sheng Yu April 22, 2003indu
tively as follows:�a(") = �a(;) = ;�a(b) = (f"g; if a = b;; otherwise�a(�+ �) = �a(�) [ �a(�)�a(��) = (�a(�)�; if "(�) = ;�a(�)� [ �a(�); if "(�) = "�a(��) = �a(�)�� (2)
The de�nition of partial derivatives is extended to words by �"(�) = f�g,�wa(�) = �a(�w(�)), for any w 2 A�, a 2 A.The set of all partial derivatives of � is denoted PD(�) = f�w(�) jw 2 A�g. Antimirov [An96℄ showed that the 
ardinality of this set is lessthan or equal to j�jA+1 and 
onstru
ted the partial derivative automatonApd(�) = (PD(�); A; Æpd ; �; fq 2 PD(�) j "(q) = "g);where Æpd(q; a) = �a(q), for any q 2 PD(�); a 2 A. He proved thatL(Apd(�)) = L(�).Champarnaud and Ziadi [ChZi01a,ChZi01b℄ proved that the partialderivative automaton is a quotient of the position automaton and showedhow the partial derivative automaton 
an be 
omputed in quadrati
 time,improving very mu
h Antimirov's quinti
 time bound. We shall see in thenext se
tion a simpli�ed presentation of some of their results.Example 14 Consider the regular expression � from Example 5. Thepartial derivatives of � are 
omputed in Fig. 6 where also its partialderivative automaton Apd(�) is shown.�a(�) = f�1g �1 = (a� + ba� + b�)��b(�) = f�1g�a(�1) = f�2g �2 = a��1�b(�1) = f�2; �3g �3 = b��1�a(�2) = f�2g�b(�2) = f�2; �3g�a(�3) = f�2g�b(�3) = f�2; �3g a; b ba; b a; bbba; b� �1 �2�3Fig. 6. Apd(�) for � = (a+ b)(a� + ba� + b�)�



April 22, 2003 Follow automata 156 Apd revisitedIn this se
tion we give a simpli�ed proof of the fa
t, proved by Champar-naud and Ziadi, that the partial derivative automaton Apd is a quotientof Apos. Essentially, we rely only on the work of Berry and Sethi [BeSe86℄.We shall not use the notions of 
anoni
al derivative and 
-
ontinuation of[ChZi01a℄ but show that, under 
ertain hypotheses, they are in fa
t thesame as the 
ontinuations of Berry and Sethi.We assume in the following that the rules for ; and " hold: �+; = ;+� = �, ��; = ;�� = ;, and ��" = "�� = �. Two regular expressions � and� whi
h redu
e to the same expression using asso
iativity, 
ommutativity,and idempoten
e of + are 
alled similar [Br64℄; this is denoted ��a
i �.We re
all also the de�nition of the (total) derivative, also due to Br-zozowski [Br64℄. The derivative of � w.r.t. a letter a, a�1(�), is de�nedindu
tively as: a�1(") = a�1(;) = ;a�1(b) = ("; if a = b;; otherwisea�1(�+ �) = a�1(�) + a�1(�)a�1(��) = a�1(�)� + "(�)a�1(�)a�1(��) = a�1(�)�� (3)
The de�nition of the total derivatives is extended to words by "�1(�) = �,(wa)�1(�) = a�1(w�1(�), for any w 2 A�; a 2 A.Consider the marked version of �, � 2 A� whi
h has all letters dif-ferent. Berry and Sethi proved, for a �xed ai 2 A, that for all wordsw 2 A�, (wai)�1(�) is either ; or unique modulo �a
i. It is 
lear that,for any two disjoint subexpressions �1 and �2 of �, at most one of theexpressions (wai)�1(�1) and (wai)�1(�2) is di�erent from ;. Therefore,when 
omputing total derivatives using (3), we get at ea
h moment atmost one term di�erent from ;. Hen
e, it is natural to require that weapply, whenever possible, the rules for ; and " during the 
omputationof the total derivatives. What we get is that the derivative (wai)�1(�) so
omputed is either ; or unique; we got rid of the �a
i-similarity.The same 
an be done for the 
omputation of the partial derivatives:when using (2), we apply the rules for ; and " after ea
h step. Sin
e theyare 
omputed in the same way, we have �wai(�) = (wai)�1(�).Re
all next the notion of a 
ontinuation, also from Berry and Sethi.For a letter ai 2 A, the 
ontinuation of ai in �, denoted 
i(�), is anyexpression (wai)�1(�) 6= ;. From the above, this notion is well de�ned.



16 Lu
ian Ilie and Sheng Yu April 22, 2003Noti
e again that we are not talking about �a
i-equivalent expressions be-
ause, by our assumption, there is only one. Denote also 
0(�) = �. Berryand Sethi's 
ontinuation automaton is then A
on(�) = (Q;A; Æ; q0; F ),where Q = f
i(�) j i 2 pos0(�)g, q0 = �, F = fq j "(q) = "g, andÆ = f(
i(�); aj ; 
j(�)) j aj 2 �rst(
i(�))g. As Berry and Sethi proved,Proposition 15 A
on(�) ' Apos(�) and A
on(�) ' Apos(�):The di�eren
e between the 
ontinuation or position automaton, for �or � is that the labels on transitions are unmarked or marked, respe
tively.Obviously, if two automata with marked letters are isomorphi
, so are theunmarked versions.It is worth mentioning that the language a

epted by the two au-tomata for � is L(�). Also, L(�) = L(�). Noti
e that for the 
ontinuationand position automata, it makes no di�eren
e whether we work �rst with� and unmark the obtained automaton or we work with �. However, aswe shall see in a moment, the same is not valid for the partial derivativeautomaton.Now, from the de�nition of Apd(�), the di�eren
e w.r.t. A
on(�) isthat whenever two 
ontinuations of � (in
luding �) are the same, theyrepresent di�erent states in A
on(�) but the same in Apd(�). De�ne thenthe equivalen
e =
� (pos(�))2 by i =
 j i� 
i(�) = 
j(�); =
 is right-invariant w.r.t. the position automaton. What we have so far is thatProposition 16 (i) Apd(�) ' A
on(�)==
 ' Apos(�)==
(ii) Apd(�) ' A
on(�)==
 ' Apos(�)==
 .Example 17 For the regular expression � from Example 5, we 
onstru
tin Fig. 7 the automaton Apd(� ); the 
lasses of the equivalen
e =
 are alsoshown.
lasses of =
: f0gf1; 2gf3gf4; 5gf6g a; b a; bb0 1; 2 63 4; 5bbabba a
b b a

Fig. 7. Apd(�) ' Apos(�)==
 for � = (a+ b)(a� + ba� + b�)�



April 22, 2003 Follow automata 17We have worked so far in this se
tion only with regular expressionswhi
h have all letters di�erent. We shall now remove the marking andsee what happens. De�ne another equivalen
e, �
� (pos(�))2 by i �
 ji� 
i(�) = 
j(�); �
 is also right-invariant w.r.t. the position automatonand =
��
.For any letter a and regular expression �, it is 
lear that �a(�) =f�ai(�) j ai = ag. Therefore, the partial derivative automaton is obtainedby merging those states in the 
ontinuation automaton whi
h have thesame 
ontinuation when indi
es are removed. We therefore have the resultof Champarnaud and Ziadi [ChZi01a℄Theorem 18 Apd(�) ' Apos(�)=�
 :Noti
e that we gave also a proof for the result of Antimirov [An96℄that jPD(�)j � j�jA + 1.Example 19 For the regular expression � from Example 5, we 
onstru
tin Fig. 8 the automaton Apd(�); the 
lasses of the equivalen
e �
 are alsoshown. A

ording to Theorem 18, we have Apd(�) ' Apos(�)=�
 as it 
anbe seen by 
omparing with Fig. 5 where Apos(�) is shown.
lasses of �
: f0gf1; 2gf3; 4; 5gf6g a; b a; b ba; b0 1; 2 3; 4; 56 a; bbbFig. 8. Apd(�) ' Apos(�)=�
 for � = (a+ b)(a� + ba� + b�)�7 Follow automataIn this se
tion we give our new algorithm for 
onstru
ting NFAs fromregular expressions. The idea is very simple: just eliminate (in a 
ertainway, to be made pre
ise below) the "-transitions from the A"f (�). Essen-tially, for any path labelled ", p " q, and any transition q a! r, we add atransition p a! r. The obtained automaton is 
alled follow NFA, denotedAf(�) = (Qf ; A; Æf ; 0f ; Ff ):We give below the pre
ise details of the elimination of "-transitionsfrom A"f (�). We noti
e that, due to improvement (b) in Algorithm 4,there are no "-
y
les in A"f (�).
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ian Ilie and Sheng Yu April 22, 2003Algorithm 20 Given A"f (�), the algorithm 
onstru
ts Af(�).1. Ff  fqfg2. sort topologi
ally Q"f w.r.t. the order p � q i� p "! q 2 Æ"f ;denote the ordered Q"f = (q1; q2; : : : ; qr)3. for i from r downto 1 do4. for ea
h transition qi "! p do5. for ea
h transition p a! q do6. if qi a! q 62 Æ"f then add qi a! q to Æ"f7. if p 2 Ff then add qi to Ff8. remove the transition qi "! p8. for ea
h q 2 Q"f � f0fg su
h that there is no p a! q in Æ"f do9. eliminate q from Q"f and all transitions involving q from Æ"f10. Qf  Q"f ; Æf  Æ"f11. return Af(�) = (Qf ; A; Æf ; 0f ; Ff )Theorem 21 For any regular expression �, Af(�) is an NFA a

eptingL(�) whi
h 
an be 
onstru
ted in time and spa
e O(j�j2).Proof. For the �rst assertion, it should be 
lear from Algorithm 20that L(Af(�)) = L(A"f (�)). We then use Theorem 6(i).The 
omplexity is given by the number of pairs (p "! q; q a! r) whi
hare 
onsidered in the algorithm. There are O(j�j) "-transitions and O(j�j)transitions labelled by the same letter whi
h leave a 
ertain state. As-suming A is �xed, we obtain the result. �Example 22 We give an example of an appli
ation of Algorithm 20. Forthe same regular expression � = (a+ b)(a� + ba� + b�)� from Example 5,we build in Fig. 9 the automaton Af(�); 
ompare with Example 5 to seethe "-elimination. a; ba; ba; ba; b bFig. 9. Af(�) for � = (a+ b)(a� + ba� + b�)�We 
on
lude this se
tion with some very important 
omments 
on-
erning both the size of Af(�) and the running time of Algorithm 20whi
h builds it. The worst 
ase in Theorem 21 is rea
hed for instan
e forthe regular expression of [HSW01℄, that is, � = (a1+")(a2+") � � � (an+").However, in most examples (see also the examples at the end) both the



April 22, 2003 Follow automata 19size of Af(�) and the running time of Algorithm 20 are linear. Also, wedo not have examples where the "-elimination requires essentially moretime than the size of Af(�). This remains an open problem.We �nally noti
e that our "-elimination algorithm is di�erent from,and faster than, the 
lassi
al one of [HoUl79℄. The di�eren
e is that wedo not 
ompute "-
losures.8 Af is a quotient of AposWe prove in this se
tion that Af(�) introdu
ed above is a quotient ofApos(�). This is unexpe
ted be
ause the 
onstru
tion of Af(�) does nothave, apparently, anything to do with positions. However, the 
onse-quen
es of this result are very important.We start by de�ning the equivalen
e �f� pos0(�)2 byi �f j i� (i) both i; j or none belong to last(�) and(ii) follow(�; i) = follow(�; j)Noti
e that we restri
t the equivalen
e so that we do not make equivalent�nal and non-�nal states in Apos(�). The maim result of this se
tionfollows.Theorem 23 Af(�) ' Apos(�)=�f .We noti
e �rst that the restri
tion we imposed on �f so that �naland non-�nal states in pos0(�) 
annot be �f -equivalent is essential, asshown by the expression � = (a�b)�. Here follow(�; i) = f1; 2g, for any0 � i � 2. However, merging all three states of Apos(�) is an error as theresulting automaton would a

ept the language (a+ b)�.Example 24 Here is an example of an appli
ation of Theorem 23. Forthe same regular expression � = (a+ b)(a� + ba� + b�)� from Example 5,we build in Fig. 10 the A"f (�) and then give the equivalen
e 
lasses of �fand the automaton Af(�).
lasses of �f : f0gf1; 2; 3; 6gf4; 5g ba; b a; b a; b 4; 5 a; b0 1; 2; 3; 6Fig. 10. Af(�) ' Apos(�)=�f for � = (a+ b)(a� + ba� + b�)�We move next to the proof of Theorem 23. First of all we need to seethat we are allowed to make the quotient of the position automaton bythe equivalen
e �f .
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ian Ilie and Sheng Yu April 22, 2003Lemma 25 The equivalen
e �f is right invariant w.r.t. Apos(�).Proof. The �rst 
ondition, 
ompatibility with the set of �nal stateslast0(�), is veri�ed by the de�nition of �f . For the se
ond 
ondition,
onsider i 2 last0(�), a 2 A. We have Æpos(i; a) = fk 2 pos(�) j k 2follow(�; i); ak = ag and so, if i �f j, then Æ(i; a) = Æ(j; a) and the 
laimfollows. �The following well-known properties of these mappings will be usedin the sequel:�rst(� + 
) = �rst(�) [ �rst(
)�rst(�
) = �rst(�) [ "(�) �rst(
)�rst(��) = �rst(�)last(� + 
) = last(�) [ last(
)last(�
) = last(
) [ "(
) last(�)last(��) = last(�)follow(� + 
; i) = (follow(�; i); if i 2 pos(�)follow(
; i); if i 2 pos(
)follow(�
; i) =8><>:follow(�; i); if i 2 pos(�)� last(�)follow(�; i) [ �rst(
); if i 2 last(�)follow(
; i); if i 2 pos(
)follow(��; i) = (follow(�; i); if i 2 pos(�)� last(�)follow(�; i) [ �rst(�); if i 2 last(�)
(4)

Also, we shall need several results before proving Theorem 23. First,it is 
lear that A"f (�) is obtained from A"f (�) by eliminating multipletransitions, if any. Therefore, Af(�) is obtained from Af(�) in the sameway. Also,Apos(�) = Apos(�), whi
h implies that Apos(�)=�f is obtainedby eliminating multiple transitions from Apos(�)=�f . Consequently, itis enough to prove that Af(�) ' Apos(�)=�f . Noti
e that �f is rightinvariant w.r.t. Apos(�).We de�ne the fun
tionm : pos0(�) �! Q"f m(0) = 0f andm(i) = p, if i 6= 0 and q ai! p, for some q 2 Q"f .There is a single transition labelled ai in A"f (�), so m(i) is well de�ned asits target. Be
ause the initial states of Af(�) and A"f (�) are the same andall transitions labelled ai in Af(�) have the same target state, m 
an beequivalently de�ned as m : pos0(�) �! Qf by m(0) = 0f and, for i 6= 0,



April 22, 2003 Follow automata 21m(i) = p, for any p 2 Qf su
h that there is an transition labelled ai whi
his in
oming to p. Noti
e that m is onto Qf as the states of A"f (�) whi
hhave all in
oming transitions labelled " were removed by Algorithm 20.The fun
tion m will be the isomorphism we look for.We prove next several results 
on
erning the fun
tion m. For twostates p and q, we denote the fa
t that there is a path labelled " form pto q by p " q; this path 
an also empty, that is, p = q.Lemma 26 For any i; j 2 pos(�), we have(i) i 2 �rst(�) i� there is 0f " p ai! m(i) in A"f (�).(ii) i 2 last(�) i� there is m(i) " qf in A"f (�).(iii) j 2 follow(�; i) i� there is m(i) " p aj! m(j) in A"f (�).Proof. The assertions follow from the de�nitions of �rst, last, and followin (1) and the equality L(�) = L(A"f (�)) in Theorem 6(i). �Lemma 26 implies that, in order to show the isomorphism Af(�) 'Apos(�)=�f , it is enough to prove that, for any i; j 2 pos0(�), i �f j i�m(i) = m(j). If we de�ne the equivalen
e �m = f(i; j) j m(i) = m(j)g,then we have to show �m = �f . Indeed, assume this holds. Lemma 26(ii)assures that �nal states ofApos(�)=�f are mapped to �nal states ofAf(�).Then, we have a transition [i℄�f aj! [j℄�f in Apos(�)=�f i� j 2 follow(�; i)i� (by Lemma 26(i)(iii)) m(i) " p aj! m(j) in A"f (�) i� m(i) aj! m(j) inAf(�). The isomorphism follows.The next result 
on
erning initial states follows from Lemma 26.Corollary 27 We have that m�1(0f ) = f0g i� there is no in
omingtransition labelled by some ai to 0f in A"f (�) (or, equivalently, in Af(�)).Also, if i 2 m�1(0f ), then follow(�; i) = �rst(�).We make an observation 
on
erning notations, su
h as 0f , qf , m, �f ,et
. They depend on � but we omit � when it is understood; when it isnot 
lear from the 
ontext, we add it as a further subs
ript, e.g., 0f;�,qf;�, m�, �f;�, et
.We shall need several further lemmata to prove our goal.Lemma 28 The �nal state qf 2 Q"f remains as a state in Qf after Al-gorithm 20 i� there is i 2 last(�) su
h that follow(�; i) = ;; moreover, inthis 
ase, for any i 2 last(�), m(i) = qf i� follow(�; i) = ;.Proof. The state qf is not eliminated by Algorithm 20 if and onlyif there is a transition q ai! qf in A"f (�). By de�nition of m, we have



22 Lu
ian Ilie and Sheng Yu April 22, 2003m(i) = qf and Lemma 26(ii)(iii) give that i 2 last(�) and follow(�; i) = ;.Conversely, assume i 2 last(�) with follow(�; i) = ;. By Lemma 26(ii),there is a path m(i) " qf in A"f (�). Assume this path is not empty and
onsider the last transition of it, q "! qf . A

ording to the 
onstru
tionof A"f (�) in Algorithm 4, this "-transition may appear in two ways: froman " initial y in � or from a '*' in �. In the former 
ase, there mustbe (be
ause � is redu
ed) a path from q to qf whi
h has at least onetransition labelled by some aj . Thus, by Lemma 26(iii), follow(�; i) 6= ;,a 
ontradi
tion. In the latter 
ase, we obtain a similar 
ontradi
tion; as �is redu
ed, there must be a path as before from q to q. Therefore, it mustbe that m(i) = qf and so qf remains in Af(�). Noti
e that we proved alsothe se
ond statement. �Lemma 29 For any i 2 last(�) su
h that ; 6= follow(�; i) � �rst(�),there is 0f " m(i) " qf in A"f (�).Proof. By indu
tion on �. Denote the property to be proved P1(�; i).If � 2 f;; "; ag, then the property is true. When � has at least oneoperator, assume P1 true for all subexpressions of � and let us prove itfor �. We shall use (4).(1) � = �+
. Assume i 2 last(�). The 
ase i 2 last(
) is similar. Then; 6= follow(�; i) � �rst(�) [ �rst(
) and hen
e ; 6= follow(�; i) � �rst(�).Therefore, by the indu
tive hypothesis, P1(�; i) is true and so is P1(�; i).(2) � = �
. If "(
) = ;, then i 2 last(
) with ; 6= follow(
; i) ��rst(�)["(�) �rst(
) and so it must be that "(�) = " and ; 6= follow(
; i) ��rst(
). Now, the indu
tive hypothesis gives that P1(
; i) holds, in par-ti
ular "(
) = ", a 
ontradi
tion. Thus, we have "(
) = ".Now, if i 2 last(
), then, as above, we get "(�) = " and the indu
tivehypothesis gives P1(
; i). Together, these imply P1(�; i).When i 2 last(�), we have ; 6= follow(�; i) [ �rst(
) � �rst(�) ["(�) �rst(
) and "(�) = ", as 
 6= " (� is redu
ed). If follow(�; i) = ;,then Lemma 28 gives that m(i) = qf;� (the �nal state of A"f (�)). Hen
e,P1(�; i) holds. If follow(�; i) 6= ;, then the indu
tive hypothesis givesP1(�; i) whi
h will give again P1(�; i).(3) � = ��. Then i 2 last(�) and ; 6= follow(�; i) [ �rst(�) � �rst(�)whi
h implies follow(�; i) � �rst(�). If follow(�; i) 6= ;, then P1(�; i) fol-lows from the indu
tive hypothesis on �. If follow(�; i) = ;, we use againLemma 28 and obtain P1(�; i). �Lemma 30 For any i; j 2 last(�) with ; 6= follow(�; i) � �rst(�) =follow(�; j) � �rst(�), we have either i �f j or m(i) = m(j).
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tion on �. Let us denote the property to be proved byP2(�; i; j). For � 2 f;; "; ag there is nothing to prove. We assume next �has at least one operator and P2 is true for all subexpressions of �.(1) � = � + 
. Then i and j are both in either last(�) or last(
) andthe property follows from (4) and the indu
tive hypothesis.(2) � = �
. We use (4). Assume �rst i; j 2 last(
). If "(�) = ",then the indu
tive hypothesis gives P2(
; i; j) whi
h, in turn, impliesP2(�; i; j). If "(�) = ;, then i �f;� j. If i; f 2 last(�), then "(
) = ".If "(�) = ", we 
an use indu
tive hypothesis on �. Assume "(�) = ;.Then follow(�; i) � �rst(�) = follow(�; j) � �rst(�). If both members ofthe last equality are non-empty, then we 
an again use the indu
tive hy-pothesis on �. Otherwise, for any k 2 fi; jg, follow(�; k) = ;; if non-empty,then Lemma 29 would give P1(�; k), implying "(�) = ", a 
ontradi
tion.Therefore, by Lemma 28, we get m(i) = m(j).The remaining possibility is i 2 last(�), j 2 last(
); we have also"(
) = ". The equality follow(�; i) � �rst(�) = follow(�; j) � �rst(�) ispossible only if "(�) = ;, follow(�; i) � �rst(�), and follow(
; j) = �rst(
).Also, it must be that follow(�; i) = ;, as otherwise Lemma 29 would give"(�) = ", a 
ontradi
tion. Therefore, i �f;� j.(3) � = ��. Then P2(�; i; j) follows from the indu
tive hypothesis on�. �Proof of Theorem 23. We 
an start now the proof of the equality�f=�m whi
h, as argued before, is enough to prove the statement ofTheorem 23. We do this again by indu
tion on �. If � 2 f;; "; ag, then�f;�= �m;�= ;. Assume � has at least one operator and that the propertyholds for all subexpressions of �. We shall ta
itly use (4). Also, re
all thatall expressions are assumed to be redu
ed.(1) � = � + 
. Corollary 27 gives m�1(0f;�) = f0g. Consider �rst the
ase when � = "; the 
ase 
 = " is symmetri
. If i 6= 0 and i �f;� 0, thenfollow(
; i) = �rst(
) 6= ;, and so, by Lemma 29, " 2 L(
), 
ontradi
tionwith � redu
ed. Therefore, �f;� = �f;
 \ pos(�)2. Sin
e also �m;� =�m;
 \ pos(�)2, the indu
tive hypothesis implies �f;� = �m;�.Assume now � 6= ", 
 6= ". We know that no i 6= 0 
an have i �f;� 0.Take i 6= 0; j 6= 0 su
h that i �f;� j. If i and j are both in pos(�) orpos(
), then i �f;� j or i �f;
 j, respe
tively. If not, then i 2 last(�),j 2 last(
), and follow(�; i) = ; = follow(
; j). Therefore,�f;� = ((�f;� [ �f;
) \ pos(�)2)[ f(i; j) 2 last(�)� last(
) j follow(�; i) = ; = follow(
; j)g:
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ording to Algorithm 4 and Corollary 27, m�1� (0f;�) is either f0g orempty (in the 
ase of (a1)). Similarly, using Lemma 28, m�1� (qf;�) 
ontainsthose i 2 pos(�) with follow(�; i) = ;. Therefore, �f;� = �m;�.(2) � = �
. Sin
e � is redu
ed, both � and 
 are di�erent from ".Hen
e, for i 6= 0, we have i �f;� 0 i� i 2 pos(�), i �f;� 0. This implies�f;� \(f0g � pos(�)) =�f;� \(f0g � pos(�)).Take i 6= 0, j 6= 0, su
h that i �f;� j. If both i and j are in pos(�) orpos(
), then i �f;� j or i �f;
 j, respe
tively. The 
onverse holds as well.If i 2 pos(�), j 2 pos(
), then it must be that i 2 last(�), follow(�; i) = ;,and j �f;
 0. The 
onverse is also true. Therefore, we have�f;� = �f;�[ (�f;
 \ pos(
)2)[ f(i; j) 2 last(�)� pos(
) j follow(�; i) = ;; j �f;
 0g:Consider now �m;�. The positions mapped to the same states by m� orm
 will also be mapped the same by m�. Also, the positions mappedby m� to 0f;� are pre
isely those mapped this way by m�. A

ording toAlgorithm 4 (and its improvement (a)) and Lemma 28, the positions i in� with follow(�; i) = ; and those j in 
 with m
(j) = 0f;
 are mapped tothe same state. Now the indu
tive hypothesis shows that �f;� = �m;�.(3) � = ��. Consider �rst i 6= 0, i �f;� 0. Lemma 29 gives that i 2pos(�)�last(�) is not possible. Thus i 2 last(�) with follow(�; i) � �rst(�).So, either follow(�) = ; or, by Lemma 29, there is 0f;� " m(i) " qf;� inA"f (�). The 
onverse holds true be
ause of Lemma 26. Therefore�f;� \(f0g�pos(�))= f(0; i) j i 2 last(�); 0f;� " m(i) " qf;� in A"f (�)g[ f(0; i) j i 2 last(�); follow(�; i) = ;g:It 
an be seen now that �f;� \(f0g � pos(�)) =�m;� \(f0g � pos(�))be
ause of the de�nition of A"f in Algorithm 4.Consider next i 6= 0, j 6= 0 su
h that i �f;� j. If i; j 2 pos(�)� last(�),then i �f;� j. If i; j 2 last(�), then follow(�; i) [ �rst(�) = follow(�; j) [�rst(�). If one of follow(�; i) and follow(�; j) is a subset of �rst(�), then theother is also and, for any k 2 fi; jg we have that either follow(�; k) = ; orfollow(�; k) 6= ;; in the latter 
ase, by Lemma 29,there is 0f;� " m(k) " qf;� in A"f (�). On the other hand, if none of follow(�; i) and follow(�; j) isin
luded in �rst(�), then ; 6= follow(�; i)��rst(�) = follow(�; j)��rst(�),whi
h gives, by Lemma 30 and the indu
tive hypothesis on �, that i �f;�



April 22, 2003 Follow automata 25j. We have proved that�f;� \ pos(�)2= (�f;� \ pos(�)2)[ f(i; j) 2 last(�)2 j 8k 2 fi; jg; either follow(�; k) = ;or there is 0f;� " m(i) " qf;� in A"f (�)g:Now, again by the de�nition of A"f in Algorithm 4 and the improvementin (b), we have �f;� \ pos(�)2 =�m;� \ pos(�)2. Therefore, �f;� = �m;�,and the proof of Theorem 23 is 
ompleted. �So, we have that both follow and partial derivative automata are quo-tients of the position automaton. As it will be seen in Se
tion 10, thetwo quotients are in
omparable. Let us further remark that [IlYu02b℄investigates further su
h quotients and shows how to build the largestright-invariant equivalen
e w.r.t. the position automaton, whi
h gives thesmallest quotient, therefore smaller than either of follow or partial deriva-tive automaton. However, it is an open problem how to 
ompute thatquotient fast; a

ording to [IlYu02b℄, it 
an be 
omputed in polynomialtime.9 Af uses optimally the positionsFinally, we show that the follow automaton Af(�) uses the whole infor-mation whi
h 
omes from positions of �. Indeed, the follow automatonfor marked expressions 
annot be improved. Af(�) is a deterministi
 au-tomaton and let the minimal automaton equivalent to it be min(Af(�)).Then min(Af(�)) is an NFA a

epting L(�) whi
h 
an be 
omputed intime O(j�j2 log j�j) using the minimization algorithm of Hop
roft [Ho71℄.This is, in fa
t, another way of using positions to 
ompute NFAs for reg-ular expressions. However, it is interesting to see that min(Af(�)) bringsno improvement over Af(�).Theorem 31 min(Af(�)) ' Af(�).Proof. It is enough to show that min(Af(�)) ' Af(�), that is, Af(�)is already minimal. We �rst 
omplete the automaton Af(�); we add anew non-�nal state, denoted ;, and all missing transitions will go to it.Denote the 
ompleted automaton by A;f (�). Consider two positions iand j whi
h have di�erent follow sets and, with no loss of generality, takek 2 follow(�; i)� follow(�; j). Then, there is a word w 2 A� su
h that akwtakes the automaton A;f (�) from the state i to a �nal state. On the otherhand, akw takes the automaton A;f (�) from the state j to ;. Therefore,
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annot be merged. Sin
e they have been arbitrarily 
hosen, theautomaton Af(�) is minimal. �Noti
e also that 
omputing Af(�) by "-elimination in A"f (�) is fasterthan using Hop
roft's algorithm [Ho71℄ plus unmarking.10 Comparing Af with other 
onstru
tionsWe dis
uss in this se
tion some examples to 
ompare the follow automatonwith the best 
onstru
tions to date. We shall in
lude also 
omparisonwith the 
ommon follow sets automaton of [HSW01℄, denoted below byA
fs(�). We do not in
lude here the very long des
ription of A
fs whi
h
an be found in [HSW01℄ or [HaMu00℄.We start with some examples showing that Af 
an be mu
h smallerthan either of Apos and Apd and that Af is in
omparable with either ofApd and A
fs.Example 32 Consider �n from Example 3. The follow automaton issmaller than all the others:jApos(�n)j = jApd(�n)j = �(j�nj2),jAf(�n)j = �(j�nj),jA
fs(�n)j = �(j�nj(log(j�nj))2).Example 33 Consider the regular expression�n = a1(b1 + � � �+ bn)� + a2(b1 + � � � + bn)� + : : : + an(b1 + � � �+ bn)�:We have now that the partial derivative automaton is the smallest:jApos(�n)j = �(j�nj3=2),jAf(�n)j = �(j�nj),jApd(�n)j = �(j�nj1=2), andjA
fs(�n)j = �(j�nj(log(j�nj))2).Example 34 Consider the regular expression of [HSW01℄�n = (a1 + ")(a2 + ") � � � (an + "):In this 
ase the 
ommon follow sets automaton is the smallest:jApos(�n)j = jAf(�n)j = jApd(�n)j = �(j�nj2), andjA
fs(�n)j = �(j�nj(log(j�nj))2).



April 22, 2003 Follow automata 27Next, we give some real-life examples whi
h have some interesting
ommon properties. For all of them, the follow automaton and the partialderivative automaton are isomorphi
 and smaller than the other two.These examples are:- C-
omments: /*((A� f*g) + **�(A� f*; /g))�**�/- 
oating point numbers:(0+ � � �+9)(0+ � � �+9)�.((0+ � � �+9)(0+ � � �+9)�+ ")(e+E)(++-+ ")(0+ � � �+ 9)(0+ � � �+ 9)�- programming languages identi�ers:(a+ � � � z+ A+ � � � Z)(a+ � � � z+ A+ � � � Z+ 0+ � � � + 9)�If these examples are generalized to some parametrized examples westill have that Af and Apd are isomorphi
 and have linear size; the posi-tion automaton has quadrati
 size and the 
ommon follow sets automatonhas size linear times the square of the logarithm. We show it only for thelast example. Con
lusions of these results are dis
ussed in the next se
-tion.Example 35 Consider the regular expression (generalized identi�ers inprogramming languages)�n;m = (a1 + a2 + � � �+ an)(a1 + a2 + � � �+ an + b1 + b2 + � � � + bm)�:We havejAf(�n;m)j = jApd(�n;m)j = �(j�n;mj),jApos(�n;m)j = �(j�n;mj2), andjA
fs(�n;m)j = �(j�n;mj(log(j�n;mj))2).We �nally noti
e that we did not 
ompare our 
onstru
tion with theone of Chang and Paige [ChPa97℄ sin
e we do not work with 
ompressedautomata.11 Con
lusions and further resear
hWe gave two new algorithms to 
onstru
t nondeterministi
 �nite au-tomata from regular expressions. The �rst 
onstru
ts "NFAs whi
h aresmaller than all other similar 
onstru
tions and also very 
lose to opti-mal. The se
ond 
onstru
ts the follow NFAs whi
h are 
on
eptually byfar the simplest 
ompared to all the others: we 
onstru
t the follow "NFA,whi
h is elementary, and then eliminate the "-transitions, whi
h is againelementary. However, the resulting automata have interesting properties.The follow automaton is always a quotient of the position automaton,
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ompute, and is at least as small as all the other simi-larly 
onstru
ted automata in most 
ases. We believe that these featureswill make these automata very attra
tive for pra
ti
al purposes. Severalproblems should be investigated further.First, it seems that the time required to build the follow automatonis linear in terms of its size. At least we do not have examples to provethe 
onverse. We remark that the assertion is not true in general. Thereare examples of "NFAs for whi
h the "-elimination takes longer than bothsize of input and size of output.Se
ond, the follow automaton seems to have linear size in most 
ases.It is of interest to see whi
h are those 
ases and when the size is far fromlinear. Also, the 
ommon follow sets automaton seems to have size lineartimes the logarithm squared in most 
ases. Some lower bounds on its sizemight bring some light here.Third, a more rigorous 
omparison between the follow automaton and
ommon follow sets or partial derivative automaton should be done. Thisseems diÆ
ult be
ause average 
ase analysis is, very likely, too 
ompli-
ated. Probably the only way to de
ide whi
h one is better is by testingall of them in real-life appli
ations.Referen
es[ASU86℄ Aho, A., Sethi, R., Ullman, J., Compilers: Prin
iples, Te
hniques, and Tools,Addison-Wesley, MA, 1988.[An96℄ Antimirov, V., Partial derivatives of regular expressions and �nite automaton
onstru
tions, Theoret. Comput. S
i. 155 (1996) 291 { 319.[BeSe86℄ Berry, G, Sethi, R., From regular expressions to deterministi
 automata,Theoret. Comput. S
i. 48 (1986) 117 { 126.[BrK93℄ Br�uggemann-Klein, A., Regular expressions into �nite automata, Theoret.Comput. S
i. 120 (1993) 197 { 213.[Br64℄ Brzozowski, J., Derivatives of regular expressions, J. ACM 11 (1964) 481 { 494.[ChZi01a℄ Champarnaud, J.-M., Ziadi, D., New �nite automaton 
onstru
tions basedon 
anoni
al derivatives, Pro
. of CIAA 2000, LNCS 2088, Springer, 2001, 94 {104.[ChZi01b℄ Champarnaud, J.-M., Ziadi, D., Computing the equation automaton of aregular expression in O(s2) spa
e and time, Pro
. of 12th Combinatorial PatternMat
hing (CPM 2001), LNCS 2089, Springer, 2001, 157{168.[ChPa97℄ Chang, C.-H., Paige, R., From regular expressions to DFA's using 
om-pressed NFA's, Theoret. Comput. S
i 178 (1997) 1 { 36.[CrHa97℄ Cro
hemore, M., Han
art, C., Automata for pattern mat
hing, in: G. Rozen-berg, A. Salomaa, eds., Handbook of Formal Languages, Vol. II, Springer-Verlag,Berlin, 1997, 399 { 462.[Fr98℄ Friedl, J., Mastering Regular Expressions, O'Reilly, 1998.[Gl61℄ Glushkov, V.M., The abstra
t theory of automata, Russian Math. Surveys 16(1961) 1 { 53.



April 22, 2003 Follow automata 29[HaMu00℄ Hagenah, C., Mus
holl, A., Computing �-free NFA from regular expressionsin O(n log2(n)) time, Theor. Inform. Appl. 34 (4) (2000) 257 { 277.[Ho71℄ Hop
roft, J., An n log n algorithm for minimizing states in a �nite automaton,Pro
. Internat. Sympos. Theory of ma
hines and 
omputations, Te
hnion, Haifa,1971, A
ademi
 Press, New York, 1971, 189{196.[HoUl79℄ Hop
roft, J.E., Ullman, J.D., Introdu
tion to Automata Theory, Languages,and Computation, Addison-Wesley, Reading, Mass., 1979.[HSW01℄ Hromkovi
, J., Seibert, S., Wilke, T., Translating regular expressions intosmall �-free nondeterministi
 �nite automata, J. Comput. System S
i. 62 (4) (2001)565 { 588.[IlYu02a℄ Ilie, L., S. Yu, Constru
ting NFAs by optimal use of positions in regularexpressions, in: A. Apostoli
o, M. Takeda, eds., Pro
eedings of the 13th AnnualSymposium on Combinatorial Pattern Mat
hing (CPM) (Fukuoka, 2002), Le
tureNotes in Comput. S
i., 2373, Springer, Berlin, 2002, 279 { 288.[IlYu02b℄ Ilie, L., S. Yu, Algorithms for 
omputing small NFAs, in: K. Diks, W. Rytter,eds., Pro
eedings of the 27th International Symposium on Mathemati
al Founda-tions of Computer S
ien
e (MFCS), (Warszawa, 2002), Le
ture Notes in Comput.S
i., 2420, Springer, Berlin, 2002, 328 { 340.[M
NYa60℄ M
Naughton, R., Yamada, H., Regular expressions and state graphs forautomata, IEEE Trans. on Ele
troni
 Computers 9 (1) (1960) 39 { 47.[SiSo88℄ Sippu, S., Soisalon-Soininen, E., Parsing Theory: I Languages and Parsing,EATCS Monographs on Theoreti
al Computer S
ien
e, Vol. 15, Springer-Verlag,New York, 1988.[Th68℄ Thompson, K., Regular expression sear
h algorithm, Comm. ACM 11 (6)(1968) 419 { 422.[Yu97℄ Yu, S., Regular Languages, in: G. Rozenberg, A. Salomaa, eds., Handbook ofFormal Languages, Vol. I, Springer-Verlag, Berlin, 1997, 41 { 110.


