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Abstract. We give two new algorithms for constructing small nonde-
terministic finite automata (NFA) from regular expressions. The first
constructs NFAs with e-transitions (éNFA) which are smaller than all
the other eNFAs obtained by similar constructions. Their size is at most
%|a| + g, where « is the regular expression. This is very close to optimal
since we prove also the lower bound 3|a| + 2. The second constructs
NFAs. It uses e-elimination in the eNFAs we just introduced and builds
a quotient of the well-known position automaton w.r.t. the equivalence
given by the follow relation; therefore giving the name of follow automa-
ton. The new automaton uses optimally the information from the posi-
tions of a regular expression. We compare the follow automaton with the
best constructions to date and show that it has important advantages
over those.
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1 Introduction

The importance of regular expressions for applications is well known.
They describe lexical tokens for syntactic specifications and textual pat-
terns in text manipulation systems. Regular expressions have become the
basis of standard utilities such as scanner generators (lex), editors (emacs,
vi), or programming languages (perl, awk), see [ASU86,Fr98]. While reg-
ular expressions provide an appropriate notation for regular languages,
their implementation is done using finite automata. The size of the au-
tomata is crucial for the efficiency of the algorithms using them; e.g.,
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for regular expression matching. Since the deterministic finite automata
obtained from regular expressions can be exponentially larger in size, in
many cases nondeterministic finite automata are used instead. Minimiza-
tion of NFAs is PSPACE-complete, see [Yu97], so other methods need to
be used to obtain small NFAs. Probably the most famous such construc-
tions are the ones of Thompson [Th68] which builds a nondeterministic
finite automaton with € transitions (eNFA) and the one of Glushkov and
McNaughton-Yamada [G161,McNYa60] which outputs a nondeterministic
finite automaton without e-transitions (NFA), called position automaton.
While Thompson’s automaton has linear size (in terms of the size of the
regular expression), the position automaton has size at most quadratic
and can be computed in quadratic time by the algorithm of Briigemann-
Klein [BrK93]. We note that throughout the paper the size of automata
will include both transitions and states.

Antimirov [An96] generalized Brozozowski’s derivatives and built the
partial derivative automata. Champarnaud and Ziadi [ChZi01la,ChZi01b]
improved very much Antimirov’s O(n®) algorithm for the construction of
such NFA; their algorithm runs in quadratic time. They proved also that
the partial derivative automaton is a quotient of the position automaton
and so it is always smaller than or equal to the position automaton.

The best worst case comes with the construction of Hromkovi¢ et
al. [HSWO01]; their NFA, called common follow sets automaton, has size
at most O(n(logn)?) and, by the algorithm of Hagenah and Muscholl
[HaMu00], it can be computed in time O(n(logn)?). This construction
artificially increases the number of states in order to reduce the number
of transitions.

In this paper, we propose new algorithms to construct very small non-
deterministic finite automata, with or without e-transitions, from regular
expressions. Our first algorithm constructs eNFAs which are smaller than
all the others obtained by similar constructions; e.g., the one of Thomp-
son [Th68] or the one of Sippu and Soisalon-Soininen [SiSo88] (which
builds a smaller eNFA than Thompson’s). Given a regular expression «,
the size of our eNFA for « is at most 2|a| 4+ 3. This is very close to the
optimal; we prove a lower bound of %\a| + 3.

We give then a method for constructing NFAs. It uses e-elimination in
the eNFA newly introduced. The obtained NFAs have several remarkable
properties. First, although the construction of this NFA has, apparently,
nothing to do with positions, it turns out, unexpectedly, that the NFA
is a quotient of the position automaton with respect to the equivalence
given by the follow relation; therefore giving the name of follow automa-
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ton. Second, we show that the follow automaton uses optimally the in-
formation from the positions of the regular expression and thus it cannot
be improved this way. Third, the follow automaton is, conceptually, the
simplest compared to the best similar constructions. Finally, the follow
automaton seems to perform very well in practical applications. Even if
the worst case is quadratic in what concerns both the size of the automa-
ton and the running time of the algorithm, in practice it performs much
better. For instance, it seems to outdo on most examples the common
follow sets automaton which, as we mentioned, has the best worst case
size and running time. The worst case seems to be quite irrelevant here.
On the other hand, it seems very difficult to compute the average case
size and running time of such constructions. Therefore, we have to rely on
examples to make comparisons. For most examples, the common follow
sets automaton reaches its upper bound of O(n(logn)?), while the follow
automaton is linear. (Precisely, we consider parameterized examples.)

The paper is organized as follows. Section 2 contains the basic def-
initions we need. In Section 3 we give an algorithm to reduce regular
expressions such that many redundant elements are eliminated. Section 4
gives our construction of eNFAs. It also gives the proof that it is always
smaller than the well known constructions of [Th68,SiSo88] and the lower
bound showing that it is very close to optimal. Section 5 recalls the posi-
tion and partial derivative automata. The fact that the partial derivative
automaton is a quotient of the position automaton is given a simpler proof
in Section 6. The construction of our follow NFAs is given in Section 7.
Section 8 contains the proof that our NFA is a quotient of the position
automaton. The optimal use of positions in the construction of the follow
NFA is shown in Section 9. Some examples are given in Section 10 to com-
pare our constructions with the position, partial derivative, and common
follow sets automata. Finally, we discuss in Section 11 some of the most
important problems which should be clarified about follow automata and
related constructions.

2 Regular expressions and automata

We recall here the basic definitions we need throughout the paper. For
further details we refer to [HoUI79] or [Yu97].

Let A be an alphabet and A* the set of all words over A; ¢ denotes the
empty word and the length of a word w is denoted |w|. A language over
A is a subset of A*. A reqular expression over A is ), €, or a € A, or is
obtained from these applying the following rules finitely many times: for
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two regular expressions a and B, the union, a + (3, the catenation, o - 3,
and the star, a*, are regular expressions. The regular language denoted
by a regular expression « is L(a). Also, we define e(a) to be e if e € L(«)
and () otherwise. The size of « is denoted || and represents the number
of symbols in & when written in postfix (parentheses are not counted).

A finite automaton is a quintuple M = (Q, A, d, qo, F'), where @ is the
set of states, A is the input alphabet, ¢y € @ is the initial state, F' C Q is
the set of final states, and 0 C Q) x (AU{e}) X @ is the transition mapping;
we shall denote, for p € Q,a € AU {e}, d(p,a) ={q € Q| (p,a,q) € §}.
The automaton M is called deterministic (DFA) if 6 : @ x A — @ is
a (partial) function, nondeterministic (NFA) if 6 C @ x A x @, and
nondeterministic with e-transitions (eNFA) if there are no restrictions on
d. The language recognized by M is denoted L(M). The size of a finite
automaton M is |M| = |Q| + |0]; we count both states and transitions.

Let =C @ x @ be an equivalence relation. For g € @, [¢]= denotes the
equivalence class of ¢ w.r.t. = and, for S C @, S/= denotes the quotient
set S/=={[q]l=]q€ S}

We say that = is right invariant w.r.t. M iff

(i) =C (Q — F)?U F? (final and non-final states are not =-equivalent)
and

(ii) for any p,q € Q, a € A, if p = ¢, then §(p,a)/= = 0(q,a)/=.

If = is right invariant, the quotient automaton M /= is constructed as
M/= = (Q/=,A,i=,[q]=, F/=) where 6= = {([p|=,a.[d9]=) | (p,a,q) €
d}; notice that Q/= = (Q — F)/= U F/=, so we do not merge final with
non-final states. Notice that L(M /=) = L(M).

3 Reduced regular expressions

We give in this section an algorithm for reducing regular expressions.
The intent is to reduce the number of ()’s and €’s, as well as the total size
of the expression. Such reductions are often mentioned in literature, but
we want to make things more precise here. The reduced form of regular
expressions is used later in the paper where precise assumptions about
the structure of the regular expressions are needed. As it will be seen, our
results hold as well for expressions which are not reduced.

We first introduce several notations. For a regular expression a over
A, we denote by |a|4 and |a|. the number of occurrences in « of letters
from A and e, respectively.

Given a regular expression « over A, assume we have the syntax tree
for it; when building the tree we assume '+’ left associative (that is,
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a+b+c = (a+0b)+ c), which will enable us to reduce further the
number |a|.. We also assume that each vertex in the tree is labelled by
the corresponding symbol from AU {e, +, -, *} and has associated with it
the subexpression corresponding to the subtree rooted at the vertex.
The regular expressions are reduced according to the algorithm below.

Algorithm 1 (a) (-reduction: compute, for each vertex [, whether or
not L() = 0 and then modify « such that, at the end, either & = () or «
contains no (.

(b) e-reduction: compute, for each vertex 3, whether ¢ € L(f) and
whether L(8) = {e}; for each vertex  with L(8) = {e}, replace the
subtree rooted at B by € and then:

- if the parent of 3 is labelled by ’-, then replace the parent by the
other child

- if the parent is labelled by '*’, then replace the parent by the child

- if the parent of § is labelled '+’ and ¢ is in the language of the
other child, then replace the parent by the other child.

(c) "#'-reduction: for any vertex labelled by '+, if its child is also
labelled by '+’, then replace it by its child.

We shall call « obtained after applying Algorithm 1 reduced. We give
next two observations concerning the size of reduced regular expressions
followed by some examples proving their optimality.

Proposition 2 For any reduced reqular ezpression « such that a & {0, e},
we have

(i) lola > lal.,

(ii) | < 6laa — 2.

Proof. (i) We prove by structural induction that, for any reduced
a#e, ife ¢ L(a), then |a|4 > |a|. +1 and if ¢ € L(«), then |a|4 > |a..

The property is true for @« = a, a € A. When « has at least one
operator, we assume the property true for all subexpressions of « different
from e and prove it for «.

First, assume a = B + «. If both 8 and  are different from e, the
property is shown true for a by the inductive hypothesis on 8 and 7.
If B = e (the case v = £ is symmetric), then, since « is reduced, we
have ¢ € L(y). The inductive hypothesis gives |a|4 = |y|a > |y[c +1 =
1Ble +17]e = lae.

If « = -+, then none of # and y can be €, and the property follows
from the inductive hypothesis.
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If & = §*, then 8 # ¢ and, by the inductive hypothesis, |a|4 = |B|a >
1Ble = |ae.

(ii) We prove the following assertions simultaneously by structural
induction:

-if e & L(a), then |a| < 6lals — 5,

- if the root of «’s tree is labelled by '«’, then |a| < 6|als — 2,

- if the root of o’s tree is labelled by '+' or '/, then |a| < 6]|a|4 — 3.

For @ = a, a € A, the property is true. Assume the property true for
all subexpressions of « different from e and prove it for «.

First, take @« = B + ~. If both f and ~ are different from &, then
the property follows by the inductive hypothesis on § and v. If 8 = ¢
(similarly for v = €), then the inductive hypothesis gives || = |y| +2 <
674 —54+2=6lalsa — 3.

Assume a = - . If ¢ ¢ L(«), then at least one of L(f) and L(v)
does not contain £ and the inductive hypothesis gives || = |8] + |y| +
1 <6|8la+6lyja—5—-—2+1<6lajs—5. If e € L(), then € must
be in both L(8) and L(y) and we have, by the inductive hypothesis,
ol = 1B+ | +1 <6814 2+6lrla2+1=6lals 3

Finally, if « = %, then f # c and |a| = |B] +1 < 6/|fla —3+1 =
6lala — 2. ]

Example 3 Counsider a; = (a1 +¢)* and define inductively, for all i > 1,
ajt1 = (o + B;)*, where (3; is obtained from «; by replacing each a; by
@jy|a;| 4+ For instance,

ag = (((a1 + &)+ (ag +e)") + ((az3 + )" + (aqg +€)")*)".

Then, for any n > 1, a, is reduced and |y, |4 = 2771, |a,|. = 271, and
lap| =621 -2,

We shall assume that all regular expressions throughout the paper
are reduced. This will not affect the complexity of our algorithms since
reducing an expression takes only linear time and the size of the reduced
expression is less than or equal to the size of the initial expression. Also,
Proposition 2 says that all complexities can be expressed in terms of the
number of letters in the regular expression, that is, |a|4.

4 Small eNFAs from regular expressions

We give in this section our new construction of eNFAs from regular ex-
pressions. As in the previous constructions, we construct the eNFA by
induction using the structure of the regular expression.
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Algorithm 4 Given a regular expression «, the algorithm constructs
an eNFA for « inductively, following the structure of «, and is shown
in Fig. 1. The steps should be clear from the figure but we bring some
further improvements at each step:

(a) After catenation (Fig. 1(v)): denote the state common to the two
automata by p; (al) if there is a single transition outgoing from p, say
p = ¢, then the transition is removed and p and ¢ merged; otherwise (a2)
if there is a single transition incoming to p, say ¢ — p, then the transition
is removed and p and ¢ merged.

(b) After iteration (Fig. 1(vi)), denote the middle state by p. If there
is a cycle containing p such that all its transitions are labelled by ¢, then
all transitions in the cycle are removed and all states in the cycle are
merged.

(c) After the end of all steps in Fig. 1; if there is only one transition
leaving the initial state and is labelled €, say gy — p, then the transition
is removed and ¢p and p merged.

(d) In case of multiple transitions, that is, transitions with the same
source, target, and label, only one transition is kept, the others are re-
moved.

b @ U0 V%o
i (ii) € (iii) a

- N T

union (v) catenation (vi) iteration

Fig. 1. The construction of Af

Example 5 An example of the construction in Algorithm 4 is given in
Fig. 2. The regular expression 7 used there will be our running example
throughout the paper. The example was carefully contrived such that any
two constructions which are, in general, different will be different on 7.

a,b

Fig.2. Af(7) for 7 = (a + b)(a™ + ba™ +b")"
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We call the automaton returned by Algorithm 4 follow eNFA (the
reason for this name will be clear later) and denote it

Af(a) = (QF, A, 07,07, q5).

The next theorem proves the correctness and running time of the
Algorithm 4.

Theorem 6 For any reqular expression o we have:
(i) L(A#(a)) = L(a) and
(it) Af(a) can be computed in time O(|a|).

Proof. (i) is clear by construction. For (ii), we just point out how
the improvements at (b) can be done in linear time. Anytime a '« cor-
responding to a subexpression f* of a is processed, we attempt finding
e-cycles. Because all previous e-cycles have been removed, the only pos-
sible cycles are those containing the state obtained by merging the initial
and final state of the follow eNFA for 5. We can do a complete search
using backtracking on the e-transitions in 8’s automaton; when a cycle
is found, it is removed and the states are merged; when we backtrack on
an e-transition, we mark that e-transition such that it will not be tried
second time. This is correct because such e-transitions cannot be involved
in other e-cycles during the remaining of the construction. Consequently,
all improvements at (b) can be done together in time O(|«|). O

The next theorem says that this eNFA is always smaller than the
ones obtained by the constructions of Thompson [Th68] and Sippu and
Soisalon-Soininen [SiSo88]. We give also an example showing that it can
be much smaller. Notice that in the example we do not use the improve-
ments (a)-(d) at all since we want to emphasize the superiority of the core
of our construction. (It is easy to construct artificial expressions for which
our construction, using (a)-(d), gives an arbitrarily smaller automaton.)

Theorem 7 For any regular expression «, the size of Af(«) is smaller
than the size of the eNFAs obtained from a using the constructions of
Thompson or Sippu and Soisalon-Soininen.

Proof. Recall first the other two constructions. They are inductive and
should be clear from Figs. 3 and 4.

All three constructions start the same way and at each inductive step
(according to the structure of the regular expression), ours adds less tran-
sitions and less states. Precisely, the total number of states and transitions
added by each of the three constructions for an operation '+, '/, and '+,
respectively, is (a negative number means that the size decreases):
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- for our construction: —2, —1, 3;
- for Thompson’s construction: 6, 1, 6;
- for Sippu and Soisalon-Soininen’s construction: 2, —1, 5; g

v o Vo D%
(i) 0 (ii) e (iii) a
e 30 £
D

g
O ¥0°

(iv) union (v) catenation (vi) iteration

Fig. 3. The construction of Thompson [Th68]

v o v 0 %o

(i) 0 (ii) & (iii) a
O30 =
I o tvemsoe——=o vede=— o
=30 €
(iv) union (v) catenation (vi) iteration

Fig. 4. The construction of Sippu and Soisalon-Soininen [SiS088]

Example 8 For the regular expression & = a1 +as +-- -+ ay, Af(a) has
size n + 2 (2 states, n transitions), Thompson’s has size 9n — 6 (4n — 2
states, bn — 4 transitions), and Sippu and Soisalon-Soininen’s has size
5n — 2 (2n states, 3n — 2 transitions).

We discuss next an upper bound on the size of our eNFA.

A first remark concerns the following invariant of our construction.
For any subexpression of a, the automaton constructed by our algorithm
has one starting state of indegree zero and one final state of outdegree
zero, except for the improvement at (c¢) which is done only at the very
end of the construction.

A technical remark concerns the inductive proofs about the follow
eNFA. When using induction, we shall tacitly work with Af obtained
without the improvement (c), as this is the way induction is done.

The improvements in the above steps (a)-(d) are actually very impor-
tant since they can reduce significantly the size of the Af; especially
the one at (b). As a consequence, for any subexpression of the form
By + -+ 85 +ajas - al)*, the '«'s for a;’s and f;’s do not increase
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the size of the automaton. For instance, the constructed automata for the
expressions (a* +b*)*, (a*b*)*, and (a+b)* are identical. The same is true
for any ¢ in an expression like (81 + - 4+e+ -+ 4+ )™

We see next a very general case when '#’'s in the regular expression
do not change the size of the automaton and we shall be able to make
important assumptions on the structure of the expressions. We say that
a regular expression « is x-avoidable if there is a path in a’s tree from the
root to a leaf such that no vertex on this path (including the root and
the leaf) is labelled by '+’. Otherwise « is called *-unavoidable.

Assume § is #-unavoidable and construct a regular expression, denoted
remove(f3), as follows. For any path from the root of §’s tree to a leaf,
consider the «" which is closest to the root (there is at least one 's’). We
remove this '+’ and change all ’’s on the path from the removed '+" to
the root into '+'s. For instance, if 8 = a*b* + c¢*, then remove(3) = a +
b+ c. Now, for any regular expression «, we construct another expression
avoid(«) as follows. As long as there are subexpressions of the form g*
in a with 8 x-unavoidable, we choose a minimal such 3, i.e., 8 has no
subexpression v* with 7 *-unavoidable, and replace § by remove(/3). As
an example, if & = ((a*(bc)* +d*)* + (c(a+b))*b*) a+b, then avoid(a) =
(a+bc+d+cla+b)+b)*a+b.

The idea is to remove '*’s from « such that the language of « remains
unchanged but the size decreases. As we shall see in a moment, the au-
tomaton eNFA remains the same but for an expression of smaller size.
This will help us when proving an upper bound on the size of Af.

Lemma 9 For any regular expression «, Af(co*) and Af(avoid(a)*) are
identical.

Proof. 1t is enough to show that, for any x-unavoidable expression [,
Af(B*) and Af(remove(f)*) are the same. As  is *-unavoidable, there
are (B;,1 < i < n, subexpressions of § such that S is obtained from

*,1 <14 < mn, by using only '+’ and ’/. When building the follow eNFA
for B, the initial and final states of the follow eNFA for f3; are merged to
a single state, say ¢;. This g; is on a path labelled e from the initial to the
final state of the follow eNFA for §. Therefore, in the automaton of 5*,
all g;s will be merged. Clearly, the same happens in the follow automaton
of remove(f)*. O

Before proving the upper bound on the size of the follow eNFA, we
need several notations and a technical lemma. For a regular expression
« over A, we denote by |a|4,|a|.,|a|. the number of occurrences in « of
'+ 00T respectively. Thus |of = |a|a + |ale + |al+ + |af. + |
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We partition the set of vertices in o’s tree that are labelled by '+’ into
four classes: the first contains the root, if labelled by '+’, and those whose
parent is labelled by ' and whose sibling is not labelled by '+’ let their
number be ¢;; the second contains those whose parent is labelled by '~/
and whose sibling is also labelled by '+’  their number is 2cg; the third
and fourth sets are defined as the previous two by replacing the label '~/

of the parent by '+’  their numbers are p; and 2ps, respectively.

Lemma 10 Let o be a reqular expression such that for any subexpression
B* of it, B is x-avoidable. Then ||, + pa(a) < 3(|a| +1).

Proof. We prove the following properties, which imply the statement;
it is assumed that « below has the property in the statement, i.e., for any
subexpression 8* of it, § is x-avoidable:

(1) - if v is *-unavoidable and the root of a’s tree is not labelled by
¥/, then |al, + pa(a) < 3(laf + 1),

(2) - if the oot of &’s tree is labelled by '+', then |af, 4+ pa(a) < |-

(3) - if & is #-avoidable, then |al, + pa(a) < (|| — 1),

We use structural induction. If a € {0,e} U {a | a € A}, then |a|, +
pa(c) = 0 and (3) is satisfied. When « has at least one operator, we
assume the properties true for all subexpressions of & and prove them for
.

(1) Consider first the case @ = 8+ «. If at least one of  and ~ has
the root of the syntax tree not labelled by ’+', then, by the inductive
hypothesis, [al, + pa(a) = |8l. + [1ls + pa(B) + pa(7) < L8] + 1) +
27l + 1) = 3(le| + 1). If both roots of the syntax trees of 8 and
are labelled by '+, then the inductive hypothesis gives |a|. + pa(a) =
Bl + [yl + p2(B) + pa(7) + 1 < 3Bl + 317 + 1 = §(|laf + 1). The case
o = f3 -y is similar.

(2) Put a = *. Then, by hypothesis, § is x-avoidable and we have,
using the inductive hypothesis, |a|. + pa(@) = |8« + 14 pa(8) < 3(18] —
1)+ 1= 1l

(3) In this case, either « = -7 or a = 5+ and at least one out of
and vy is #-avoidable. In particular, pa(a) = pa(8) + p2(7y). We have then
als +p2(0) = [Blu -+l +p2(8) +p2(3) < 3181+ L+ -1 = L(lal-1).

O
Theorem 11 For any reduced regular expression o we have <
Slel + 3.

Af(a)|

Proof. Using the notations introduced above, we have

| Af ()| < 3laja + 3|lal: —2|al+ —|al. + 1 + 4e2 + 3p1 + 6po.
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Using the equality |a|a + |al: — 1 = |a|+ + |af., we can write
| AF(0)] < lal 42 ]y 204201 +4ps = ol 42 o] +lal—c1tpr+2ps.

By Lemma 9, we may assume « has no subexpression f* with [ x-
unavoidable (as otherwise we have the same automaton but for a longer
expression) and may apply Lemma 10. Using also the inequality p; +ps <
]y, we get | Af(a)] < |al +2 + |al. + p2 < 3|al + 3, which was to be
proved. O

We move next to proving a lower bound which is very close to the
upper bound in Theorem 11.

Theorem 12 Let a,, = (a] +a3)(a3 +a}) - - (a5,_; +a3,). Every eNFA
accepting L(ay,) has size at least 8n — 1 = §|a\ + 3.

Proof. Let A, be an eNFA accepting L(ay,). For any i,1 < i < 2n,
there must be a state ¢g; of A; and a cycle containing ¢; and labelled by a
nontrivial power of a;. Moreover, all ¢;s are different and all these cycles
are disjoint. Also, for any 7,1 <7 < mn — 1, there is a path from either of
q2i—1 and qo; to either of g9;41 and ¢g;49. The first transitions on these
paths belong to no others. So far we have shown that |A,| > 4n+4(n—1).
The rest comes from the fact that we have only one initial state. O

Using the results in Theorem 11 and Proposition 2(ii), we obtain that
| Af(a)| < 9]als — 5. However, this result does not seem to be close to
optimal and investigating upper bounds for the size of Af(a) in terms of
the number of letters in « remains to be further investigated.

5 Positions and partial derivatives

We recall in this section two well-known constructions of NFAs from reg-
ular expressions. The first is the position automaton, discovered indepen-
dently by Glushkov [G161] and McNaughton and Yamada [McNYa60].

Let « be a regular expression. Put pos(a) = {1,2,...,|a|4} and
posy(a) = pos(a) U {0}. All letters in « are made different by marking
each letter with its position in c; denote the obtained expression @ € A",
where A = {a; | a € A,1 < i < |afa}. For instance, if a = a(baa + b*),
then @ = a1 (b2azas+bt). Notice that pos(a) = pos(@). The same notation
will also be used for removing indices, that is, for unmarked expressions
«a, the operator - adds indices, while for marked expressions @ the same
operator - removes the indices: @ = a. We extend the notation for arbi-
trary structures, like automata, in the obvious way. It will be clear from
the context whether ~ adds or removes indices.
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Three mappings first, last, and follow are then defined as follows. For
any regular expression « and any i € pos(«), we have:

first(a) = {i | aqjw € L(@)}
last(«) = {3 | wa; € L(@)}
follow(cv, %) = {j | ua;a;v € L(@)}

(1)

The three mappings have also an inductive definition, which we shall
give later, when needed in the proofs. For future reasons, we extend
follow(cr,0) = first(cr). Also, let lasto(c) stand for last(a) if e(a) = 0
and last(a) U {0} otherwise.

The position automaton for « is

A os(a) = (posy(a), A, dpos. 0, lasty ()

with 0p0s = {(¢,a,7) | j € follow(ev, i), a = @;}. As shown by Glushkov
[G161] and McNaughton and Yamada [McNYa60], L(Apos(a)) = L(a).
Briiggemann-Klein [BrK93] gave an algorithm to compute the position
automaton in quadratic time.

Example 13 Consider the regular expression 7 = (a+b)(a* + ba* 4 b*)*.
The marked version of 7 is 7 = (a1 + b2) (a3 + bsai + b§)*. The values of
the mappings first, last, and follow for 7 and the corresponding position
automaton Aps(7) are given in Fig. 5.

first(7) = {1, 2}
last(r) = {1,2,3,4,5,6}
follow(r, )
13.4,6]
(3,4,6)
{3,4,6}
{3,4,5,6}
{3,4,5,6}
{3,4,6}

S e

Fig.5. ALos(7) for 7= (a + b)(a” + ba™ +b")"

The second construction we recall in this section is the partial deriva-
tive automaton, introduced by Antimirov [An96]. Recall the notion of
partial derivative introduced by him. For a regular expression « and a
letter a € A, the set 0,(a) of partial derivatives of a w.r.t. a is defined
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inductively as follows:

=0,(0) =0

) ey, ifa=b

B {@, 0therw1se

= Oa(a) U (2)
_ JOu()p ife(a) =10

B {aa (a 5ua B), ife(a)=c¢

Oa ()

The definition of partial derivatives is extended to words by 0.(«) = {a},
Owa(@) = 04(0p (), for any w € A*, a € A.

The set of all partial derivatives of o is denoted PD(a) = {0y(a) |
w € A*}. Antimirov [An96] showed that the cardinality of this set is less
than or equal to || 4 +1 and constructed the partial derivative automaton

Apq(a) = (PD(a), A, 0pa, o, {g € PD() | e(q) = €}),

where d,q(q,a) = 0,(q), for any ¢ € PD(a),a € A. He proved that
L(Apa(e) = L(a).

Champarnaud and Ziadi [ChZi01la,ChZi01b] proved that the partial
derivative automaton is a quotient of the position automaton and showed
how the partial derivative automaton can be computed in quadratic time,
improving very much Antimirov’s quintic time bound. We shall see in the
next section a simplified presentation of some of their results.

Example 14 Consider the regular expression 7 from Example 5. The
partial derivatives of 7 are computed in Fig. 6 where also its partial
derivative automaton Ap4(7) is shown.

O0a(7) = {11} 1= (a" +ba" +b")"
O(r) = {n}

Oh(m1) ={m2, 3} 3=0"11
0a(12) = {72}

Op(12) = {72, 73}

Oa(73) = {72}

ab("’a) = {7'2,7'3}

Fig. 6. Apa(7) for 7 = (a + b)(a™ + ba™ +b")"
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6 Apq4 revisited

In this section we give a simplified proof of the fact, proved by Champar-
naud and Ziadi, that the partial derivative automaton A4 is a quotient
of A, s. Essentially, we rely only on the work of Berry and Sethi [BeSe86).
We shall not use the notions of canonical derivative and c-continuation of
[ChZi0la] but show that, under certain hypotheses, they are in fact the
same as the continuations of Berry and Sethi.

We assume in the following that the rules for () and € hold: a+0 = 0+
a=a,ad=0-a=0,and a-e = e-a = a. Two regular expressions o and
B which reduce to the same expression using associativity, commutativity,
and idempotence of + are called similar [Br64]; this is denoted a ~yci S.

We recall also the definition of the (total) derivative, also due to Br-
zozowski [Br64]. The derivative of a w.r.t. a letter a, a~!(«), is defined
inductively as:

e)=a (D) =0
e, ifa=0»b
Ce)= {@, otherwise (3)
—1
(a+ﬂ)=a Ha) +a 1(B)
(045) =a () +e(a)a'(B)
a') = 0 (a)a’

The definition of the total derivatives is extended to words by e ' () = a,
(wa) () = a Y w (), for any w € A*,a € A.

Consider the marked version of o, @ € A~ which has all letters dif-
ferent. Berry and Sethi proved, for a fixed a; € A, that for all words
w € A, (wa;)”" (@) is either § or unique modulo ~,. It is clear that,
for any two disjoint subexpressions 5, and (2 of @, at most one of the
expressions (wa;)~'(B1) and (wa;)"'(B2) is different from (). Therefore,
when computing total derivatives using (3), we get at each moment at
most one term different from ). Hence, it is natural to require that we
apply, whenever possible, the rules for () and ¢ during the computation
of the total derivatives. What we get is that the derivative (wa;)~' (@) so
computed is either () or unique; we got rid of the ~,.-similarity.

The same can be done for the computation of the partial derivatives:
when using (2), we apply the rules for () and e after each step. Since they
are computed in the same way, we have Oy, (@) = (wa;) ! (@).

Recall next the notion of a continuation, also from Berry and Sethi.
For a letter a; € A, the continuation of a; in «, denoted ¢;(@), is any
expression (wa;) (@) # 0. From the above, this notion is well defined.
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Notice again that we are not talking about ~,.-equivalent expressions be-
cause, by our assumption, there is only one. Denote also ¢y(@) = @. Berry
and Sethi’s continuation automaton is then Ao (@) = (Q, A,d,qo, F),
where Q = {i(@) | i € posg(@)}, g0 = @ F = {q | £(g) = e}, and
0 = {(ci(@), aj,c;(@)) | aj € first(c;(@))}. As Berry and Sethi proved,

Proposition 15 A, (@) ~ Apes(@) and Acon(a) >~ Apos().

The difference between the continuation or position automaton, for o
or @ is that the labels on transitions are unmarked or marked, respectively.
Obviously, if two automata with marked letters are isomorphic, so are the
unmarked versions.

It is worth mentioning that the language accepted by the two au-
tomata for @ is L(a@). Also, L(@) = L(c). Notice that for the continuation
and position automata, it makes no difference whether we work first with
@ and unmark the obtained automaton or we work with «. However, as
we shall see in a moment, the same is not valid for the partial derivative
automaton.

Now, from the definition of A,q(@), the difference w.r.t. Acon(@) is
that whenever two continuations of @ (including @) are the same, they
represent different states in Ao (@) but the same in A,q(@). Define then
the equivalence =.C (pos(a))? by i =, j iff ¢;(@) = ¢j(@); =, is right-
invariant w.r.t. the position automaton. What we have so far is that

Proposition 16 (i) Apq(@) ~ Acon(@)/=. ~ Apes(@)/=,
(it) Apa(@) = Acon(@)/=. = Apos(@)/=..

Example 17 For the regular expression 7 from Example 5, we construct
in Fig. 7 the automaton A,4(7); the classes of the equivalence =, are also

shown.

classes of =.: {0}
{1,2}
{3}
{4,5}
{6}

Fig. 7. ALa(T) = Apos(@) /=, for 7= (a +b)(a” + ba™ +b")"
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We have worked so far in this section only with regular expressions
which have all letters different. We shall now remove the marking and
see what happens. Define another equivalence, =.C (pos(a))? by i =, j
iff ¢;(@) = ¢;j(@); =, is also right-invariant w.r.t. the position automaton
and =.C=,.

For any letter a and regular expression 3, it is clear that d,(a) =
{04, (@) | @i = a}. Therefore, the partial derivative automaton is obtained
by merging those states in the continuation automaton which have the
same continuation when indices are removed. We therefore have the result

of Champarnaud and Ziadi [ChZi01a]

e

Theorem 18 A 4(a) ~ Apes()/=

Notice that we gave also a proof for the result of Antimirov [An96]
that |PD(a)| < |ala + 1.

Example 19 For the regular expression 7 from Example 5, we construct
in Fig. 8 the automaton A,4(7); the classes of the equivalence =, are also
shown. According to Theorem 18, we have A,q(7) >~ A,o5(7)/=, as it can
be seen by comparing with Fig. 5 where A s(7) is shown.

classes of =.: {0}
{1,2}
{3,4,5}
{6}

Fig.8. A,d(7) =~ Apos(7)/=. for 7 = (a+ b)(a™ + ba™ +b")"

7 Follow automata

In this section we give our new algorithm for constructing NFAs from
regular expressions. The idea is very simple: just eliminate (in a certain
way, to be made precise below) the e-transitions from the Af(«). Essen-
tially, for any path labelled ¢, p ~» ¢, and any transition ¢ — r, we add a
transition p — 7. The obtained automaton is called follow NFA, denoted

Af(a) = (QfaAaéfaofaFf)'

We give below the precise details of the elimination of e-transitions
from Af(a). We notice that, due to improvement (b) in Algorithm 4,
there are no e-cycles in Af(a).
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Algorithm 20 Given Af(), the algorithm constructs Ag(a).

1. Ff — {qf}
2. sort topologically Qjc w.r.t. the order p < ¢ iff p = ¢ € 65;
denote the ordered Q% = (q1,92,---,qr)
. for i from r downto 1 do
for each transition ¢; — p do
for each transition p — ¢ do
ifqi£>q€(5§ thenaddqiiqtoéjc
if p € Fy then add g; to Fy
. remove the transition ¢; — p
. for each g € Q5 — {0} such that there is no p % ¢in ¢} do
eliminate ¢ from Q; and all transitions involving ¢ from 6;
10. Qf — Q§c7 (5f — (5;
11. return Af((l’) = (Qf, A, 5f, Of, Ff)

3
4
9
6.
7.
8
8
9

Theorem 21 For any reqular expression «, Ag(«) is an NFA accepting
L(a) which can be constructed in time and space O(|a|?).

Proof. For the first assertion, it should be clear from Algorithm 20
that L(Af(a)) = L(Af()). We then use Theorem 6(i).

The complexity is given by the number of pairs (p 5q.q95 r) which
are considered in the algorithm. There are O(|«|) e-transitions and O(|«a|)
transitions labelled by the same letter which leave a certain state. As-
suming A is fixed, we obtain the result. O

Example 22 We give an example of an application of Algorithm 20. For
the same regular expression 7 = (a + b)(a* + ba* + b*)* from Example 5,
we build in Fig. 9 the automaton A¢(7); compare with Example 5 to see
the e-elimination.

Fig.9. A¢(7) for 7 = (a + b)(a™ + ba™ +b")"

We conclude this section with some very important comments con-
cerning both the size of A¢(a) and the running time of Algorithm 20
which builds it. The worst case in Theorem 21 is reached for instance for
the regular expression of [HSWO01], that is, @ = (a1+¢)(az+¢) - - - (an +e).
However, in most examples (see also the examples at the end) both the
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size of A¢(a) and the running time of Algorithm 20 are linear. Also, we
do not have examples where the e-elimination requires essentially more
time than the size of A¢(a). This remains an open problem.

We finally notice that our e-elimination algorithm is different from,
and faster than, the classical one of [HoUl79]. The difference is that we
do not compute e-closures.

8 Ay is a quotient of A

We prove in this section that A¢(a) introduced above is a quotient of
A os(a). This is unexpected because the construction of A¢(«) does not
have, apparently, anything to do with positions. However, the conse-
quences of this result are very important.

We start by defining the equivalence =¢C posy(a)? by

i=yj iff (i) both i,j or none belong to last(a) and
(ii) follow(c, %) = follow(c, j)
Notice that we restrict the equivalence so that we do not make equivalent

final and non-final states in Apgs(a). The maim result of this section
follows.

Theorem 23 A¢(a) ~ Aps(a)/=,.

We notice first that the restriction we imposed on =; so that final
and non-final states in posy(a) cannot be =j-equivalent is essential, as
shown by the expression a = (a*b)*. Here follow(«, i) = {1,2}, for any
0 <i < 2. However, merging all three states of A,os() is an error as the
resulting automaton would accept the language (a + b)*.

Example 24 Here is an example of an application of Theorem 23. For
the same regular expression 7 = (a + b)(a* + ba* + b*)* from Example 5,
we build in Fig. 10 the Af(7) and then give the equivalence classes of =¢
and the automaton Ag(7).

classes of =;: {0}
{1127316} \@a,b b
(4.5} S @23 DT (@) Job
Fig. 10. A¢(7) ~ Aos(7)/=, for 7 = (a +b)(a" +ba™ +b")"

We move next to the proof of Theorem 23. First of all we need to see
that we are allowed to make the quotient of the position automaton by
the equivalence =.
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Lemma 25 The equivalence =y is right invariant w.r.t. Apes(c).

Proof. The first condition, compatibility with the set of final states
lasty(cx), is verified by the definition of =;. For the second condition,
consider i € lasty(a), a € A. We have dp05(i,a) = {k € pos(a) | k €
follow(c, i), @ = a} and so, if i = j, then 0(7,a) = 6(j,a) and the claim
follows. O

The following well-known properties of these mappings will be used
in the sequel:

first(5 + ) = first(5) U first(7y)
first(8y) = first(B8) U () first(y)
first(IB*) = first(ﬂ)
last(8 + ) = last(B) U last(~y)
fast(y) = last(7) U e(y) last(9)
last(B*) = last(3)
ow oy _ Jfollow(B.i), if i € pos(B) (4)
follow (8 + 7, 1) {fonow(w)’ if i € pos(y)
follow(f, ), if i € pos(8) — last(p)
follow(B,1) = < follow(/3, ) U first(vy), if i € last(B)
follow(y, ), if i € pos(y)
fO”OW(,B*,Z) - {fOHOW(BaZ)a ifie pOS(B) laSt( )
follow(f3,1) U first(B), if i € last(B)

Also, we shall need several results before proving Theorem 23. First,
it is clear that Af(«) is obtained from Af(@) by eliminating multiple

transitions, if any. Therefore, A¢(«) is obtained from A¢(@) in the same
way. Also, Apos(@) = Apes(@), which implies that Apes(a)/=, is obtained
by eliminating multiple transitions from Aus(@)/=,. Consequently, it
is enough to prove that Af(@) ~ Apos(a)/zf. Notice that =; is right
invariant w.r.t. Ap.(@).

We define the function

m : posy(a) — Q%  m(0) =0y and
m(i) =p, if i # 0 and ¢ % p, for some ¢ € Q%

There is a single transition labelled a; in Af(@), so m(z) is well defined as
its target. Because the initial states of A¢(@) and Af(@) are the same and
all transitions labelled a; in A¢(@) have the same target state, m can be
equivalently defined as m : posy(a) — Q¢ by m(0) = 0y and, for i # 0,



April 22, 2003 Follow automata 21

m(i) = p, for any p € Q¢ such that there is an transition labelled a; which
is incoming to p. Notice that m is onto Q) as the states of Af(«) which
have all incoming transitions labelled € were removed by Algorithm 20.
The function m will be the isomorphism we look for.

We prove next several results concerning the function m. For two
states p and ¢, we denote the fact that there is a path labelled £ form p
to ¢ by p ~ ¢; this path can also empty, that is, p = q.

Lemma 26 For any i,j € pos(a), we have
(i) i € first(c) iff there is Op ~> p % m(i) in Af(@).
(ii) i € last(c) iff there is m(i) ~ q; in Af(@).
(iii) j € follow(e, i) iff there is m(i) ~ p 4 m(j) in Af(@).

Proof. The assertions follow from the definitions of first, last, and follow
in (1) and the equality L(@) = L(Af(@)) in Theorem 6(i). O

Lemma 26 implies that, in order to show the isomorphism A¢(a) ~
Apos(@)/=,, it is enough to prove that, for any 1,5 € posy(a), i = j iff
m(i) = m(j). If we define the equivalence =, = {(4,7) | m(7) = m(j)},
then we have to show =, = =. Indeed, assume this holds. Lemma 26(ii)
assures that final states of Apos(@)/=, are mapped to final states of A¢(@).
Then, we have a transition [i]=, 4 [j]=; in Apes(@) /=, iff j € follow(a, i)
iff (by Lemma 26(i)(iii)) m(i) ~ p =5 m(j) in Ai(@) iff m(i) =% m(j) in
A¢(@). The isomorphism follows.

The next result concerning initial states follows from Lemma 26.

Corollary 27 We have that m~'(05) = {0} iff there is no incoming
transition labelled by some a; to O in Af(@) (or, equivalently, in A¢(@)).
Also, if i € m~1(0y), then follow (v, i) = first(c).

We make an observation concerning notations, such as 0y, g, m, =y,
etc. They depend on « but we omit « when it is understood; when it is
not clear from the context, we add it as a further subscript, e.g., Ofq,
4f,as Mas =f,a, etC.

We shall need several further lemmata to prove our goal.

Lemma 28 The final state q; € Q‘} remains as a state in Qg after Al-
gorithm 20 iff there is i € last(«) such that follow(a, i) = (); moreover, in
this case, for any i € last(cr), m(i) = gy iff follow(c, 7) = 0.

Proof. The state g is not eliminated by Algorithm 20 if and only
if there is a transition g — qf in Af(@). By definition of m, we have
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m(i) = ¢y and Lemma 26(ii)(iii) give that ¢ € last(a) and follow(a, 1) = (.
Conversely, assume i € last(a) with follow(c,7) = 0. By Lemma 26(ii),
there is a path m(i) ~ ¢r in Af(@). Assume this path is not empty and
consider the last transition of it, ¢ — qf. According to the construction
of Af(@) in Algorithm 4, this e-transition may appear in two ways: from

" in . In the former case, there must

an ¢ initial y in « or from a
be (because a is reduced) a path from ¢ to ¢y which has at least one
transition labelled by some a;. Thus, by Lemma 26(iii), follow(c, ) # 0,
a contradiction. In the latter case, we obtain a similar contradiction; as «
is reduced, there must be a path as before from ¢ to ¢g. Therefore, it must
be that m(i) = ¢y and so ¢ remains in A¢(@). Notice that we proved also

the second statement. O

Lemma 29 For any i € last(«) such that O # follow(a,i) C first(c),
there is 07 ~ m(i) ~ gy in Af(@).

Proof. By induction on «. Denote the property to be proved P (a, ).

If & € {(,e,a}, then the property is true. When « has at least one
operator, assume P; true for all subexpressions of « and let us prove it
for . We shall use (4).

(1) @ = f+7y. Assume i € last(). The case i € last(7y) is similar. Then
0 # follow(B,14) C first(f) U first(y) and hence () # follow(s3,7) C first(f).
Therefore, by the inductive hypothesis, P;(/,1) is true and so is Pj(«,1).

(2) a = By. If e(y) = 0, then i € last(y) with ) # follow(vy,i) C
first(8)Ue(pB) first(y) and so it must be that () = € and () # follow(y,i) C
first(y). Now, the inductive hypothesis gives that P;(-y,7) holds, in par-
ticular £(y) = ¢, a contradiction. Thus, we have £(y) = e.

Now, if ¢ € last(7y), then, as above, we get () = € and the inductive
hypothesis gives P;(v,1). Together, these imply P («,1).

When i € last(3), we have () # follow(f,4) U first(y) C first(5) U
e(B) first(y) and e(8) = €, as v # ¢ (« is reduced). If follow(s3,i) = 0,
then Lemma 28 gives that m(i) = ¢y (the final state of Af(/3)). Hence,
Py (a,i) holds. If follow(3,7) # (), then the inductive hypothesis gives
Py (B,4) which will give again Pj(«,1).

(3) a = B*. Then i € last(3) and () # follow(3,4) U first(8) C first(B)
which implies follow(3,i) C first(3). If follow(3,4) # 0, then P;(a, 1) fol-
lows from the inductive hypothesis on . If follow(f,4) = (}, we use again
Lemma 28 and obtain P (o, 1). O

Lemma 30 For any i,j € last(a) with ) # follow(a,i) — first(a) =
follow (e, j) —first(a), we have either i =¢ j or m(i) = m(j).
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Proof. By induction on «a. Let us denote the property to be proved by
Py(a,i,j). For a € {0,e,a} there is nothing to prove. We assume next «
has at least one operator and Ps is true for all subexpressions of «.

(1) « = B+ 7. Then i and j are both in either last(3) or last(y) and
the property follows from (4) and the inductive hypothesis.

(2) a = By. We use (4). Assume first 1,7 € last(y). If (8) = e,
then the inductive hypothesis gives P,(,4,j) which, in turn, implies
Py(v,i,7). If €(B) = 0, then i =5, j. If 4, f € last(f), then e(y) = e.
If e(8) = e, we can use inductive hypothesis on . Assume £(3) = 0.
Then follow(8,4) — first(8) = follow(s, j) — first(8). If both members of
the last equality are non-empty, then we can again use the inductive hy-
pothesis on 8. Otherwise, for any k € {i,j}, follow(8, k) = 0; if non-empty,
then Lemma 29 would give P (S, k), implying £(8) = ¢, a contradiction.
Therefore, by Lemma 28, we get m(i) = m(j).

The remaining possibility is ¢ € last(f), j € last(y); we have also
e(y) = e. The equality follow(c,i) — first(«) = follow(c, j) — first(«) is
possible only if £(8) = (), follow(3,4) C first(3), and follow(~y, j) = first(7y).
Also, it must be that follow(3,7) = (}, as otherwise Lemma 29 would give
£(B) = €, a contradiction. Therefore, i =¢, j.

(3) a = B*. Then Py(a,1,j) follows from the inductive hypothesis on

. O

Proof of Theorem 23. We can start now the proof of the equality
===, which, as argued before, is enough to prove the statement of
Theorem 23. We do this again by induction on c. If &« € {0}, ¢, a}, then =4,
= == 0. Assume «a has at least one operator and that the property
holds for all subexpressions of «. We shall tacitly use (4). Also, recall that
all expressions are assumed to be reduced.

(1) & = B+ 1. Corollary 27 gives m~'(07,) = {0}. Consider first the
case when 3 = ¢; the case v = ¢ is symmetric. If i 7# 0 and i =;, 0, then
follow(y, i) = first(y) # 0, and so, by Lemma 29, ¢ € L(v), contradiction
with « reduced. Therefore, =, = =¢, ﬂpos(a)Q. Since also =, , =
=m. Npos(a)?, the inductive hypothesis implies =;, = =, ».

Assume now 3 # €, v # €. We know that no ¢ # 0 can have i =;, 0.
Take 7 # 0,5 # 0 such that i =y, j. If i and j are both in pos(3) or
pos(7y), then ¢ =f5 j or i =y, j, respectively. If not, then i € last(5),
j € last(v), and follow(3,1) = () = follow(ry, 7). Therefore,

= ((=4,5 U =5,) Npos(a)?)
U {(7,7) € last(B) x last(vy) | follow(3,i) = () = follow(, 7)}.

Ef7a
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According to Algorithm 4 and Corollary 27, m/gl(Of’a) is either {0} or

empty (in the case of (al)). Similarly, using Lemma 28, mgl(qf,a) contains
those i € pos(a) with follow(c, i) = (. Therefore, =, = =0

(2) @ = . Since « is reduced, both § and «y are different from e.
Hence, for i # 0, we have i =, 0 iff i € pos(3), i =3 0. This implies
=f.a N({0} x pos(a)) ==, N({0} x pos(a)).

Take i # 0, j # 0, such that i =7, j. If both i and j are in pos(f) or
pos(7y), then ¢ =y 3 j or i =4, j, respectively. The converse holds as well.
If i € pos(f), j € pos(7), then it must be that 7 € last(3), follow(3,i) = 0,
and j =y, 0. The converse is also true. Therefore, we have

=la = =18
U (=1, NPos(7)?)
U {(i,5) € last(B) x pos(7) | follow(B,i) = 0,j =y, 0}.

Consider now =, ,. The positions mapped to the same states by mg or
m, will also be mapped the same by m,. Also, the positions mapped
by m, to 0y, are precisely those mapped this way by mg. According to
Algorithm 4 (and its improvement (a)) and Lemma 28, the positions i in
S with follow(3,4) = 0 and those j in vy with m,(j) = 0y, are mapped to
the same state. Now the inductive hypothesis shows that =, = =, -
(3) a = p*. Consider first i # 0, i =7, 0. Lemma 29 gives that 7 €
pos(/3)—last(/3) is not possible. Thus i € last(3) with follow(3,4) C first(5).
So, either follow(8) = 0 or, by Lemma 29, there is 0y g o m(i) ~o qrp in

A$(B). The converse holds true because of Lemma 26. Therefore

=0 N({0} x pos(a)) = {(0,4) | i € last(B),05,5 ~ m(i) ~ q;5 in AF(B)}
U {(0,4) | i € last(B), follow(,i) = 0}.

It can be seen now that =7, N({0} x pos(a)) ==, N({0} x pos(«))
because of the definition of Af in Algorithm 4.

Consider next i # 0, j # 0 such that i =, j. If i, 5 € pos(8) —last(3),
then i =75 j. If 4,5 € last(f), then follow(g,1) U first(3) = follow(s, 5) U
first(8). If one of follow(3, 7) and follow (£, j) is a subset of first(3), then the
other is also and, for any k € {7, j} we have that either follow (3, k) = ) or
follow(f, k) # 0; in the latter case, by Lemma 29.there is 0y g ~ m(k) ~
qrp in Af(f). On the other hand, if none of follow(f, i) and follow (g, j) is
included in first(S3), then () # follow(/3, i) —first(3) = follow(, j) —first(B),

which gives, by Lemma 30 and the inductive hypothesis on 3, that i = g
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7. We have proved that

=/a Npos(a)® = (=55 Npos(5)?)

U {(i, ) € last(B)? | Vk € {i,5}, either follow(3,k) =0

or there is 075 ~ m(i) ~ g5 in AZ(B)}.
Now, again by the definition of Af in Algorithm 4 and the improvement
in (b), we have =, Npos(a)? ==, o Npos(a)?. Therefore, =f, = =y q,
and the proof of Theorem 23 is completed. O
So, we have that both follow and partial derivative automata are quo-
tients of the position automaton. As it will be seen in Section 10, the
two quotients are incomparable. Let us further remark that [I1Yu02b]
investigates further such quotients and shows how to build the largest
right-invariant equivalence w.r.t. the position automaton, which gives the
smallest quotient, therefore smaller than either of follow or partial deriva-
tive automaton. However, it is an open problem how to compute that
quotient fast; according to [I1Yu02b], it can be computed in polynomial

time.

9 Ay uses optimally the positions

Finally, we show that the follow automaton Ag(«) uses the whole infor-
mation which comes from positions of «. Indeed, the follow automaton
for marked expressions cannot be improved. A¢(@) is a deterministic au-
tomaton and let the minimal automaton equivalent to it be min(A¢(@)).
Then min(A¢(@)) is an NFA accepting L(a) which can be computed in
time O(|a|? log|a|) using the minimization algorithm of Hopcroft [Ho71].
This is, in fact, another way of using positions to compute NFAs for reg-
ular expressions. However, it is interesting to see that min(A¢(@)) brings
no improvement over A¢(«).

Theorem 31 min(A¢(@)) ~ A¢(a).

Proof. It is enough to show that min(A¢(@)) ~ A¢(@), that is, A¢(@)
is already minimal. We first complete the automaton Af(@); we add a
new non-final state, denoted (), and all missing transitions will go to it.
Denote the completed automaton by A?(a). Consider two positions i
and j which have different follow sets and, with no loss of generality, take
k € follow(cv, i) —follow (e, 7). Then, there is a word w € A" such that azw
takes the automaton A?(a) from the state i to a final state. On the other

hand, azw takes the automaton A?(E) from the state j to (). Therefore,
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i and j cannot be merged. Since they have been arbitrarily chosen, the
automaton A¢(@) is minimal. O

Notice also that computing A¢(«) by e-elimination in Af(«) is faster
than using Hopcroft’s algorithm [Ho71] plus unmarking.

10 Comparing A¢ with other constructions

We discuss in this section some examples to compare the follow automaton
with the best constructions to date. We shall include also comparison
with the common follow sets automaton of [HSWO01], denoted below by
A (). We do not include here the very long description of A g which
can be found in [HSWO01] or [HaMu00].

We start with some examples showing that Ay can be much smaller
than either of A,y and A4 and that Ay is incomparable with either of
Apd and Acfs.

Example 32 Consider «, from Example 3. The follow automaton is
smaller than all the others:

| Apos(an)| = | Apa(an)| = O(lanl?),

| Ag(an)| = O(|anl),

| Acts ()| = O(|an|(log(|an))?).

Example 33 Consider the regular expression
an=ai(by+ -+ b)) +ag(by+ -+ b)) + .o+ an(by+ o+ b))

We have now that the partial derivative automaton is the smallest:
| Apos(an)| = @(‘an|3/2)a
| Ag(a)| = O(|awl),
| Apa(an)| = O(lan|'/?), and
| Acts ()] = O(|a|(log(|anl))?)-

Example 34 Consider the regular expression of [HSW01]
ap, = (a1 +¢)(ag +¢€)--- (an +€).

In this case the common follow sets automaton is the smallest:
|Ap08(0‘n)| = | At(an)| = ‘Apd(an” = @(|an‘2)= and
| Acts(an)| = OJan|(log(la|))?).
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Next, we give some real-life examples which have some interesting
common properties. For all of them, the follow automaton and the partial
derivative automaton are isomorphic and smaller than the other two.
These examples are:

- C-comments: /*((A — {*}) + *x*(A — {*,/}))"***/

- floating point numbers:
04490+ 4+9)* . ((0+---4+9)(0+---+9)* +&)(e +E)(++-+¢)
0O+ 4+9)(0+ - +9)

- programming languages identifiers:
(a+---z4+A+---Z)(at+--z+A+--Z+0+---+9)*

If these examples are generalized to some parametrized examples we
still have that Af and A4 are isomorphic and have linear size; the posi-
tion automaton has quadratic size and the common follow sets automaton
has size linear times the square of the logarithm. We show it only for the
last example. Conclusions of these results are discussed in the next sec-
tion.

Example 35 Consider the regular expression (generalized identifiers in
programming languages)

an,m:(a1—I—a2+---+an)(a1—I—a2+---+an+b1+b2+---+bm)*.

We have
| Ar(an,m)| = ‘Apd(an,m” = O(|an,ml),
| Apos(anm)| = @(‘O‘n,mp)a and
|AcfS(an,m)| = @(|an,m|(10g(|an,m|))2)-

We finally notice that we did not compare our construction with the
one of Chang and Paige [ChPa97] since we do not work with compressed
automata.

11 Conclusions and further research

We gave two new algorithms to construct nondeterministic finite au-
tomata from regular expressions. The first constructs eNFAs which are
smaller than all other similar constructions and also very close to opti-
mal. The second constructs the follow NFAs which are conceptually by
far the simplest compared to all the others: we construct the follow eNFA,
which is elementary, and then eliminate the e-transitions, which is again
elementary. However, the resulting automata have interesting properties.
The follow automaton is always a quotient of the position automaton,
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is very easy to compute, and is at least as small as all the other simi-
larly constructed automata in most cases. We believe that these features
will make these automata very attractive for practical purposes. Several
problems should be investigated further.

First, it seems that the time required to build the follow automaton
is linear in terms of its size. At least we do not have examples to prove
the converse. We remark that the assertion is not true in general. There
are examples of eNFAs for which the e-elimination takes longer than both
size of input and size of output.

Second, the follow automaton seems to have linear size in most cases.
It is of interest to see which are those cases and when the size is far from
linear. Also, the common follow sets automaton seems to have size linear
times the logarithm squared in most cases. Some lower bounds on its size
might bring some light here.

Third, a more rigorous comparison between the follow automaton and
common follow sets or partial derivative automaton should be done. This
seems difficult because average case analysis is, very likely, too compli-
cated. Probably the only way to decide which one is better is by testing
all of them in real-life applications.
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