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Abstract. The Lempel–Ziv complexity is a fundamental measure of complexity for words, closely
connected with the famous LZ77 compression algorithm. We investigate this complexity measure
for one of the most important families of infinite words in combinatorics, namely the fixed points of
morphisms. We give a complete characterization of the complexity classes which are Θ(1), Θ(log n),
and Θ(n1/k), k ∈ N, k ≥ 2, depending on the periodicity of the word and the growth function of
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1. Introduction. Before publishing their famous papers introducing the well-
known compression schemes LZ77 and LZ78 in [36] and [37], resp., Lempel and Ziv
introduced a complexity measure for words in [21] which attempted to detect “suf-
ficiently random looking” sequences. In contrast with the fundamental measures of
Kolmogorov [19] and Chaitin [4], Lempel and Ziv’s measure is computable. The def-
inition is purely combinatorial; its basic idea, splitting the word into minimal never
seen before factors, proved to be at the core of the well-known compression algorithm
LZ77, as well as subsequent variations. Another, closely related variant is to decom-
pose the word into maximal already seen factors, as introduced by Crochemore [7] as
a tool for algorithm design.

Lempel–Ziv-type complexity and factorizations have important applications in
many areas, such as data compression [36, 37], string algorithms [7, 20, 25, 32], cryp-
tography [26], molecular biology [5, 15, 16], and neural computing [1, 34, 35].

Lempel and Ziv [21] investigate various properties which are expected from a
complexity measure which intends to detect randomness. They prove it to be sub-
additive and also that most (but not too many) sequences are complex; see [21] for
details. Also, they test it against de Bruijn words, [3], as a well-established case of
complex words – de Bruijn words contain as factors all words of a given length, within
the minimum possible space. Therefore, they establish the first connection with the
factor complexity, which is also one of our topics.

In this paper, we investigate the Lempel–Ziv complexity from the combinatorial
point of view and not from an information theoretical perspective. Nevertheless, some
implications of our results to data compression are obtained. We shall consider the
Lempel–Ziv complexity for one of the most important classes of infinite words in
combinatorics, namely the fixed points of morphisms. Many famous infinite words,
such as Fibonacci or Thue-Morse, belong to this family; see, e.g., [23].

The fundamental nature of this measure allows for a complete characterization of
the complexity of infinite fixed points of morphisms. The lowest complexity, constant,
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or Θ(1), is encountered for the simplest words, that is, ultimately periodic. For non-
periodic words, the complexity depends on the growth function of the underlying
morphism for the letter on which the morphism is iterated. Thus, for polynomial
growth we obtain Θ(n1/k), k ∈ N, k ≥ 2, whereas for the exponential growth the
complexity is Θ(log n). We give examples for which each of the above complexities is
reached.

An interesting by product of this research is the observation that LZ77 will suc-
ceed in compressing these infinite fixed points down to 0 bits/symbol asymptotically
which is desireable of any good compression algorithm since the underlying mechanism
generating these infinite words has only finite amount of information.

Our results are similar with the well-known ones of Ehrenfeucht, Lee, and Rozen-
berg [9], Ehrenfeuct and Rozenberg [10, 11, 12, 13, 14, 30] and Pansiot [27, 28] who
provided the same characterization for the factor complexity. Comparing the two
characterizations, we find out that they complete each other in an interesting way.
While theirs distinguishes four complexity classes for the exponential case, ours gives
an infinite hierarchy (given by the parameter k above) in the polynomial case, corre-
sponding to their quadratic complexity.

The paper is structured as follows. After some basic definitions in the next section,
we introduce the Lempel–Ziv complexity and related concepts in Section 3. Section 4
contains an important intermediate result which characterizes the complexity of pow-
ers of a morphism. Using it, our complete characterization is proved in Section 5
where examples which reach each complexity involved are shown. The comparison
with the characterization of factor complexity is included in Section 6. Many prob-
lems need to be investigated about the Lempel-Ziv complexity. We propose several
in the last section.

2. Basic notions. We introduce here the basic definitions and concepts we need.
For further details we refer the reader to [6, 22, 23, 24].

Let Σ be an alphabet (finite non-empty set) and denote by Σ∗ the free monoid
generated by Σ, that is, the set of all finite words over Σ. The elements of Σ are called
letters and the empty word is denoted ε. The length of a word w is denoted |w| and
represents the number of letters in w; e.g., |abaab| = 5 and |ε| = 0.

Given the words w, x, y, z ∈ Σ∗ such that w = xyz, x is called a prefix, y is a
factor and z a suffix of w; we use the notation x ≤ w. If moreover x 6= w, then x is a
proper prefix of w, denoted x < w. The prefix of length n of w is denoted prefn(w).

An infinite word is a function w : N \ {0} → Σ. A finite word can be viewed as
a function w : {1, 2, . . . , |w|} → Σ. In either case, the factor of w starting at position
i and ending at position j, will be denoted by w(i, j) = wiwi+1 . . . wj . The set of
all factors of w is F (w). The set of letters of Σ that actually occur in w is denoted
Σ(w). The set of infinite words over Σ is denoted Σω. An infinite word w is ultimately
periodic if w = uvvv . . ., for some u, v ∈ Σ∗, v 6= ε. When we say w is non-periodic,
we mean it is not ultimately periodic.

A morphism is a function h : Σ∗ → ∆∗ such that h(ε) = ε and h(uv) = h(u)h(v),
for all u, v ∈ Σ∗. Clearly, a morphism is completely defined by the images of the
letters in the domain. For all our morphisms, Σ = ∆.

A morphism h : Σ∗ → Σ∗ is called non-erasing if h(a) 6= ε, for all a ∈ Σ, uniform
if |h(a)| = |h(b)|, for all a, b ∈ Σ, and prolongeable on a ∈ Σ if a < h(a).

If h is prolongeable on a, then hn(a) is a proper prefix of hn+1(a), for all n ∈ N.
Therefore, the sequence (hn(a))n≥0 of words defines an infinite word h∞(a) ∈ Σω

that is a fixed point of h. Formally, the i-th letter of h∞(a) is defined as being the
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i-th letter of a power hn(a) whose length is greater than i. The fact that h∞(a) is a
well-defined fixed point of h is easily verified. Also, for h and a fixed, the fixed point
is unique.

It is possible to have finite strings as fixed points of morphisms and one can also
consider erasing morphisms, but the interesting case is that of non-erasing prolonge-
able morphisms. Therefore, when we say fixed point h∞(a), we mean an infinite word
obtained by iterating a non-erasing morphism h that is prolongeable on a.

3. Word histories and Lempel–Ziv complexity. Let w be a (possibly infi-
nite) word. We now introduce a fundamental notion for the Lempel–Ziv complexity.
We define the operator π that removes the final letter of a finite word w:

π(w) = w(1, |w| − 1) .

A history H = (u1, u2, . . . , un) of w 6= ε is a factorization of w, w = u1u2 . . . un,
having the property that u1 ∈ Σ and

π(ui) ∈ F (π2(u1u2...ui)) ,

for all 2 ≤ i ≤ n. We assume also that all uis are non-empty. This definition requires
that any new factor ui, excepting its last letter, appears before in the word. However,
it is still possible that the whole ui does occur before in w, or ui ∈ F (π(u1u2...ui)).
In this case ui is called reproductive. Otherwise ui is innovative.

Example 1. Consider the word w = aaabaabbaba. A possible history of w is
(a, aab, aab, bab, a). The second and fourth components are innovative whereas the
third and fifth are reproductive.

By definition, n is called the length of the history H and is denoted by |H |.
Two kinds of history are important to us. The first, directly connected to the def-

inition of Lempel–Ziv complexity is the exhaustive history. A history H is exhaustive
if all ui, 2 ≤ i ≤ |H |− 1, are innovative. In other words, the whole new factor ui does
not occur before in the word even if all its proper prefixes do. Clearly, the exhaustive
history of a word is unique. Sometimes (e.g., in [2]) the exhaustive history is called
Lempel–Ziv factorization.

By contrast with the exhaustive history, a reproductive history requires that all its
factors have occurred before (they are reproductive), with the necessary exceptions
of never seen before letters: a history H = (u1, u2, . . . , un) is reproductive if either

ui ∈ F (π(u1u2...ui)) or ui /∈ F (π(u1u2...ui)) but then ui ∈ Σ.

The innovative factors in a reproductive history are single letters. A reproductive
history need not be unique.

Example 2. For the word in Example 1, (a, aab, aabb, aba) is the exhaustive
history, whereas (a, aa, b, aa, b, ba, ba) and (a, aa, b, aab, ba, ba) are two reproductive
histories.

The following result, due to [21], relates the exhaustive history with all other
histories of a word.

Lemma 3. The exhaustive history of a word is the shortest history of that word.

By definition, the Lempel–Ziv complexity of a finite word w, denoted by lz(w)
is the length of the exhaustive history of w, that is, the number of factors in the
Lempel–Ziv factorization. Therefore, by Lemma 3, for any history H , lz(w) ≤ |H |.
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The Lempel–Ziv complexity of an infinite word w is the function
lzw : N → N defined by

lzw(n) = lz(prefn(w))

as the complexity of finite prefixes of w.
Remark 4. The Lempel–Ziv complexity of finite words can be computed in

linear time by using suffix trees; see [7, 17].

4. The complexity of powers. The main result of this section is that the
complexity of hn(a), as a function of n, is either linear or bounded for a non-erasing
morphism h prolongeable on a. That is, either lz(hn(a)) = Θ(n) or lz(hn(a)) = Θ(1).
Throughout this section, a is fixed and h is non-erasing and prolongeable on a.

Given the morphism h, we can assume, without loss of generality, that each letter
of Σ occurs in h∞(a), the fixed point of h. If that is not the case, h can be restricted
to the set of those letters that do occur in w and the fixed point of the restriction will
still be the same.

4.1. Maximal reproductive history. We show first that the complexity of
powers is at most linear. To this end, we define the maximal reproductive history1

of a finite word w, denoted RH(w). For w = w1w2 . . . w|w|, wi ∈ Σ, we define
RH(w) = (u1, u2, . . . , un) as follows:

• u1 = w1, the first letter of w,

• ui+1 =















w|u1u2...ui|+1, if w|u1u2...ui|+1 /∈ Σ(u1u2 . . . ui)

longest w with w ∈ F (π(u1u2 . . . uiw)),
if w|u1u2...ui|+1 ∈ Σ(u1u2 . . . ui)

for all i ≥ 2.
With the exception of new single letters, RH(w) is created by taking at each step the
maximal factor that has occurred before. For the word in Example 1, the maximal
reproductive history is (a, aa, b, aab, ba, ba).

From the definition it is clear that RH(w) is a reproductive history. It follows
from Lemma 3 that |RH(w)| ≥ lz(w).

Remark 5. The maximally reproductive history has been introduced indepen-
dently by Crochemore [7] as a tool for algorithm design. It is more natural than
the Lempel–Ziv factorization. Indeed, most applications we mentioned above use
Crochemore’s factorization. On the other hand, the two factorizations are very closely
related. For historical reasons, we defined the Lempel–Ziv complexity as the number
of factors in the Lempel–Ziv factorization but our assymptotical results hold as well
for Crochemore’s factorization. This can be seen directly, by looking at the proofs or
from the following lemma which connects the lengths of the two histories.

Lemma 6. For any w ∈ Σ∗, we have

lz(w) ≤ |RH(w)| ≤ 2 lz(w) − 1.

Proof. The first inequality follows by Lemma 3. For the second, we show first
that the maximal reproductive history is the shortest among all reproductive histories.
Denote RH(w) = (u1, . . . , un) and consider another reproductive history, (v1, . . . , vm).

1This is called s-factorization in [7, 25], f-factorization in [8], Lempel-Ziv factorization in [32]
and Crochemore factorization in [2].
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First, for all 1 ≤ i ≤ min(n, m), we have |v1 . . . vi| ≤ |u1 . . . ui|. Indeed, if this is not
the case, consider the smallest i0 for which it does not hold. In this case, i0 ≥ 2 and
ui0 appears in vi0 as a factor but not at the end of vi0 . Thus |vi0 | ≥ 2, so vi0 is not
a letter, and, by the definition of the reproductive histories, vi0 must have occurred
before. Therefore, ui0 is not the longest prefix of ui0 . . . un which has occurred before,
a contradiction. It follows immediately that n ≤ m.

Consider then the exhaustive history of w: (t1, . . . , tk). Put, for all 2 ≤ i ≤ k,
tk = skak, ak ∈ Σ. We construct the history H obtained from the factorization
(t1, s2, a2, s3, a3, . . . , sk, ak) by removing the empty factors, if any. We have then
|H | ≤ 2k− 1 = 2 lz(w)− 1. By the above, |RH(w)| ≤ |H | which concludes the proof.

Notice that Lemma 3 can be easily proved in a similar way.

4.2. Morphic images of histories. The next step is to iterate reproductive
histories through a morphism h. We will show a way to create a reproductive history
of h(w), given a reproductive history of w.

Let w be a word and H = (v0, v1, . . . , vn) a reproductive history of w. Let
1 = i1 < i2 < . . . < i|Σ(w)| be the indexes corresponding to the single letter factors of
H that have not occurred before. We define a factorization of h(w), denoted h(H),
by replacing all factors of w that have occurred before by their image through h and
the single letters vij

, by the history RH(h(vij
)). We claim that this is a reproductive

history of h(w).
Example 7. Let us consider the Thue–Morse morphism

t(a) = ab ,
t(b) = ba ,

and the word from Example 1, w = aaabaabbaba. A reproductive history H (in fact,
RH(w)) and its image through t, t(H), are:

H = (a , aa , b , aab , ba , ba) ,
h(H) = (a, b, abab, b, a, ababba, baab, baab) .

Lemma 8. If H is a reproductive history of w, then h(H) is a reproductive history
of h(w).

Proof. There are two kinds of factors in h(H). One originates from a factor of
H that has already occurred. If a factor u has already occurred in w, then its image
h(u) will have also occurred in h(w).

Also, each factor of the history RH(h(vij
)) is either a new single letter, or has

already occurred in the factor h(vij
) of w and therefore has occurred in w.

By selecting the first occurrence of all the single letters in h(w), we conclude that
each factor of h(H) is either a factor that has already occurred, or a letter that has
not been previously seen. Equivalently, h(H) is a reproductive history of h(w).

4.3. Linear upper bound. With respect to the length of h(H), we note that
each letter in Σ(w), originally a standalone factor of H , is transformed into the fac-
torization RH(h(vij

)) and, consequently, each letter x of w prompts a |RH(h(x))|−1
increase in the length of h(H):

|h(H)| ≤ |H | +
∑

x∈Σ(w)

(|RH(h(x))| − 1) .
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If we assume that all letters of Σ occur in w, then the increase in length is constant,
which leads us to the following result.

Proposition 9. If h : Σ∗ → Σ∗ is non-erasing and a < h(a), a ∈ Σ, then
lz(hn(a)) = O(n).

Proof. We will use the above method for iteratively creating histories for hn(a)
that will have a linearly increasing length.

Let n0 be the first integer for which hn0(a) contains all letters of Σ:

n0 = min{n ∈ N | Σ(hn(a)) = Σ}

and let H0 = RH(hn0(a)).
Applying the above method, h(H0) is a valid history for hn0+1(a) and

|h(H0)| = |H0| +
∑

x∈Σ

(|RH(h(x))| − 1) .

Iterating for n ≥ n0, we get

|hn−n0(H0)| = |H0| + (n − n0)
∑

x∈Σ

(|RH(h(x))| − 1)

or

|hn−n0(H0)| = A · n + B

where B = |H0| − n0

∑

x∈Σ

(|RH(h(x))| − 1) and A =
∑

x∈Σ

(|RH(h(x))| − 1).

Since hn−n0(H0) is a valid history for hn(a), it follows that

lz(hn(a)) ≤ An + B

or lz(hn(a)) = O(n).
The next result gives the inferior asymptotic limit for lz(hn(a)). It is obvious that

lz(hn(a)), as a function of n, is increasing since hn(a) < hn+1(a). The remaining part
of this section is dedicated to showing that the growth of the Lempel–Ziv complexity
of powers is at least linear unless the fixed point word is ultimately periodic.

Throughout the rest of this section, the word u is defined by h(a) = au.

4.4. Some technical results. We prove next two technical lemmata to be used
later in the proof of the lower bound.

Lemma 10. If hp(u)hp+1(u) occurs at most |hp(u)| positions before its last oc-
currence in

hp+2(a) = auh(u) . . . hp(u)hp+1(u) ,

then h∞(a) is ultimately periodic.
Proof. Let α = hp(u). Since αh(α) occurs at most |α| positions from the end of

t = hp+2(a), there exists v with |v| ≤ |α| such that vαh(α) is a suffix of t and also
αh(α) is a prefix of vαh(α). Let v be the minimal word that satisfies this property –
in other words, v marks the occurrence of αh(α) that is the closest to the end of π(t);
see Fig. 1.

Both α and αh(α) are fractional powers of v:

α = vnv′ with v′ ≤ v, n ≥ 1 (1)
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h
p+2(a)

α α

αh(α) αh(α)

h(v)

v

h(α) h(α)

x

h(x)

h
p+2(a)

Fig. 1. The occurrence of αh(α) that has v as prefix is the closest to the end of π(hp+2(a)).

αh(α) = vmv′′ with v′′ ≤ v, m ≥ 2 (2)

Let x be defined by t = xvαh(α). Therefore h(xv) = xvα. Since h is non-erasing,
|x| ≤ |h(x)| which implies that h(v) is a suffix of vα.

By applying h to (1), we get that h(α) = h(v)nh(v′). This indicates that h(v)h(α)
has period |h(v)|. However, h(v)h(α) is a suffix of vαh(α) which has period |v|. By
Fine and Wilf’s theorem (see [6, 23]) h(v)h(α) has the period d = gcd (|v|, |h(v)|).

If d < |v| then h(v) has period d. Since α has period |v|, all factors of α of length
|v| are circular shifts of v. Consequently, the circular shift of v occurring at the end
of vα is completely covered by h(v) and, therefore, that particular circular shift of v
has period d. However, the length of v is a multiple of d, so v is a non-trivial power of
one of its proper prefixes of length d. In this case, we could find another occurrence
of αh(α) closer to the end t which contradicts the choice of v.

Therefore d = |v| or |v| divides |h(v)|. Furthermore h(v) is a factor of some power
of v since it is a factor of vα, a fractional power of v. Let r ∈ N be defined by
r|v| = |h(v)|. It follows that h(v) is a circular shift of vr. Inductively, if hs(v) is a
circular shift of vrs

, then hs+1(v) is a circular shift of h(v)rs

which is a circular shift

of (vr)rs

= vrs+1

. This implies that |hs(v)| = rs|v| for all s ≥ 0.
Because h(v) is a suffix of vα, it follows that hs+1(v) is a suffix of hs(v)hs(α).

Inductively, if hs(v) has period |v|, then it is a power of some word of length |v|. Since
hs(v)hs(α) is a fractional power of hs(v) by (1), it must also have period |v| which
implies that hs+1(v) has period v.

We have established that all hs(v) have period |v| and their lengths are all mul-
tiples of |v|. We can now apply hs to (1) and obtain

hs(α) = hs(v)nhs(v′) with v′ ≤ v, n ≥ 1.

Since hs(v) has period |v| and its length is a multiple of that period, hs(α) must also
have the period |v|.

By a similar argument, using (2), hs(α)hs+1(α) has period |v|. As this holds for
all s ≥ 0 and |hs(α)| ≥ |v|, it follows that αh(α) . . . hs(α) . . . has period |v|.

Lemma 11. If hq(u)hq+1(u)hq+2(u) occurs before its last occurrence in

hq+3(a) = auh(u) . . . hq(u)hq+1(u)hq+2(u)

and |hq(u)| < |hq+1(u)|, then h∞(a) is ultimately periodic.
Proof. Let α = hq(u) and t = hq+3(a). If αh(α)h2(α) occurs at most |α| positions

from its last occurrence in t as a suffix, then, by Lemma 10, h∞(a) is ultimately
periodic.



8 S. CONSTANTINESCU AND L. ILIE

Otherwise, there exist words x and y such that

t = xαyαh(α)h2(α) = h(x)h(α)h(y)h(α)h2(α)

and h(α)h2(α) is a prefix of yαh(α)h2(α); see Fig. 2. By taking the lengths of the
two factorizations of t, we have

|x| + |α| + |y| + |α| = |h(x)| + |h(α)| + |h(y)|

or

|h(x)| − |x| = |α| − (|h(α)| − |α|) − (|h(y)| − |y|) .

h(y)

α h2(α)h(α)

h2(α)h(α)

x α

h(x) h(α)

hq+3(a)

hq+3(a)

y

Fig. 2. Here h(α)h2(α) is a prefix of yαh(α)h2(α) and so h2(α) is a prefix of h(y)h(α)h2(α).

Since h is non-erasing, |h(x)| − |x| < |α|. However, h(α)h2(α) is a prefix of
yαh(α)h2(α), so h2(α) is a prefix of h(y)h(α)h2(α). This leads to h(α)h2(α) occurring
at position |h(x)|−|x| in the first occurrence of αh(α)h2(α). Consequently, h(α)h2(α)
occurs in t at distance less than |h(α)| symbols before its last occurrence in t which
makes the Lemma 10 applicable for p = q + 1 since h(α)h2(α) = hp(u)hp+1(u) occurs
at most |h(α)| = |hp(u)| positions before its last occurrence in t = hq+3(a) = hp+2(a).

4.5. Growth functions. In order to be able to use Lemma 11, we need to find
values of q for which |hq(u)| < |hq+1(u)|. It is clear that |hq(u)| ≤ |hq+1(u)| and, if
there exists a letter z in hq(u) satisfying |h(z)| ≥ 2, the inequality is strict. We shall
prove that such powers must exist or else the fixed point is ultimately periodic. We
need more definitions and results.

The growth function of the letter x ∈ Σ in h is the function hx : N → N defined
by

hx(n) = |hn(x)| .

The following result from [31, 33] is very useful.
Lemma 12. There exist an integer ea ≥ 0 and an algebraic real number ρa ≥ 1

such that

ha(n) = Θ(neaρn
a) .

The pair (ea, ρa) is called the growth index of a in h. We say that ha (and a as
well) is called bounded, polynomial, and exponential if a’s growth index w.r.t. h is
(0, 1), (> 0, = 1), (≥ 0, > 1), resp.

Example 13. All letters of a uniform morphism with images of length k share
the same growth index: (0, k). For instance, the growth index of a for the Thue-Morse
morphism of Example 7 is (0, 2).
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Let us consider the morphism h defined by:

h(a) = ab ,
h(b) = bc ,
h(c) = c .

The growth index of a is (2, 1), the growth index of b is (1, 1) and, finally, the growth
index of c is (0, 1).

4.6. The associated graph. We introduce the following graph which is very
useful for some proofs. Given a morphism h : Σ∗ → Σ∗, we denote the sets of bounded,
polynomial, and exponential letters by ΣB, ΣP , and ΣE , resp. The graph associated
with h is the directed graph

Gh = (Σ, {(a, b) | b ∈ F (h(a))}) .

Thus, the vertices of Gh are the letters of the alphabet and there is an edge from a
to b if b appears in the image of a.

Consider its subgraphs Gh
X , induced by the sets ΣX , X ∈ {B, P, E}, of vertices,

resp. A few observations about the graphs we just defined are in order:
1. Any letter a belonging to two distinct cycles of Gh is exponential, as some

power hr(a) would contain at least two as.
2. Let us fix the order B < P < E. Then for any X and any a ∈ ΣX , the image

h(a) of a must contain at least one letter from ΣX and cannot contain any
letter from ΣY , for any Y > X .

3. The above observation implies that, as soon as ΣX is non-empty, there is a
cycle (which might be a loop) in Gh

X and from each vertex in Gh
X there is a

path leading to a vertex in a cycle (everything in Gh
X).

Example 14. Consider the morphism h:

h(a) = acb ,
h(b) = bca ,
h(c) = c .

The graph Gh is shown in Fig. 3. This is also the graph of a different morphism:
a 7→ abc, b 7→ bac, c 7→ c which indicates that different morphisms can produce
isomorphic graphs.

a

b c

Fig. 3. The graph Gh for Example 14.

4.7. Linear lower bound for non-periodic words. We need only one more
lemma before proving the main result of this section.

Lemma 15. If h(a) = au, u ∈ Σ∗, u 6= ε, then there exist m, p ∈ N such that
|hm+jp(a)| < |hm+jp+1(a)|, for all j ≥ 0, or else h∞(a) is ultimately periodic.
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Proof. Since h is prolongeable on a, it means a is not bounded. Assume a ∈ ΣP ;
the case a ∈ ΣE is similar. Denote also u = u1u2 . . . u|u|, ui ∈ Σ. We have in Gh the
edges (a, a) and (a, ui), for all 1 ≤ i ≤ |u|.

If all uis are in ΣB, then |hn(u)| is bounded as |hn(u)| =
∑|u|

i=1 hui
(n). Hence, we

can find n and r such that hn(u) = hn+r(u), implying that h∞(a) = auh(u)h2(u) . . .
is ultimately periodic.

Assume ui ∈ ΣP , for some i. By the above properties of Gh, we can find in Gh
P a

path from ui to a vertex which belongs to a cycle which is also in Gh
P . There must be

a vertex, say z, in that cycle, whose outdegree is at least two, otherwise, all vertices
in the cycle would be bounded. If we denote the length of the path from ui to z by m
and the length of the cycle by p, then |hm+jp| < |hm+jp+1|, for all j ≥ 0, as claimed.

Using Lemmata 11 and 15, we obtain, for all j ≥ 0, that either

hm+jp(u)hm+jp+1(u)hm+jp+2(u) (3)

has never occurred before or w is ultimately periodic.
If we assume w = h∞(a) to be non-periodic, then all factors of the form (3)

can never occur before their last occurrence. This shows that there must exist a
factor in the exhaustive history of w that ends within each distinct factor of the
above mentioned form. It follows that lz(hn(a)) ≥ 1

k (n − n0) + lz(hn0+1(a)) or
lz(hn(a)) = Ω(n).

Combining this result with Proposition 9 we obtain that lz(hn(a)) is either con-
stant or linear. On the other hand, the fact that ultimate periodicity is equivalent to
a bounded Lempel–Ziv complexity has been mentioned in [18]. Therefore, we proved
the main result of this section.

Proposition 16. For a non-erasing morphism h that admits the fixed point
h∞(a), lz(hn(a)) is either Θ(1) if h∞(a) is ultimately periodic or Θ(n) otherwise.

5. Growth functions and infinite word complexity. Let w be an infinite
word generated by iterating a non-erasing morphism h, w = h∞(a). The prefix of a
given length m of w will fall between two consecutive powers of h:

hn(m)(a) ≤ prefm(w) < hn(m)+1(a) (4)

for a n(m) ∈ N. If lz(hn(a)) is bounded then lzw(n) is bounded. This establishes
our first case for the complexity of lzw(·), Θ(1).

When lz(hn(a)) is not bounded, it has to be linear, by Proposition 16. Then a
is not bounded and hence, by Lemma 12, we distinguish two cases:

1. ρa = 1 (ha is polynomial). Then |hn(a)| = Θ(nea) or n(m) = Θ(m1/ea).
Since, by (4), lz(hn(m)(a)) ≤ lz(prefm(w)) ≤ lz(hn(m)+1(a)) and lz(hn(a)) =
Θ(n), it follows that lzw(m) = Θ(m1/ea).

2. ρa > 1 (ha is exponential). There exist ρ1 and ρ2 positive numbers such
that ρn

1 ≤ |hn(a)| ≤ ρn
2 which means that n(m) = Θ(log m). By the same

argument, lzw(m) = Θ(log m)
Notice however that ha growing does not imply lzw(·) unbounded. For instance,

if h(a) = ab, h(b) = b, then ha is polynomial but w = h∞(a) = abbb . . . has bounded
lzw(·). For the exponential case we can take h(a) = aa whose fixed point also has
bounded Lempel–Ziv complexity.

Also, in the first case above, we cannot have ea = 1 as this implies bounded
Lempel–Ziv complexity, contradicting the assumption on lz(hn(a)). Indeed, ea = 1
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implies |hn(a)| = Θ(n) and so |hn+1(a)| − |hn(a)| is bounded. Assuming h(a) = au,
u 6= ε, we have hn(a) = auh(u)h2(u) · · ·hn−1(u). Consequently |hn(u)| is bounded
hence we can find hn(u) = hn+p(u) which implies w = h∞(a) is ultimately periodic.

We have just proved the main result of the paper:
Theorem 1. For a fixed point infinite word w = h∞(a) of a non-erasing mor-

phism h, we have:
1. The Lempel–Ziv complexity of w is Θ(1) if and only if w is ultimately periodic.
2. If w is not ultimately periodic then the Lempel–Ziv complexity of w is Θ(log n)

or Θ(n1/k), k ∈ N, k ≥ 2, depending on whether ha is exponential or polyno-
mial, resp.

Notice that the logarithmic Lempel–Ziv complexity in the exponential case was
already proved in a different context by Ilie et al. [18, Lemma 12].

Remark 17. Notice that the Lempel–Ziv complexity of fixed points is lower than
the maximal Lempel–Ziv complexity, in the sense that there is no fixed point whose
Lempel–Ziv complexity is of the order Θ( n

log n ), which is the order of the maximum

Lempel–Ziv complexity for finite words of length n, as proved by Lempel and Ziv [21].
Furthermore, since the LZ77-compressed size of a word w is Θ(lz(w) log |w|), it

follows that the LZ77 compression algorithm will succeed in compressing the fixed
points down to 0 bits/symbol asymptotically which is desireable of any good com-
pression algorithm since the underlying mechanism generating these infinite words
has only finite amount of information. Therefore, this is a positive conclusion regard-
ing the usage of this algorithm to find random sequences, stating that the algorithm
won’t misclasify the infinite words considered in this paper.

Remark 18. For a morphism h prolongeable on a, it is decidable to which of
the classes in Theorem 1 its Lempel–Ziv complexity function belongs. First of all,
a test for ultimate periodicity can be found in [29]. Assuming that the fixed point
is not ultimately periodic, ha is exponential if and only if there exists some letter b,
accessible from a, deriving in a number of steps in a word containing two occurrences
of b (see [31]). As noted above, this is equivalent with b belonging to two different
cycles in the associated graph. This can be easily tested for each letter. An algorithm
that decides whether or not ha is exponential only needs to check if any of the letters
belonging to two different cycles are reachable from a.

5.1. Examples. We give next examples showing that all the above complexities
are indeed possible.

Example 19. The highest Lempel–Ziv complexity is realized for k = 2, that
means, O(

√
n), for the three letter morphism h3 given by

h3(a) = ab ,
h3(b) = bc ,
h3(c) = c ,

for which hn
3 (a) = abc0bc1 . . . bcn−1. Clearly, the growth function of a, (h3)a, is

quadratic whereas the complexity of powers is exactly linear which gives a final
Lempel–Ziv complexity of

√
n; this can be checked directly by constructing the ex-

haustive history of h∞
3 (a):

(a, b, bc, bc2, bc3, . . .) .

This example can be easily extended to k letters. Let

hk : {a1, a2, . . . , ak}∗ → {a1, a2, . . . , ak}∗
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be defined by

hk(a1) = a1a2 ,
hk(a2) = a2a3 ,
...
hk(ak−1) = ak−1ak ,
hk(ak) = ak .

We have that (hk)a1
is a polynomial of degree k − 1 (see [31, Theorem 3.5]). We

can also see that directly, as follows. Note that hk restricted to {a2, a3, . . . , ak}∗ is
actually hk−1 modulo the renaming a2 = a1, a3 = a2, . . . , ak = ak−1. Since

|(hk)a1
(n)| = |a1a2h(a2) . . . hn−1

k (a2)| = 1 +

n−1
∑

i=0

|(hk−1)a1
(n)| ,

we conclude inductively that, if (hk−1)a1
(n) = Θ(nk−2), then (hk)a1

(n) = Θ(nk−1).
The base case follows from the previous example for k = 3.

Consequently, the Lempel–Ziv complexity of the fixed point h∞
k (a1) is Θ( k−1

√
n).

These examples illustrate the polynomial case.

Example 20. With respect to the exponential case, any uniform morphism with
images of length k has a growth function of exactly kn. Since the complexity of powers
is linear for non-periodic words, the Lempel–Ziv complexity of the fixed point will be
Θ(log n).

Such an example is the famous Thue–Morse morphism, see Example 7, which fits
the requirements for k = 2. Both fixed points t∞(a) and t∞(b) are non-periodic and
the growth functions associated with both letters are exactly 2n. Their Lempel–Ziv
complexity is Θ(logn).

Example 21. Another famous example is given by the Fibonacci morphism

f(a) = ab ,
f(b) = a ,

for which we can precisely compute the value of lz(fn(a)) = n + 1. The powers of

the Fibonacci morphism grow exponentially, at the rate
(

1−
√

5
2

)n

+
(

1+
√

5
2

)n

and

therefore the Lempel–Ziv complexity of the infinite word is again Θ(log n).

6. Comparison with factor complexity. We dedicate the final section to a
comparison between the Lempel–Ziv complexity and the factor complexity for infinite
words generated by morphisms. The factor complexity is a natural function defined
as the number of factors of a certain length occurring in an infinite word. For a word
w ∈ Σω, this is

fw(n) = card({u ∈ Σ∗ | u ∈ F (w), |u| = n}) .

The investigation of factor complexity for the fixed points of morphisms has been
initiated by Ehrenfeucht, Lee, and Rozenberg in [9] (they actually considered the
closely related D0L-systems) and continued by Ehrenfeucht and Rozenberg in a series
of papers, see [10, 11, 12, 13, 14, 30]. The classification was completed by Pansiot
[27, 28] who found also the missing complexity class Θ(n log log n).
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The following definitions appear, with different names, in [6]. The morphism h is
called2

- non-growing if there exists a bounded letter in Σ,
- u-exponential if ρa = ρb > 1, ea = eb = 1, for all a, b ∈ Σ,
- p-exponential if ρa = ρb > 1, for all a, b and ea > 1, for some a, and
- e-exponential if ρa > 1, for all a and ρa > ρb, for some a, b.

Here is Pansiot’s characterization:
Theorem 2 (Ehrenfeucht, Lee, Rozenberg, Pansiot). Let w = h∞(a) be an

infinite non-periodic word of factor complexity fw(·).
1. If h is growing, then fw(n) is either Θ(n), Θ(n log log n) or Θ(n log n), de-

pending on whether h is u-, p- or e-exponential, resp.
2. If h is not-growing, then either

(a) w has arbitrarily large factors over the set of bounded letters and then
fw(n) = Θ(n2) or

(b) w has finitely many factors over the set of bounded letters and then fw(n)
can be any of Θ(n), Θ(n log log n) or Θ(n logn).

In order to establish a correspondence with our hierarchy, we note that, in the
first case of Theorem 2, the function ha is exponential, which implies a logarithmic
Lempel–Ziv complexity. However, a logarithmic Lempel–Ziv complexity does not
necessarily imply one of the n, n log log n or n logn cases for the factor complexity as
it is illustrated by the following example.

Example 22. Consider the morphism h given by

h(a) = abc ,
h(b) = bac ,
h(c) = c .

Since ha grows exponentially, lz(h∞(a)) is, by Theorem 1, logarithmic. However,
there exist arbitrarily large factors of h∞(a) of the form cn (c is bounded) which
implies a Θ(n2) factor complexity.

On the other hand, a radical-type Lempel–Ziv complexity does imply a quadratic
factor complexity. To prove this, we need again the associated graph.

Lemma 23. Assume h : Σ∗ → Σ∗ is a non-erasing morphism prolongeable on
a ∈ Σ. If ha is polynomial, then there exist arbitrarily large factors over ΣB in
h∞(a).

Proof. Consider the associated graph introduced above. First, since ha is poly-
nomial, Gh

E must be empty.
By the properties of Gh, there exists at least one cycle in Gh

P , say C. If there is a
vertex of C which has other outgoing edges (different from the one in C) in Gh

P , then
any path starting with such an edge cannot go back to C (this would make the letters
of C exponential). Therefore, further cycles can be constructed. As ΣP is finite, there
must be a cycle C′ in Gh

P which has no outgoing edges in Gh
P except for those in the

cycle. On the other hand, at least one vertex(letter) of C′, say b, has an outgoing
edge to a vertex in Gh

B. We have then h(b) = ubv, uv ∈ Σ∗
B , uv 6= ε. The letter b will

create in h∞(a) arbitrarily long factors from Σ∗
B, as claimed.

Therefore, Theorems 1 and 2, Example 22 and Lemma 23 imply that the corre-
spondence between Lempel–Ziv and factor complexities for fixed points of morphisms

2What we call u-, p-, and e-exponential are quasi-uniform, polynomially diverging, and exponen-

tially diverging, resp., in [6, 27, 28]. We changed the terminology so that it does not conflict with
the corresponding notions for ha.
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Lempel–Ziv complexity Factor complexity

h∞(a) is ultimately
periodic

Θ(1) Θ(1)

h∞(a) is not
ultimately periodic

and ha is
polynomial

Θ(n
1
2 )

Θ(n
1
3 )

...

Θ(n
1
k )

...

Θ(n2)

h∞(a) is not
ultimately periodic

and ha is
exponential

Θ(log n)

Θ(n2)

Θ(n logn)

Θ(n log log n)

Θ(n)

Table 1
Lempel–Ziv vs. factor complexity

is shown in Table 1, where all intersections are indeed possible.
We see that both measures of complexity recognize ultimately periodic words as

having bounded complexity, the lowest class of complexity.
In the nontrivial case of non-periodic fixed points, the Lempel–Ziv complexity

groups together all words h∞(a) with ha exponential, whereas the factor complexity
distinguishes four different complexities. On the other hand, the factor complexity
does not make any distinction among words with ha polynomial, whereas Lempel–Ziv
gives an infinite hierarchy.

7. Further research. Most combinatorial aspects of the Lempel–Ziv complexity
need to be investigated. We mention a few problems below:

1. Characterize the fixed points of morphisms in each Lempel–Ziv complexity
class (especially Θ(n

1
k )).

2. What is the connection between k in Θ(n1/k) and card(Σ)?
3. Investigate the relations, in general, between Lempel–Ziv complexity and

other complexity measures, especially the factor complexity.
4. How is Lempel–Ziv complexity affected by operations on words? For concate-

nation, it is subadditive, that is, lz(uv) ≤ lz(u)+lz(v), as proved by Lempel
and Ziv [21]. Also, it is easy to see that it is monotonic for prefixes, that is,
lz(u) ≤ lz(uv). But the same is not true for suffixes. Here is a counterexam-
ple: lz(a.ab.aaba) = 3, lz(a.b.aa.ba) = 4. Also, the behaviour with respect
to the reversal operation (already asked in [18]) should be investigated, that
is, the relation between the Lempel–Ziv complexity of w and that of wR, the
reversal of w.

5. Another complexity measure can be defined naturally from the factorization
used in the LZ78 compression algorithm, which is: w = u1.u2. · · · .un, such
that, for all i ≥ 2, ui is the shortest prefix of uiui+1 . . . un that does not
belong to the set {u1, u2, . . . , ui−1}. That means ui may have appeared as
a factor of π(u1u2 . . . ui) but not as a member of the factorization so far.
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In particular, this factorization is a history. Denoting the new complexity
by lz78(w) we have by Lemma 3 that lz(w) ≤ lz78(w). Investigating this
complexity measure is certainly of interest. The precise relation between
the two complexity measures is not obvious and it may be that different
techniques are required for investigating lz78.
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for very careful reading of the paper and for useful comments which helped improving
the clarity of the presentation. Also, the second part of Remark 17 has been suggested
by one of the referees.
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