
Follow automata?Luian Ilie??;? ? ? and Sheng YuyDepartment of Computer Siene, University of Western OntarioN6A 5B7, London, Ontario, CANADAe-mails: ilie|syu�sd.uwo.aApril 22, 2003Abstrat. We give two new algorithms for onstruting small nonde-terministi �nite automata (NFA) from regular expressions. The �rstonstruts NFAs with "-transitions ("NFA) whih are smaller than allthe other "NFAs obtained by similar onstrutions. Their size is at most32 j�j+ 52 , where � is the regular expression. This is very lose to optimalsine we prove also the lower bound 43 j�j + 52 . The seond onstrutsNFAs. It uses "-elimination in the "NFAs we just introdued and buildsa quotient of the well-known position automaton w.r.t. the equivalenegiven by the follow relation; therefore giving the name of follow automa-ton. The new automaton uses optimally the information from the posi-tions of a regular expression. We ompare the follow automaton with thebest onstrutions to date and show that it has important advantagesover those.Keywords: regular expressions, nondeterministi �nite automata, algo-rithms, positions, partial derivatives, quotients, right-invariant equiva-lenes, "-elimination1 IntrodutionThe importane of regular expressions for appliations is well known.They desribe lexial tokens for syntati spei�ations and textual pat-terns in text manipulation systems. Regular expressions have beome thebasis of standard utilities suh as sanner generators (lex), editors (emas,vi), or programming languages (perl, awk), see [ASU86,Fr98℄. While reg-ular expressions provide an appropriate notation for regular languages,their implementation is done using �nite automata. The size of the au-tomata is ruial for the eÆieny of the algorithms using them; e.g.,? An extended abstrat of this paper has been presented at The 13th Annual Sympo-sium on Combinatorial Pattern Mathing (CPM'02) (Fukuoka, 2002); see [IlYu02a℄.?? orresponding author? ? ? Researh partially supported by NSERC grant R3143A01.y Researh partially supported by NSERC grant OGP0041630.

2 Luian Ilie and Sheng Yu April 22, 2003for regular expression mathing. Sine the deterministi �nite automataobtained from regular expressions an be exponentially larger in size, inmany ases nondeterministi �nite automata are used instead. Minimiza-tion of NFAs is PSPACE-omplete, see [Yu97℄, so other methods need tobe used to obtain small NFAs. Probably the most famous suh onstru-tions are the ones of Thompson [Th68℄ whih builds a nondeterministi�nite automaton with " transitions ("NFA) and the one of Glushkov andMNaughton-Yamada [Gl61,MNYa60℄ whih outputs a nondeterministi�nite automaton without "-transitions (NFA), alled position automaton.While Thompson's automaton has linear size (in terms of the size of theregular expression), the position automaton has size at most quadratiand an be omputed in quadrati time by the algorithm of Br�ugemann-Klein [BrK93℄. We note that throughout the paper the size of automatawill inlude both transitions and states.Antimirov [An96℄ generalized Brozozowski's derivatives and built thepartial derivative automata. Champarnaud and Ziadi [ChZi01a,ChZi01b℄improved very muh Antimirov's O(n5) algorithm for the onstrution ofsuh NFA; their algorithm runs in quadrati time. They proved also thatthe partial derivative automaton is a quotient of the position automatonand so it is always smaller than or equal to the position automaton.The best worst ase omes with the onstrution of Hromkovi� etal. [HSW01℄; their NFA, alled ommon follow sets automaton, has sizeat most O(n(log n)2) and, by the algorithm of Hagenah and Musholl[HaMu00℄, it an be omputed in time O(n(log n)2). This onstrutionarti�ially inreases the number of states in order to redue the numberof transitions.In this paper, we propose new algorithms to onstrut very small non-deterministi �nite automata, with or without "-transitions, from regularexpressions. Our �rst algorithm onstruts "NFAs whih are smaller thanall the others obtained by similar onstrutions; e.g., the one of Thomp-son [Th68℄ or the one of Sippu and Soisalon-Soininen [SiSo88℄ (whihbuilds a smaller "NFA than Thompson's). Given a regular expression �,the size of our "NFA for � is at most 32 j�j + 52 . This is very lose to theoptimal; we prove a lower bound of 43 j�j+ 52 .We give then a method for onstruting NFAs. It uses "-elimination inthe "NFA newly introdued. The obtained NFAs have several remarkableproperties. First, although the onstrution of this NFA has, apparently,nothing to do with positions, it turns out, unexpetedly, that the NFAis a quotient of the position automaton with respet to the equivalenegiven by the follow relation; therefore giving the name of follow automa-

April 22, 2003 Follow automata 3ton. Seond, we show that the follow automaton uses optimally the in-formation from the positions of the regular expression and thus it annotbe improved this way. Third, the follow automaton is, oneptually, thesimplest ompared to the best similar onstrutions. Finally, the followautomaton seems to perform very well in pratial appliations. Even ifthe worst ase is quadrati in what onerns both the size of the automa-ton and the running time of the algorithm, in pratie it performs muhbetter. For instane, it seems to outdo on most examples the ommonfollow sets automaton whih, as we mentioned, has the best worst asesize and running time. The worst ase seems to be quite irrelevant here.On the other hand, it seems very diÆult to ompute the average asesize and running time of suh onstrutions. Therefore, we have to rely onexamples to make omparisons. For most examples, the ommon followsets automaton reahes its upper bound of O(n(log n)2), while the followautomaton is linear. (Preisely, we onsider parameterized examples.)The paper is organized as follows. Setion 2 ontains the basi def-initions we need. In Setion 3 we give an algorithm to redue regularexpressions suh that many redundant elements are eliminated. Setion 4gives our onstrution of "NFAs. It also gives the proof that it is alwayssmaller than the well known onstrutions of [Th68,SiSo88℄ and the lowerbound showing that it is very lose to optimal. Setion 5 realls the posi-tion and partial derivative automata. The fat that the partial derivativeautomaton is a quotient of the position automaton is given a simpler proofin Setion 6. The onstrution of our follow NFAs is given in Setion 7.Setion 8 ontains the proof that our NFA is a quotient of the positionautomaton. The optimal use of positions in the onstrution of the followNFA is shown in Setion 9. Some examples are given in Setion 10 to om-pare our onstrutions with the position, partial derivative, and ommonfollow sets automata. Finally, we disuss in Setion 11 some of the mostimportant problems whih should be lari�ed about follow automata andrelated onstrutions.2 Regular expressions and automataWe reall here the basi de�nitions we need throughout the paper. Forfurther details we refer to [HoUl79℄ or [Yu97℄.Let A be an alphabet and A� the set of all words over A; " denotes theempty word and the length of a word w is denoted jwj. A language overA is a subset of A�. A regular expression over A is ;, ", or a 2 A, or isobtained from these applying the following rules �nitely many times: for

4 Luian Ilie and Sheng Yu April 22, 2003two regular expressions � and �, the union, �+ �, the atenation, � � �,and the star, ��, are regular expressions. The regular language denotedby a regular expression � is L(�). Also, we de�ne "(�) to be " if " 2 L(�)and ; otherwise. The size of � is denoted j�j and represents the numberof symbols in � when written in post�x (parentheses are not ounted).A �nite automaton is a quintupleM = (Q;A; Æ; q0; F), where Q is theset of states, A is the input alphabet, q0 2 Q is the initial state, F � Q isthe set of �nal states, and Æ � Q�(A[f"g)�Q is the transition mapping;we shall denote, for p 2 Q; a 2 A [f"g, Æ(p; a) = fq 2 Q j (p; a; q) 2 Æg.The automaton M is alled deterministi (DFA) if Æ : Q � A ! Q isa (partial) funtion, nondeterministi (NFA) if Æ � Q � A � Q, andnondeterministi with "-transitions ("NFA) if there are no restritions onÆ. The language reognized by M is denoted L(M). The size of a �niteautomaton M is jM j = jQj+ jÆj; we ount both states and transitions.Let �� Q�Q be an equivalene relation. For q 2 Q, [q℄� denotes theequivalene lass of q w.r.t. � and, for S � Q, S=� denotes the quotientset S=� = f[q℄� j q 2 Sg.We say that � is right invariant w.r.t. M i�(i) �� (Q�F)2[F 2 (�nal and non-�nal states are not �-equivalent)and(ii) for any p; q 2 Q, a 2 A, if p � q, then Æ(p; a)=� = Æ(q; a)=�.If � is right invariant, the quotient automaton M=� is onstruted asM=� = (Q=�; A; Æ�; [q0℄�; F=�) where Æ� = f([p℄�; a; [q℄�) j (p; a; q) 2Æg; notie that Q=� = (Q � F)=� [F=�, so we do not merge �nal withnon-�nal states. Notie that L(M=�) = L(M).3 Redued regular expressionsWe give in this setion an algorithm for reduing regular expressions.The intent is to redue the number of ;'s and "'s, as well as the total sizeof the expression. Suh redutions are often mentioned in literature, butwe want to make things more preise here. The redued form of regularexpressions is used later in the paper where preise assumptions aboutthe struture of the regular expressions are needed. As it will be seen, ourresults hold as well for expressions whih are not redued.We �rst introdue several notations. For a regular expression � overA, we denote by j�jA and j�j" the number of ourrenes in � of lettersfrom A and ", respetively.Given a regular expression � over A, assume we have the syntax treefor it; when building the tree we assume 0+0 left assoiative (that is,

April 22, 2003 Follow automata 5a + b + = (a + b) +), whih will enable us to redue further thenumber j�j". We also assume that eah vertex in the tree is labelled bythe orresponding symbol from A[f";+; �; �g and has assoiated with itthe subexpression orresponding to the subtree rooted at the vertex.The regular expressions are redued aording to the algorithm below.Algorithm 1 (a) ;-redution: ompute, for eah vertex �, whether ornot L(�) = ; and then modify � suh that, at the end, either � = ; or �ontains no ;.(b) "-redution: ompute, for eah vertex �, whether " 2 L(�) andwhether L(�) = f"g; for eah vertex � with L(�) = f"g, replae thesubtree rooted at � by " and then:- if the parent of � is labelled by 0�0, then replae the parent by theother hild- if the parent is labelled by 0�0, then replae the parent by the hild- if the parent of � is labelled 0+0 and " is in the language of theother hild, then replae the parent by the other hild.() 0�0-redution: for any vertex labelled by 0�0, if its hild is alsolabelled by 0�0, then replae it by its hild.We shall all � obtained after applying Algorithm 1 redued. We givenext two observations onerning the size of redued regular expressionsfollowed by some examples proving their optimality.Proposition 2 For any redued regular expression � suh that � 62 f;; "g,we have(i) j�jA � j�j",(ii) j�j � 6j�jA � 2.Proof. (i) We prove by strutural indution that, for any redued� 6= ", if " 62 L(�), then j�jA � j�j"+1 and if " 2 L(�), then j�jA � j�j".The property is true for � = a, a 2 A. When � has at least oneoperator, we assume the property true for all subexpressions of � di�erentfrom " and prove it for �.First, assume � = � + . If both � and are di�erent from ", theproperty is shown true for � by the indutive hypothesis on � and .If � = " (the ase = " is symmetri), then, sine � is redued, wehave " 62 L(). The indutive hypothesis gives j�jA = jjA � jj" + 1 =j�j" + jj" = j�j".If � = � � , then none of � and an be ", and the property followsfrom the indutive hypothesis.

6 Luian Ilie and Sheng Yu April 22, 2003If � = ��, then � 6= " and, by the indutive hypothesis, j�jA = j�jA �j�j" = j�j".(ii) We prove the following assertions simultaneously by struturalindution:- if " 62 L(�), then j�j � 6j�jA � 5,- if the root of �'s tree is labelled by 0�0, then j�j � 6j�jA � 2,- if the root of �'s tree is labelled by 0+0 or 0�0, then j�j � 6j�jA � 3.For � = a, a 2 A, the property is true. Assume the property true forall subexpressions of � di�erent from " and prove it for �.First, take � = � + . If both � and are di�erent from ", thenthe property follows by the indutive hypothesis on � and . If � = "(similarly for = "), then the indutive hypothesis gives j�j = jj + 2 �6jjA � 5 + 2 = 6j�jA � 3.Assume � = � � . If " 62 L(�), then at least one of L(�) and L()does not ontain " and the indutive hypothesis gives j�j = j�j + jj +1 � 6j�jA + 6jjA � 5 � 2 + 1 < 6j�jA � 5. If " 2 L(�), then " mustbe in both L(�) and L() and we have, by the indutive hypothesis,j�j = j�j+ jj+ 1 � 6j�jA � 2 + 6jjA � 2 + 1 = 6j�jA � 3.Finally, if � = ��, then � 6= " and j�j = j�j + 1 � 6j�jA � 3 + 1 =6j�jA � 2. �Example 3 Consider �1 = (a1+ ")� and de�ne indutively, for all i � 1,�i+1 = (�i + �i)�, where �i is obtained from �i by replaing eah aj byaj+j�ijA . For instane,�3 = (((a1 + ")� + (a2 + ")�)� + ((a3 + ")� + (a4 + ")�)�)�:Then, for any n � 1, �n is redued and j�njA = 2n�1, j�nj" = 2n�1, andj�nj = 6 � 2n�1 � 2.We shall assume that all regular expressions throughout the paperare redued. This will not a�et the omplexity of our algorithms sinereduing an expression takes only linear time and the size of the reduedexpression is less than or equal to the size of the initial expression. Also,Proposition 2 says that all omplexities an be expressed in terms of thenumber of letters in the regular expression, that is, j�jA.4 Small "NFAs from regular expressionsWe give in this setion our new onstrution of "NFAs from regular ex-pressions. As in the previous onstrutions, we onstrut the "NFA byindution using the struture of the regular expression.

April 22, 2003 Follow automata 7Algorithm 4 Given a regular expression �, the algorithm onstrutsan "NFA for � indutively, following the struture of �, and is shownin Fig. 1. The steps should be lear from the �gure but we bring somefurther improvements at eah step:(a) After atenation (Fig. 1(v)): denote the state ommon to the twoautomata by p; (a1) if there is a single transition outgoing from p, sayp "! q, then the transition is removed and p and q merged; otherwise (a2)if there is a single transition inoming to p, say q "! p, then the transitionis removed and p and q merged.(b) After iteration (Fig. 1(vi)), denote the middle state by p. If thereis a yle ontaining p suh that all its transitions are labelled by ", thenall transitions in the yle are removed and all states in the yle aremerged.() After the end of all steps in Fig. 1; if there is only one transitionleaving the initial state and is labelled ", say q0 "! p, then the transitionis removed and q0 and p merged.(d) In ase of multiple transitions, that is, transitions with the samesoure, target, and label, only one transition is kept, the others are re-moved.
"(vi) iteration(iv) union (v) atenation "a"(ii) "(i) ; (iii) a

Fig. 1. The onstrution of A"fExample 5 An example of the onstrution in Algorithm 4 is given inFig. 2. The regular expression � used there will be our running examplethroughout the paper. The example was arefully ontrived suh that anytwo onstrutions whih are, in general, di�erent will be di�erent on � ."a; b a; bba"Fig. 2. A"f (�) for � = (a+ b)(a� + ba� + b�)�

8 Luian Ilie and Sheng Yu April 22, 2003We all the automaton returned by Algorithm 4 follow "NFA (thereason for this name will be lear later) and denote itA"f (�) = (Q"f ; A; Æ"f ; 0f ; qf):The next theorem proves the orretness and running time of theAlgorithm 4.Theorem 6 For any regular expression � we have:(i) L(A"f (�)) = L(�) and(ii) A"f (�) an be omputed in time O(j�j).Proof. (i) is lear by onstrution. For (ii), we just point out howthe improvements at (b) an be done in linear time. Anytime a 0�0 or-responding to a subexpression �� of � is proessed, we attempt �nding"-yles. Beause all previous "-yles have been removed, the only pos-sible yles are those ontaining the state obtained by merging the initialand �nal state of the follow "NFA for �. We an do a omplete searhusing baktraking on the "-transitions in �'s automaton; when a yleis found, it is removed and the states are merged; when we baktrak onan "-transition, we mark that "-transition suh that it will not be triedseond time. This is orret beause suh "-transitions annot be involvedin other "-yles during the remaining of the onstrution. Consequently,all improvements at (b) an be done together in time O(j�j). �The next theorem says that this "NFA is always smaller than theones obtained by the onstrutions of Thompson [Th68℄ and Sippu andSoisalon-Soininen [SiSo88℄. We give also an example showing that it anbe muh smaller. Notie that in the example we do not use the improve-ments (a)-(d) at all sine we want to emphasize the superiority of the oreof our onstrution. (It is easy to onstrut arti�ial expressions for whihour onstrution, using (a)-(d), gives an arbitrarily smaller automaton.)Theorem 7 For any regular expression �, the size of A"f (�) is smallerthan the size of the "NFAs obtained from � using the onstrutions ofThompson or Sippu and Soisalon-Soininen.Proof. Reall �rst the other two onstrutions. They are indutive andshould be lear from Figs. 3 and 4.All three onstrutions start the same way and at eah indutive step(aording to the struture of the regular expression), ours adds less tran-sitions and less states. Preisely, the total number of states and transitionsadded by eah of the three onstrutions for an operation 0+0, 0�0, and 0�0,respetively, is (a negative number means that the size dereases):

April 22, 2003 Follow automata 9- for our onstrution: �2, �1, 3;- for Thompson's onstrution: 6, 1, 6;- for Sippu and Soisalon-Soininen's onstrution: 2, �1, 5; �
"" "(vi) iteration""(ii) "(i) ; (iii) a" a

(v) atenation"""" (iv) unionFig. 3. The onstrution of Thompson [Th68℄
(vi) iteration"""" "(iv) union (v) atenation(i) ; (iii) a" a(ii) "

Fig. 4. The onstrution of Sippu and Soisalon-Soininen [SiSo88℄Example 8 For the regular expression � = a1+a2+ � � �+an, A"f (�) hassize n + 2 (2 states, n transitions), Thompson's has size 9n � 6 (4n � 2states, 5n � 4 transitions), and Sippu and Soisalon-Soininen's has size5n� 2 (2n states, 3n� 2 transitions).We disuss next an upper bound on the size of our "NFA.A �rst remark onerns the following invariant of our onstrution.For any subexpression of �, the automaton onstruted by our algorithmhas one starting state of indegree zero and one �nal state of outdegreezero, exept for the improvement at () whih is done only at the veryend of the onstrution.A tehnial remark onerns the indutive proofs about the follow"NFA. When using indution, we shall taitly work with A"f obtainedwithout the improvement (), as this is the way indution is done.The improvements in the above steps (a)-(d) are atually very impor-tant sine they an redue signi�antly the size of the A"f ; espeiallythe one at (b). As a onsequene, for any subexpression of the form(��1 + � � � + ��m + ��1��2 � � ���n)�, the 0�0s for �i's and �i's do not inrease

10 Luian Ilie and Sheng Yu April 22, 2003the size of the automaton. For instane, the onstruted automata for theexpressions (a�+b�)�, (a�b�)�, and (a+b)� are idential. The same is truefor any " in an expression like (�1 + � � �+ "+ � � �+ �m)�.We see next a very general ase when 0�0s in the regular expressiondo not hange the size of the automaton and we shall be able to makeimportant assumptions on the struture of the expressions. We say thata regular expression � is �-avoidable if there is a path in �'s tree from theroot to a leaf suh that no vertex on this path (inluding the root andthe leaf) is labelled by 0�0. Otherwise � is alled �-unavoidable.Assume � is �-unavoidable and onstrut a regular expression, denotedremove(�), as follows. For any path from the root of �'s tree to a leaf,onsider the 0�0 whih is losest to the root (there is at least one 0�0). Weremove this 0�0 and hange all 0�0s on the path from the removed 0�0 tothe root into 0+0s. For instane, if � = a�b� + �, then remove(�) = a +b+ . Now, for any regular expression �, we onstrut another expressionavoid(�) as follows. As long as there are subexpressions of the form ��in � with � �-unavoidable, we hoose a minimal suh �, i.e., � has nosubexpression � with �-unavoidable, and replae � by remove(�). Asan example, if � = �(a�(b)�+d�)�+((a+ b))�b���a+ b, then avoid(�) =(a+ b+ d+ (a+ b) + b)�a+ b.The idea is to remove 0�0s from � suh that the language of � remainsunhanged but the size dereases. As we shall see in a moment, the au-tomaton "NFA remains the same but for an expression of smaller size.This will help us when proving an upper bound on the size of A"f .Lemma 9 For any regular expression �, A"f (��) and A"f (avoid(�)�) areidential.Proof. It is enough to show that, for any �-unavoidable expression �,A"f (��) and A"f (remove(�)�) are the same. As � is �-unavoidable, thereare �i; i � i � n, subexpressions of � suh that � is obtained from��i ; 1 � i � n, by using only 0+0 and 0�0. When building the follow "NFAfor ��i , the initial and �nal states of the follow "NFA for �i are merged toa single state, say qi. This qi is on a path labelled " from the initial to the�nal state of the follow "NFA for �. Therefore, in the automaton of ��,all qis will be merged. Clearly, the same happens in the follow automatonof remove(�)�. �Before proving the upper bound on the size of the follow "NFA, weneed several notations and a tehnial lemma. For a regular expression� over A, we denote by j�j+; j�j.; j�j� the number of ourrenes in � of0+0, 0�0, 0�0, respetively. Thus j�j = j�jA + j�j" + j�j+ + j�j. + j�j�.

April 22, 2003 Follow automata 11We partition the set of verties in �'s tree that are labelled by 0�0 intofour lasses: the �rst ontains the root, if labelled by 0�0, and those whoseparent is labelled by 0�0 and whose sibling is not labelled by 0�0 { let theirnumber be 1; the seond ontains those whose parent is labelled by 0�0and whose sibling is also labelled by 0�0 { their number is 22; the thirdand fourth sets are de�ned as the previous two by replaing the label 0�0of the parent by 0+0 { their numbers are p1 and 2p2, respetively.Lemma 10 Let � be a regular expression suh that for any subexpression�� of it, � is �-avoidable. Then j�j� + p2(�) � 12(j�j + 1).Proof. We prove the following properties, whih imply the statement;it is assumed that � below has the property in the statement, i.e., for anysubexpression �� of it, � is �-avoidable:(1) - if � is �-unavoidable and the root of �'s tree is not labelled by0�0, then j�j� + p2(�) � 12(j�j + 1),(2) - if the root of �'s tree is labelled by 0�0, then j�j� + p2(�) � 12 j�j.(3) - if � is �-avoidable, then j�j� + p2(�) � 12 (j�j � 1),We use strutural indution. If � 2 f;; "g [fa j a 2 Ag, then j�j� +p2(�) = 0 and (3) is satis�ed. When � has at least one operator, weassume the properties true for all subexpressions of � and prove them for�. (1) Consider �rst the ase � = � + . If at least one of � and hasthe root of the syntax tree not labelled by 0�0, then, by the indutivehypothesis, j�j� + p2(�) = j�j� + jj� + p2(�) + p2() � 12(j�j + 1) +12(jj + 1) = 12 (j�j + 1). If both roots of the syntax trees of � and are labelled by 0�0, then the indutive hypothesis gives j�j� + p2(�) =j�j� + jj� + p2(�) + p2() + 1 � 12 j�j + 12 jj + 1 = 12(j�j + 1). The ase� = � � is similar.(2) Put � = ��. Then, by hypothesis, � is �-avoidable and we have,using the indutive hypothesis, j�j� + p2(�) = j�j� + 1 + p2(�) � 12(j�j �1) + 1 = 12 j�j.(3) In this ase, either � = � � or � = �+ and at least one out of �and is �-avoidable. In partiular, p2(�) = p2(�) + p2(). We have thenj�j�+p2(�) = j�j�+ jj�+p2(�)+p2() � 12 j�j+ 12 jj+ 12� 12 = 12 (j�j�1).�Theorem 11 For any redued regular expression � we have jA"f (�)j �32 j�j+ 52 :Proof. Using the notations introdued above, we havejA"f (�)j � 3j�jA + 3j�j" � 2j�j+ � j�j. + 1 + 42 + 3p1 + 6p2:

12 Luian Ilie and Sheng Yu April 22, 2003Using the equality j�jA + j�j" � 1 = j�j+ + j�j., we an writejA"f (�)j � j�j+2�j�j++22+2p1+4p2 = j�j+2�j�j++j�j��1+p1+2p2:By Lemma 9, we may assume � has no subexpression �� with � �-unavoidable (as otherwise we have the same automaton but for a longerexpression) and may apply Lemma 10. Using also the inequality p1+p2 �j�j+, we get jA"f (�)j � j�j + 2 + j�j� + p2 � 32 j�j + 52 , whih was to beproved. �We move next to proving a lower bound whih is very lose to theupper bound in Theorem 11.Theorem 12 Let �n = (a�1+ a�2)(a�3 + a�4) � � � (a�2n�1 + a�2n). Every "NFAaepting L(�n) has size at least 8n� 1 = 43 j�j+ 13 .Proof. Let An be an "NFA aepting L(�n). For any i; 1 � i � 2n,there must be a state qi of Ai and a yle ontaining qi and labelled by anontrivial power of ai. Moreover, all qis are di�erent and all these ylesare disjoint. Also, for any i; 1 � i � n� 1, there is a path from either ofq2i�1 and q2i to either of q2i+1 and q2i+2. The �rst transitions on thesepaths belong to no others. So far we have shown that jAnj � 4n+4(n�1).The rest omes from the fat that we have only one initial state. �Using the results in Theorem 11 and Proposition 2(ii), we obtain thatjA"f (�)j � 9j�jA � 12 . However, this result does not seem to be lose tooptimal and investigating upper bounds for the size of A"f (�) in terms ofthe number of letters in � remains to be further investigated.5 Positions and partial derivativesWe reall in this setion two well-known onstrutions of NFAs from reg-ular expressions. The �rst is the position automaton, disovered indepen-dently by Glushkov [Gl61℄ and MNaughton and Yamada [MNYa60℄.Let � be a regular expression. Put pos(�) = f1; 2; : : : ; j�jAg andpos0(�) = pos(�) [f0g. All letters in � are made di�erent by markingeah letter with its position in �; denote the obtained expression � 2 A�,where A = fai j a 2 A; 1 � i � j�jAg. For instane, if � = a(baa + b�),then � = a1(b2a3a4+b�5). Notie that pos(�) = pos(�). The same notationwill also be used for removing indies, that is, for unmarked expressions�, the operator � adds indies, while for marked expressions � the sameoperator � removes the indies: � = �. We extend the notation for arbi-trary strutures, like automata, in the obvious way. It will be lear fromthe ontext whether � adds or removes indies.

April 22, 2003 Follow automata 13Three mappings �rst, last, and follow are then de�ned as follows. Forany regular expression � and any i 2 pos(�), we have:�rst(�) = fi j aiw 2 L(�)glast(�) = fi j wai 2 L(�)gfollow(�; i) = fj j uaiajv 2 L(�)g (1)The three mappings have also an indutive de�nition, whih we shallgive later, when needed in the proofs. For future reasons, we extendfollow(�; 0) = �rst(�). Also, let last0(�) stand for last(�) if "(�) = ;and last(�) [f0g otherwise.The position automaton for � isApos(�) = (pos0(�); A; Æpos; 0; last0(�))with Æpos = f(i; a; j) j j 2 follow(�; i); a = ajg. As shown by Glushkov[Gl61℄ and MNaughton and Yamada [MNYa60℄, L(Apos(�)) = L(�).Br�uggemann-Klein [BrK93℄ gave an algorithm to ompute the positionautomaton in quadrati time.Example 13 Consider the regular expression � = (a+b)(a�+ba�+b�)�.The marked version of � is � = (a1 + b2)(a�3 + b4a�5 + b�6)�. The values ofthe mappings �rst, last, and follow for � and the orresponding positionautomaton Apos(�) are given in Fig. 5.�rst(�) = f1; 2glast(�) = f1; 2; 3; 4; 5; 6gi follow(�; i)1 f3; 4; 6g2 f3; 4; 6g3 f3; 4; 6g4 f3; 4; 5; 6g5 f3; 4; 5; 6g6 f3; 4; 6g 4 5a0 32 6 bb aab 1 abbab b
ab b bab b ba a

Fig. 5. Apos(�) for � = (a+ b)(a� + ba� + b�)�The seond onstrution we reall in this setion is the partial deriva-tive automaton, introdued by Antimirov [An96℄. Reall the notion ofpartial derivative introdued by him. For a regular expression � and aletter a 2 A, the set �a(�) of partial derivatives of � w.r.t. a is de�ned

14 Luian Ilie and Sheng Yu April 22, 2003indutively as follows:�a(") = �a(;) = ;�a(b) = (f"g; if a = b;; otherwise�a(�+ �) = �a(�) [�a(�)�a(��) = (�a(�)�; if "(�) = ;�a(�)� [�a(�); if "(�) = "�a(��) = �a(�)�� (2)
The de�nition of partial derivatives is extended to words by �"(�) = f�g,�wa(�) = �a(�w(�)), for any w 2 A�, a 2 A.The set of all partial derivatives of � is denoted PD(�) = f�w(�) jw 2 A�g. Antimirov [An96℄ showed that the ardinality of this set is lessthan or equal to j�jA+1 and onstruted the partial derivative automatonApd(�) = (PD(�); A; Æpd ; �; fq 2 PD(�) j "(q) = "g);where Æpd(q; a) = �a(q), for any q 2 PD(�); a 2 A. He proved thatL(Apd(�)) = L(�).Champarnaud and Ziadi [ChZi01a,ChZi01b℄ proved that the partialderivative automaton is a quotient of the position automaton and showedhow the partial derivative automaton an be omputed in quadrati time,improving very muh Antimirov's quinti time bound. We shall see in thenext setion a simpli�ed presentation of some of their results.Example 14 Consider the regular expression � from Example 5. Thepartial derivatives of � are omputed in Fig. 6 where also its partialderivative automaton Apd(�) is shown.�a(�) = f�1g �1 = (a� + ba� + b�)��b(�) = f�1g�a(�1) = f�2g �2 = a��1�b(�1) = f�2; �3g �3 = b��1�a(�2) = f�2g�b(�2) = f�2; �3g�a(�3) = f�2g�b(�3) = f�2; �3g a; b ba; b a; bbba; b� �1 �2�3Fig. 6. Apd(�) for � = (a+ b)(a� + ba� + b�)�

April 22, 2003 Follow automata 156 Apd revisitedIn this setion we give a simpli�ed proof of the fat, proved by Champar-naud and Ziadi, that the partial derivative automaton Apd is a quotientof Apos. Essentially, we rely only on the work of Berry and Sethi [BeSe86℄.We shall not use the notions of anonial derivative and -ontinuation of[ChZi01a℄ but show that, under ertain hypotheses, they are in fat thesame as the ontinuations of Berry and Sethi.We assume in the following that the rules for ; and " hold: �+; = ;+� = �, ��; = ;�� = ;, and ��" = "�� = �. Two regular expressions � and� whih redue to the same expression using assoiativity, ommutativity,and idempotene of + are alled similar [Br64℄; this is denoted ��ai �.We reall also the de�nition of the (total) derivative, also due to Br-zozowski [Br64℄. The derivative of � w.r.t. a letter a, a�1(�), is de�nedindutively as: a�1(") = a�1(;) = ;a�1(b) = ("; if a = b;; otherwisea�1(�+ �) = a�1(�) + a�1(�)a�1(��) = a�1(�)� + "(�)a�1(�)a�1(��) = a�1(�)�� (3)
The de�nition of the total derivatives is extended to words by "�1(�) = �,(wa)�1(�) = a�1(w�1(�), for any w 2 A�; a 2 A.Consider the marked version of �, � 2 A� whih has all letters dif-ferent. Berry and Sethi proved, for a �xed ai 2 A, that for all wordsw 2 A�, (wai)�1(�) is either ; or unique modulo �ai. It is lear that,for any two disjoint subexpressions �1 and �2 of �, at most one of theexpressions (wai)�1(�1) and (wai)�1(�2) is di�erent from ;. Therefore,when omputing total derivatives using (3), we get at eah moment atmost one term di�erent from ;. Hene, it is natural to require that weapply, whenever possible, the rules for ; and " during the omputationof the total derivatives. What we get is that the derivative (wai)�1(�) soomputed is either ; or unique; we got rid of the �ai-similarity.The same an be done for the omputation of the partial derivatives:when using (2), we apply the rules for ; and " after eah step. Sine theyare omputed in the same way, we have �wai(�) = (wai)�1(�).Reall next the notion of a ontinuation, also from Berry and Sethi.For a letter ai 2 A, the ontinuation of ai in �, denoted i(�), is anyexpression (wai)�1(�) 6= ;. From the above, this notion is well de�ned.

16 Luian Ilie and Sheng Yu April 22, 2003Notie again that we are not talking about �ai-equivalent expressions be-ause, by our assumption, there is only one. Denote also 0(�) = �. Berryand Sethi's ontinuation automaton is then Aon(�) = (Q;A; Æ; q0; F),where Q = fi(�) j i 2 pos0(�)g, q0 = �, F = fq j "(q) = "g, andÆ = f(i(�); aj ; j(�)) j aj 2 �rst(i(�))g. As Berry and Sethi proved,Proposition 15 Aon(�) ' Apos(�) and Aon(�) ' Apos(�):The di�erene between the ontinuation or position automaton, for �or � is that the labels on transitions are unmarked or marked, respetively.Obviously, if two automata with marked letters are isomorphi, so are theunmarked versions.It is worth mentioning that the language aepted by the two au-tomata for � is L(�). Also, L(�) = L(�). Notie that for the ontinuationand position automata, it makes no di�erene whether we work �rst with� and unmark the obtained automaton or we work with �. However, aswe shall see in a moment, the same is not valid for the partial derivativeautomaton.Now, from the de�nition of Apd(�), the di�erene w.r.t. Aon(�) isthat whenever two ontinuations of � (inluding �) are the same, theyrepresent di�erent states in Aon(�) but the same in Apd(�). De�ne thenthe equivalene =� (pos(�))2 by i = j i� i(�) = j(�); = is right-invariant w.r.t. the position automaton. What we have so far is thatProposition 16 (i) Apd(�) ' Aon(�)== ' Apos(�)==(ii) Apd(�) ' Aon(�)== ' Apos(�)== .Example 17 For the regular expression � from Example 5, we onstrutin Fig. 7 the automaton Apd(�); the lasses of the equivalene = are alsoshown.lasses of =: f0gf1; 2gf3gf4; 5gf6g a; b a; bb0 1; 2 63 4; 5bbabba a
b b a

Fig. 7. Apd(�) ' Apos(�)== for � = (a+ b)(a� + ba� + b�)�

April 22, 2003 Follow automata 17We have worked so far in this setion only with regular expressionswhih have all letters di�erent. We shall now remove the marking andsee what happens. De�ne another equivalene, �� (pos(�))2 by i � ji� i(�) = j(�); � is also right-invariant w.r.t. the position automatonand =��.For any letter a and regular expression �, it is lear that �a(�) =f�ai(�) j ai = ag. Therefore, the partial derivative automaton is obtainedby merging those states in the ontinuation automaton whih have thesame ontinuation when indies are removed. We therefore have the resultof Champarnaud and Ziadi [ChZi01a℄Theorem 18 Apd(�) ' Apos(�)=� :Notie that we gave also a proof for the result of Antimirov [An96℄that jPD(�)j � j�jA + 1.Example 19 For the regular expression � from Example 5, we onstrutin Fig. 8 the automaton Apd(�); the lasses of the equivalene � are alsoshown. Aording to Theorem 18, we have Apd(�) ' Apos(�)=� as it anbe seen by omparing with Fig. 5 where Apos(�) is shown.lasses of �: f0gf1; 2gf3; 4; 5gf6g a; b a; b ba; b0 1; 2 3; 4; 56 a; bbbFig. 8. Apd(�) ' Apos(�)=� for � = (a+ b)(a� + ba� + b�)�7 Follow automataIn this setion we give our new algorithm for onstruting NFAs fromregular expressions. The idea is very simple: just eliminate (in a ertainway, to be made preise below) the "-transitions from the A"f (�). Essen-tially, for any path labelled ", p " q, and any transition q a! r, we add atransition p a! r. The obtained automaton is alled follow NFA, denotedAf(�) = (Qf ; A; Æf ; 0f ; Ff):We give below the preise details of the elimination of "-transitionsfrom A"f (�). We notie that, due to improvement (b) in Algorithm 4,there are no "-yles in A"f (�).

18 Luian Ilie and Sheng Yu April 22, 2003Algorithm 20 Given A"f (�), the algorithm onstruts Af(�).1. Ff fqfg2. sort topologially Q"f w.r.t. the order p � q i� p "! q 2 Æ"f ;denote the ordered Q"f = (q1; q2; : : : ; qr)3. for i from r downto 1 do4. for eah transition qi "! p do5. for eah transition p a! q do6. if qi a! q 62 Æ"f then add qi a! q to Æ"f7. if p 2 Ff then add qi to Ff8. remove the transition qi "! p8. for eah q 2 Q"f � f0fg suh that there is no p a! q in Æ"f do9. eliminate q from Q"f and all transitions involving q from Æ"f10. Qf Q"f ; Æf Æ"f11. return Af(�) = (Qf ; A; Æf ; 0f ; Ff)Theorem 21 For any regular expression �, Af(�) is an NFA aeptingL(�) whih an be onstruted in time and spae O(j�j2).Proof. For the �rst assertion, it should be lear from Algorithm 20that L(Af(�)) = L(A"f (�)). We then use Theorem 6(i).The omplexity is given by the number of pairs (p "! q; q a! r) whihare onsidered in the algorithm. There are O(j�j) "-transitions and O(j�j)transitions labelled by the same letter whih leave a ertain state. As-suming A is �xed, we obtain the result. �Example 22 We give an example of an appliation of Algorithm 20. Forthe same regular expression � = (a+ b)(a� + ba� + b�)� from Example 5,we build in Fig. 9 the automaton Af(�); ompare with Example 5 to seethe "-elimination. a; ba; ba; ba; b bFig. 9. Af(�) for � = (a+ b)(a� + ba� + b�)�We onlude this setion with some very important omments on-erning both the size of Af(�) and the running time of Algorithm 20whih builds it. The worst ase in Theorem 21 is reahed for instane forthe regular expression of [HSW01℄, that is, � = (a1+")(a2+") � � � (an+").However, in most examples (see also the examples at the end) both the

April 22, 2003 Follow automata 19size of Af(�) and the running time of Algorithm 20 are linear. Also, wedo not have examples where the "-elimination requires essentially moretime than the size of Af(�). This remains an open problem.We �nally notie that our "-elimination algorithm is di�erent from,and faster than, the lassial one of [HoUl79℄. The di�erene is that wedo not ompute "-losures.8 Af is a quotient of AposWe prove in this setion that Af(�) introdued above is a quotient ofApos(�). This is unexpeted beause the onstrution of Af(�) does nothave, apparently, anything to do with positions. However, the onse-quenes of this result are very important.We start by de�ning the equivalene �f� pos0(�)2 byi �f j i� (i) both i; j or none belong to last(�) and(ii) follow(�; i) = follow(�; j)Notie that we restrit the equivalene so that we do not make equivalent�nal and non-�nal states in Apos(�). The maim result of this setionfollows.Theorem 23 Af(�) ' Apos(�)=�f .We notie �rst that the restrition we imposed on �f so that �naland non-�nal states in pos0(�) annot be �f -equivalent is essential, asshown by the expression � = (a�b)�. Here follow(�; i) = f1; 2g, for any0 � i � 2. However, merging all three states of Apos(�) is an error as theresulting automaton would aept the language (a+ b)�.Example 24 Here is an example of an appliation of Theorem 23. Forthe same regular expression � = (a+ b)(a� + ba� + b�)� from Example 5,we build in Fig. 10 the A"f (�) and then give the equivalene lasses of �fand the automaton Af(�).lasses of �f : f0gf1; 2; 3; 6gf4; 5g ba; b a; b a; b 4; 5 a; b0 1; 2; 3; 6Fig. 10. Af(�) ' Apos(�)=�f for � = (a+ b)(a� + ba� + b�)�We move next to the proof of Theorem 23. First of all we need to seethat we are allowed to make the quotient of the position automaton bythe equivalene �f .

20 Luian Ilie and Sheng Yu April 22, 2003Lemma 25 The equivalene �f is right invariant w.r.t. Apos(�).Proof. The �rst ondition, ompatibility with the set of �nal stateslast0(�), is veri�ed by the de�nition of �f . For the seond ondition,onsider i 2 last0(�), a 2 A. We have Æpos(i; a) = fk 2 pos(�) j k 2follow(�; i); ak = ag and so, if i �f j, then Æ(i; a) = Æ(j; a) and the laimfollows. �The following well-known properties of these mappings will be usedin the sequel:�rst(� +) = �rst(�) [�rst()�rst(�) = �rst(�) ["(�) �rst()�rst(��) = �rst(�)last(� +) = last(�) [last()last(�) = last() ["() last(�)last(��) = last(�)follow(� + ; i) = (follow(�; i); if i 2 pos(�)follow(; i); if i 2 pos()follow(�; i) =8><>:follow(�; i); if i 2 pos(�)� last(�)follow(�; i) [�rst(); if i 2 last(�)follow(; i); if i 2 pos()follow(��; i) = (follow(�; i); if i 2 pos(�)� last(�)follow(�; i) [�rst(�); if i 2 last(�)
(4)

Also, we shall need several results before proving Theorem 23. First,it is lear that A"f (�) is obtained from A"f (�) by eliminating multipletransitions, if any. Therefore, Af(�) is obtained from Af(�) in the sameway. Also,Apos(�) = Apos(�), whih implies that Apos(�)=�f is obtainedby eliminating multiple transitions from Apos(�)=�f . Consequently, itis enough to prove that Af(�) ' Apos(�)=�f . Notie that �f is rightinvariant w.r.t. Apos(�).We de�ne the funtionm : pos0(�) �! Q"f m(0) = 0f andm(i) = p, if i 6= 0 and q ai! p, for some q 2 Q"f .There is a single transition labelled ai in A"f (�), so m(i) is well de�ned asits target. Beause the initial states of Af(�) and A"f (�) are the same andall transitions labelled ai in Af(�) have the same target state, m an beequivalently de�ned as m : pos0(�) �! Qf by m(0) = 0f and, for i 6= 0,

April 22, 2003 Follow automata 21m(i) = p, for any p 2 Qf suh that there is an transition labelled ai whihis inoming to p. Notie that m is onto Qf as the states of A"f (�) whihhave all inoming transitions labelled " were removed by Algorithm 20.The funtion m will be the isomorphism we look for.We prove next several results onerning the funtion m. For twostates p and q, we denote the fat that there is a path labelled " form pto q by p " q; this path an also empty, that is, p = q.Lemma 26 For any i; j 2 pos(�), we have(i) i 2 �rst(�) i� there is 0f " p ai! m(i) in A"f (�).(ii) i 2 last(�) i� there is m(i) " qf in A"f (�).(iii) j 2 follow(�; i) i� there is m(i) " p aj! m(j) in A"f (�).Proof. The assertions follow from the de�nitions of �rst, last, and followin (1) and the equality L(�) = L(A"f (�)) in Theorem 6(i). �Lemma 26 implies that, in order to show the isomorphism Af(�) 'Apos(�)=�f , it is enough to prove that, for any i; j 2 pos0(�), i �f j i�m(i) = m(j). If we de�ne the equivalene �m = f(i; j) j m(i) = m(j)g,then we have to show �m = �f . Indeed, assume this holds. Lemma 26(ii)assures that �nal states ofApos(�)=�f are mapped to �nal states ofAf(�).Then, we have a transition [i℄�f aj! [j℄�f in Apos(�)=�f i� j 2 follow(�; i)i� (by Lemma 26(i)(iii)) m(i) " p aj! m(j) in A"f (�) i� m(i) aj! m(j) inAf(�). The isomorphism follows.The next result onerning initial states follows from Lemma 26.Corollary 27 We have that m�1(0f) = f0g i� there is no inomingtransition labelled by some ai to 0f in A"f (�) (or, equivalently, in Af(�)).Also, if i 2 m�1(0f), then follow(�; i) = �rst(�).We make an observation onerning notations, suh as 0f , qf , m, �f ,et. They depend on � but we omit � when it is understood; when it isnot lear from the ontext, we add it as a further subsript, e.g., 0f;�,qf;�, m�, �f;�, et.We shall need several further lemmata to prove our goal.Lemma 28 The �nal state qf 2 Q"f remains as a state in Qf after Al-gorithm 20 i� there is i 2 last(�) suh that follow(�; i) = ;; moreover, inthis ase, for any i 2 last(�), m(i) = qf i� follow(�; i) = ;.Proof. The state qf is not eliminated by Algorithm 20 if and onlyif there is a transition q ai! qf in A"f (�). By de�nition of m, we have

22 Luian Ilie and Sheng Yu April 22, 2003m(i) = qf and Lemma 26(ii)(iii) give that i 2 last(�) and follow(�; i) = ;.Conversely, assume i 2 last(�) with follow(�; i) = ;. By Lemma 26(ii),there is a path m(i) " qf in A"f (�). Assume this path is not empty andonsider the last transition of it, q "! qf . Aording to the onstrutionof A"f (�) in Algorithm 4, this "-transition may appear in two ways: froman " initial y in � or from a '*' in �. In the former ase, there mustbe (beause � is redued) a path from q to qf whih has at least onetransition labelled by some aj . Thus, by Lemma 26(iii), follow(�; i) 6= ;,a ontradition. In the latter ase, we obtain a similar ontradition; as �is redued, there must be a path as before from q to q. Therefore, it mustbe that m(i) = qf and so qf remains in Af(�). Notie that we proved alsothe seond statement. �Lemma 29 For any i 2 last(�) suh that ; 6= follow(�; i) � �rst(�),there is 0f " m(i) " qf in A"f (�).Proof. By indution on �. Denote the property to be proved P1(�; i).If � 2 f;; "; ag, then the property is true. When � has at least oneoperator, assume P1 true for all subexpressions of � and let us prove itfor �. We shall use (4).(1) � = �+. Assume i 2 last(�). The ase i 2 last() is similar. Then; 6= follow(�; i) � �rst(�) [�rst() and hene ; 6= follow(�; i) � �rst(�).Therefore, by the indutive hypothesis, P1(�; i) is true and so is P1(�; i).(2) � = �. If "() = ;, then i 2 last() with ; 6= follow(; i) ��rst(�)["(�) �rst() and so it must be that "(�) = " and ; 6= follow(; i) ��rst(). Now, the indutive hypothesis gives that P1(; i) holds, in par-tiular "() = ", a ontradition. Thus, we have "() = ".Now, if i 2 last(), then, as above, we get "(�) = " and the indutivehypothesis gives P1(; i). Together, these imply P1(�; i).When i 2 last(�), we have ; 6= follow(�; i) [�rst() � �rst(�) ["(�) �rst() and "(�) = ", as 6= " (� is redued). If follow(�; i) = ;,then Lemma 28 gives that m(i) = qf;� (the �nal state of A"f (�)). Hene,P1(�; i) holds. If follow(�; i) 6= ;, then the indutive hypothesis givesP1(�; i) whih will give again P1(�; i).(3) � = ��. Then i 2 last(�) and ; 6= follow(�; i) [�rst(�) � �rst(�)whih implies follow(�; i) � �rst(�). If follow(�; i) 6= ;, then P1(�; i) fol-lows from the indutive hypothesis on �. If follow(�; i) = ;, we use againLemma 28 and obtain P1(�; i). �Lemma 30 For any i; j 2 last(�) with ; 6= follow(�; i) � �rst(�) =follow(�; j) � �rst(�), we have either i �f j or m(i) = m(j).

April 22, 2003 Follow automata 23Proof. By indution on �. Let us denote the property to be proved byP2(�; i; j). For � 2 f;; "; ag there is nothing to prove. We assume next �has at least one operator and P2 is true for all subexpressions of �.(1) � = � + . Then i and j are both in either last(�) or last() andthe property follows from (4) and the indutive hypothesis.(2) � = �. We use (4). Assume �rst i; j 2 last(). If "(�) = ",then the indutive hypothesis gives P2(; i; j) whih, in turn, impliesP2(�; i; j). If "(�) = ;, then i �f;� j. If i; f 2 last(�), then "() = ".If "(�) = ", we an use indutive hypothesis on �. Assume "(�) = ;.Then follow(�; i) � �rst(�) = follow(�; j) � �rst(�). If both members ofthe last equality are non-empty, then we an again use the indutive hy-pothesis on �. Otherwise, for any k 2 fi; jg, follow(�; k) = ;; if non-empty,then Lemma 29 would give P1(�; k), implying "(�) = ", a ontradition.Therefore, by Lemma 28, we get m(i) = m(j).The remaining possibility is i 2 last(�), j 2 last(); we have also"() = ". The equality follow(�; i) � �rst(�) = follow(�; j) � �rst(�) ispossible only if "(�) = ;, follow(�; i) � �rst(�), and follow(; j) = �rst().Also, it must be that follow(�; i) = ;, as otherwise Lemma 29 would give"(�) = ", a ontradition. Therefore, i �f;� j.(3) � = ��. Then P2(�; i; j) follows from the indutive hypothesis on�. �Proof of Theorem 23. We an start now the proof of the equality�f=�m whih, as argued before, is enough to prove the statement ofTheorem 23. We do this again by indution on �. If � 2 f;; "; ag, then�f;�= �m;�= ;. Assume � has at least one operator and that the propertyholds for all subexpressions of �. We shall taitly use (4). Also, reall thatall expressions are assumed to be redued.(1) � = � + . Corollary 27 gives m�1(0f;�) = f0g. Consider �rst thease when � = "; the ase = " is symmetri. If i 6= 0 and i �f;� 0, thenfollow(; i) = �rst() 6= ;, and so, by Lemma 29, " 2 L(), ontraditionwith � redued. Therefore, �f;� = �f; \ pos(�)2. Sine also �m;� =�m; \ pos(�)2, the indutive hypothesis implies �f;� = �m;�.Assume now � 6= ", 6= ". We know that no i 6= 0 an have i �f;� 0.Take i 6= 0; j 6= 0 suh that i �f;� j. If i and j are both in pos(�) orpos(), then i �f;� j or i �f; j, respetively. If not, then i 2 last(�),j 2 last(), and follow(�; i) = ; = follow(; j). Therefore,�f;� = ((�f;� [�f;) \ pos(�)2)[f(i; j) 2 last(�)� last() j follow(�; i) = ; = follow(; j)g:

24 Luian Ilie and Sheng Yu April 22, 2003Aording to Algorithm 4 and Corollary 27, m�1� (0f;�) is either f0g orempty (in the ase of (a1)). Similarly, using Lemma 28, m�1� (qf;�) ontainsthose i 2 pos(�) with follow(�; i) = ;. Therefore, �f;� = �m;�.(2) � = �. Sine � is redued, both � and are di�erent from ".Hene, for i 6= 0, we have i �f;� 0 i� i 2 pos(�), i �f;� 0. This implies�f;� \(f0g � pos(�)) =�f;� \(f0g � pos(�)).Take i 6= 0, j 6= 0, suh that i �f;� j. If both i and j are in pos(�) orpos(), then i �f;� j or i �f; j, respetively. The onverse holds as well.If i 2 pos(�), j 2 pos(), then it must be that i 2 last(�), follow(�; i) = ;,and j �f; 0. The onverse is also true. Therefore, we have�f;� = �f;�[(�f; \ pos()2)[f(i; j) 2 last(�)� pos() j follow(�; i) = ;; j �f; 0g:Consider now �m;�. The positions mapped to the same states by m� orm will also be mapped the same by m�. Also, the positions mappedby m� to 0f;� are preisely those mapped this way by m�. Aording toAlgorithm 4 (and its improvement (a)) and Lemma 28, the positions i in� with follow(�; i) = ; and those j in with m(j) = 0f; are mapped tothe same state. Now the indutive hypothesis shows that �f;� = �m;�.(3) � = ��. Consider �rst i 6= 0, i �f;� 0. Lemma 29 gives that i 2pos(�)�last(�) is not possible. Thus i 2 last(�) with follow(�; i) � �rst(�).So, either follow(�) = ; or, by Lemma 29, there is 0f;� " m(i) " qf;� inA"f (�). The onverse holds true beause of Lemma 26. Therefore�f;� \(f0g�pos(�))= f(0; i) j i 2 last(�); 0f;� " m(i) " qf;� in A"f (�)g[f(0; i) j i 2 last(�); follow(�; i) = ;g:It an be seen now that �f;� \(f0g � pos(�)) =�m;� \(f0g � pos(�))beause of the de�nition of A"f in Algorithm 4.Consider next i 6= 0, j 6= 0 suh that i �f;� j. If i; j 2 pos(�)� last(�),then i �f;� j. If i; j 2 last(�), then follow(�; i) [�rst(�) = follow(�; j) [�rst(�). If one of follow(�; i) and follow(�; j) is a subset of �rst(�), then theother is also and, for any k 2 fi; jg we have that either follow(�; k) = ; orfollow(�; k) 6= ;; in the latter ase, by Lemma 29,there is 0f;� " m(k) " qf;� in A"f (�). On the other hand, if none of follow(�; i) and follow(�; j) isinluded in �rst(�), then ; 6= follow(�; i)��rst(�) = follow(�; j)��rst(�),whih gives, by Lemma 30 and the indutive hypothesis on �, that i �f;�

April 22, 2003 Follow automata 25j. We have proved that�f;� \ pos(�)2= (�f;� \ pos(�)2)[f(i; j) 2 last(�)2 j 8k 2 fi; jg; either follow(�; k) = ;or there is 0f;� " m(i) " qf;� in A"f (�)g:Now, again by the de�nition of A"f in Algorithm 4 and the improvementin (b), we have �f;� \ pos(�)2 =�m;� \ pos(�)2. Therefore, �f;� = �m;�,and the proof of Theorem 23 is ompleted. �So, we have that both follow and partial derivative automata are quo-tients of the position automaton. As it will be seen in Setion 10, thetwo quotients are inomparable. Let us further remark that [IlYu02b℄investigates further suh quotients and shows how to build the largestright-invariant equivalene w.r.t. the position automaton, whih gives thesmallest quotient, therefore smaller than either of follow or partial deriva-tive automaton. However, it is an open problem how to ompute thatquotient fast; aording to [IlYu02b℄, it an be omputed in polynomialtime.9 Af uses optimally the positionsFinally, we show that the follow automaton Af(�) uses the whole infor-mation whih omes from positions of �. Indeed, the follow automatonfor marked expressions annot be improved. Af(�) is a deterministi au-tomaton and let the minimal automaton equivalent to it be min(Af(�)).Then min(Af(�)) is an NFA aepting L(�) whih an be omputed intime O(j�j2 log j�j) using the minimization algorithm of Hoproft [Ho71℄.This is, in fat, another way of using positions to ompute NFAs for reg-ular expressions. However, it is interesting to see that min(Af(�)) bringsno improvement over Af(�).Theorem 31 min(Af(�)) ' Af(�).Proof. It is enough to show that min(Af(�)) ' Af(�), that is, Af(�)is already minimal. We �rst omplete the automaton Af(�); we add anew non-�nal state, denoted ;, and all missing transitions will go to it.Denote the ompleted automaton by A;f (�). Consider two positions iand j whih have di�erent follow sets and, with no loss of generality, takek 2 follow(�; i)� follow(�; j). Then, there is a word w 2 A� suh that akwtakes the automaton A;f (�) from the state i to a �nal state. On the otherhand, akw takes the automaton A;f (�) from the state j to ;. Therefore,

26 Luian Ilie and Sheng Yu April 22, 2003i and j annot be merged. Sine they have been arbitrarily hosen, theautomaton Af(�) is minimal. �Notie also that omputing Af(�) by "-elimination in A"f (�) is fasterthan using Hoproft's algorithm [Ho71℄ plus unmarking.10 Comparing Af with other onstrutionsWe disuss in this setion some examples to ompare the follow automatonwith the best onstrutions to date. We shall inlude also omparisonwith the ommon follow sets automaton of [HSW01℄, denoted below byAfs(�). We do not inlude here the very long desription of Afs whihan be found in [HSW01℄ or [HaMu00℄.We start with some examples showing that Af an be muh smallerthan either of Apos and Apd and that Af is inomparable with either ofApd and Afs.Example 32 Consider �n from Example 3. The follow automaton issmaller than all the others:jApos(�n)j = jApd(�n)j = �(j�nj2),jAf(�n)j = �(j�nj),jAfs(�n)j = �(j�nj(log(j�nj))2).Example 33 Consider the regular expression�n = a1(b1 + � � �+ bn)� + a2(b1 + � � � + bn)� + : : : + an(b1 + � � �+ bn)�:We have now that the partial derivative automaton is the smallest:jApos(�n)j = �(j�nj3=2),jAf(�n)j = �(j�nj),jApd(�n)j = �(j�nj1=2), andjAfs(�n)j = �(j�nj(log(j�nj))2).Example 34 Consider the regular expression of [HSW01℄�n = (a1 + ")(a2 + ") � � � (an + "):In this ase the ommon follow sets automaton is the smallest:jApos(�n)j = jAf(�n)j = jApd(�n)j = �(j�nj2), andjAfs(�n)j = �(j�nj(log(j�nj))2).

April 22, 2003 Follow automata 27Next, we give some real-life examples whih have some interestingommon properties. For all of them, the follow automaton and the partialderivative automaton are isomorphi and smaller than the other two.These examples are:- C-omments: /*((A� f*g) + **�(A� f*; /g))�**�/- oating point numbers:(0+ � � �+9)(0+ � � �+9)�.((0+ � � �+9)(0+ � � �+9)�+ ")(e+E)(++-+ ")(0+ � � �+ 9)(0+ � � �+ 9)�- programming languages identi�ers:(a+ � � � z+ A+ � � � Z)(a+ � � � z+ A+ � � � Z+ 0+ � � � + 9)�If these examples are generalized to some parametrized examples westill have that Af and Apd are isomorphi and have linear size; the posi-tion automaton has quadrati size and the ommon follow sets automatonhas size linear times the square of the logarithm. We show it only for thelast example. Conlusions of these results are disussed in the next se-tion.Example 35 Consider the regular expression (generalized identi�ers inprogramming languages)�n;m = (a1 + a2 + � � �+ an)(a1 + a2 + � � �+ an + b1 + b2 + � � � + bm)�:We havejAf(�n;m)j = jApd(�n;m)j = �(j�n;mj),jApos(�n;m)j = �(j�n;mj2), andjAfs(�n;m)j = �(j�n;mj(log(j�n;mj))2).We �nally notie that we did not ompare our onstrution with theone of Chang and Paige [ChPa97℄ sine we do not work with ompressedautomata.11 Conlusions and further researhWe gave two new algorithms to onstrut nondeterministi �nite au-tomata from regular expressions. The �rst onstruts "NFAs whih aresmaller than all other similar onstrutions and also very lose to opti-mal. The seond onstruts the follow NFAs whih are oneptually byfar the simplest ompared to all the others: we onstrut the follow "NFA,whih is elementary, and then eliminate the "-transitions, whih is againelementary. However, the resulting automata have interesting properties.The follow automaton is always a quotient of the position automaton,

28 Luian Ilie and Sheng Yu April 22, 2003is very easy to ompute, and is at least as small as all the other simi-larly onstruted automata in most ases. We believe that these featureswill make these automata very attrative for pratial purposes. Severalproblems should be investigated further.First, it seems that the time required to build the follow automatonis linear in terms of its size. At least we do not have examples to provethe onverse. We remark that the assertion is not true in general. Thereare examples of "NFAs for whih the "-elimination takes longer than bothsize of input and size of output.Seond, the follow automaton seems to have linear size in most ases.It is of interest to see whih are those ases and when the size is far fromlinear. Also, the ommon follow sets automaton seems to have size lineartimes the logarithm squared in most ases. Some lower bounds on its sizemight bring some light here.Third, a more rigorous omparison between the follow automaton andommon follow sets or partial derivative automaton should be done. Thisseems diÆult beause average ase analysis is, very likely, too ompli-ated. Probably the only way to deide whih one is better is by testingall of them in real-life appliations.Referenes[ASU86℄ Aho, A., Sethi, R., Ullman, J., Compilers: Priniples, Tehniques, and Tools,Addison-Wesley, MA, 1988.[An96℄ Antimirov, V., Partial derivatives of regular expressions and �nite automatononstrutions, Theoret. Comput. Si. 155 (1996) 291 { 319.[BeSe86℄ Berry, G, Sethi, R., From regular expressions to deterministi automata,Theoret. Comput. Si. 48 (1986) 117 { 126.[BrK93℄ Br�uggemann-Klein, A., Regular expressions into �nite automata, Theoret.Comput. Si. 120 (1993) 197 { 213.[Br64℄ Brzozowski, J., Derivatives of regular expressions, J. ACM 11 (1964) 481 { 494.[ChZi01a℄ Champarnaud, J.-M., Ziadi, D., New �nite automaton onstrutions basedon anonial derivatives, Pro. of CIAA 2000, LNCS 2088, Springer, 2001, 94 {104.[ChZi01b℄ Champarnaud, J.-M., Ziadi, D., Computing the equation automaton of aregular expression in O(s2) spae and time, Pro. of 12th Combinatorial PatternMathing (CPM 2001), LNCS 2089, Springer, 2001, 157{168.[ChPa97℄ Chang, C.-H., Paige, R., From regular expressions to DFA's using om-pressed NFA's, Theoret. Comput. Si 178 (1997) 1 { 36.[CrHa97℄ Crohemore, M., Hanart, C., Automata for pattern mathing, in: G. Rozen-berg, A. Salomaa, eds., Handbook of Formal Languages, Vol. II, Springer-Verlag,Berlin, 1997, 399 { 462.[Fr98℄ Friedl, J., Mastering Regular Expressions, O'Reilly, 1998.[Gl61℄ Glushkov, V.M., The abstrat theory of automata, Russian Math. Surveys 16(1961) 1 { 53.

April 22, 2003 Follow automata 29[HaMu00℄ Hagenah, C., Musholl, A., Computing �-free NFA from regular expressionsin O(n log2(n)) time, Theor. Inform. Appl. 34 (4) (2000) 257 { 277.[Ho71℄ Hoproft, J., An n log n algorithm for minimizing states in a �nite automaton,Pro. Internat. Sympos. Theory of mahines and omputations, Tehnion, Haifa,1971, Aademi Press, New York, 1971, 189{196.[HoUl79℄ Hoproft, J.E., Ullman, J.D., Introdution to Automata Theory, Languages,and Computation, Addison-Wesley, Reading, Mass., 1979.[HSW01℄ Hromkovi, J., Seibert, S., Wilke, T., Translating regular expressions intosmall �-free nondeterministi �nite automata, J. Comput. System Si. 62 (4) (2001)565 { 588.[IlYu02a℄ Ilie, L., S. Yu, Construting NFAs by optimal use of positions in regularexpressions, in: A. Apostolio, M. Takeda, eds., Proeedings of the 13th AnnualSymposium on Combinatorial Pattern Mathing (CPM) (Fukuoka, 2002), LetureNotes in Comput. Si., 2373, Springer, Berlin, 2002, 279 { 288.[IlYu02b℄ Ilie, L., S. Yu, Algorithms for omputing small NFAs, in: K. Diks, W. Rytter,eds., Proeedings of the 27th International Symposium on Mathematial Founda-tions of Computer Siene (MFCS), (Warszawa, 2002), Leture Notes in Comput.Si., 2420, Springer, Berlin, 2002, 328 { 340.[MNYa60℄ MNaughton, R., Yamada, H., Regular expressions and state graphs forautomata, IEEE Trans. on Eletroni Computers 9 (1) (1960) 39 { 47.[SiSo88℄ Sippu, S., Soisalon-Soininen, E., Parsing Theory: I Languages and Parsing,EATCS Monographs on Theoretial Computer Siene, Vol. 15, Springer-Verlag,New York, 1988.[Th68℄ Thompson, K., Regular expression searh algorithm, Comm. ACM 11 (6)(1968) 419 { 422.[Yu97℄ Yu, S., Regular Languages, in: G. Rozenberg, A. Salomaa, eds., Handbook ofFormal Languages, Vol. I, Springer-Verlag, Berlin, 1997, 41 { 110.

