Part IV: Turing Machines and Undecidability

17 Turing Machines

1) Give a short English description of what each of these Turing machines does:
 a) $\Sigma = \{a, b\}$. $M =$

 ![Turing Machine Diagram]

 Shift the input string one character to the right and replace each b with an a and each a with a b.

 b) $\Sigma = \{a, b\}$. $M =$

 ![Turing Machine Diagram]

 Erase the input string and replace it with a count, in unary, of the number of a's in the original string.

2) Construct a standard, one-tape Turing machine M to decide each of the following languages L. You may find it useful to define subroutines. Describe M in the macro language described in Section 17.1.5.
 a) $\{x \cdot y = z : x, y, z \in \mathbb{N} \text{ and, when } x, y, \text{ and } z \text{ are viewed as unary numbers, } xy = z\}$. For example, the string $1111*11=11111111 \in L$.

Chapter 17
b) \(\{a^i b^j c^i d^j, i, j \geq 0\} \).

c) \(\{w \in \{a, b, c, d\}^*: \#_a(w) \geq \#_c(w) \geq \#_d(w) \geq 0\} \).

3) Construct a standard 1-tape Turing machine \(M \) to compute each of the following functions:
 a) The function \(\text{sub}_3 \), which is defined as follows:
 \[
 \text{sub}_3(n) = \begin{cases}
 n - 3 & \text{if } n > 2 \\
 0 & \text{if } n \leq 2.
 \end{cases}
 \]
 Specifically, compute \(\text{sub}_3 \) of a natural number represented in binary. For example, on input 10111, \(M \) should output 10100. On input 11101, \(M \) should output 11010. (Hint: you may want to define a subroutine.)

 We first define a subroutine that we will call \(S \) to subtract a single 1:

 Now we can define \(M \) as:

 b) Addition of two binary natural numbers (as described in Example 17.13). Specifically, given the input string \(\langle x \rangle; \langle y \rangle \), where \(\langle x \rangle \) is the binary encoding of a natural number \(x \) and \(\langle y \rangle \) is the binary encoding of
a natural number \(y \), \(M \) should output \(<z>\), where \(z \) is the binary encoding of \(x + y \). For example, on input \(101;11 \), \(M \) should output \(1000 \).

c) Multiplication of two unary numbers. Specifically, given the input string \(<x>;<y>\), where \(<x>\) is the unary encoding of a natural number \(x \) and \(<y>\) is the unary encoding of a natural number \(y \), \(M \) should output \(<z>\), where \(z \) is the unary encoding of \(xy \). For example, on input \(111;1111 \), \(M \) should output \(111111111111 \).

d) The proper subtraction function \(\text{monus} \), which is defined as follows:

\[
\text{monus}(n, m) = \begin{cases}
 n - m & \text{if } n > m \\
 0 & \text{if } n \leq m
\end{cases}
\]

Specifically, compute \(\text{monus} \) of two natural numbers represented in binary. For example, on input \(101;11 \), \(M \) should output \(10 \). On input \(11;101 \), \(M \) should output \(0 \).

4) Define a Turing Machine \(M \) that computes the function \(f: \{a, b\}^* \to \mathbb{N} \), where:

\[
f(x) = \text{the unary encoding of } \max(\#_a(x), \#_b(x)).
\]

For example, on input \(\text{aaaaabb} \), \(M \) should output \(1111 \). \(M \) may use more than one tape. It is not necessary to write the exact transition function for \(M \). Describe it in clear English.
process with just the other one. As soon as the other of them (tape 2 or 3) also hits a blank, go to step 3. At this point, tape 1 contains the correct number of 1’s, plus perhaps extra a’s and b’s that still need to be erased.

- Step 3: Scan left to right along tape 1 as long as there are a’s or b’s. Rewrite each as a blank. As soon as a blank is read, stop.

5) Construct a Turing machine M that converts binary numbers to their unary representations. So, specifically, on input $<w>$, where w is the binary encoding of a natural number n, M will output 1^n. (Hint: use more than one tape.)

M will use three tapes. It will begin by copying its input to tape 2, where it will stay, unchanged. Tape 1 will hold the answer by the end. Tape 3 will hold a working string defined below. M will initialize itself by copying its input to tape 2 and writing 1 on tape 3. Then it will begin scanning tape 2, starting at the rightmost symbol, which we’ll call symbol 0. As M computes, tape 3 will contain 1^i if M is currently processing the i^{th} symbol (from the right, starting numbering at 0). Assume that M has access to a subroutine double that will duplicate whatever string is on tape 3. So if that string is s, it will become ss.

After initialization, M operates as follows:

For each symbol c on tape 2, do:
1. If $c = 1$, then append a copy of the nonblank region of tape 3 to the end of the nonblank region of tape 1. (If this is the first append operation, just write the copy on the tape where the read/write head is.)
2. Call double.
3. Move the read head on tape 2 one square to the left.
4. If the square under the read/write head on tape 2 is \square, halt. The answer will be on tape 1.

14) Encode the following Turing Machine as an input to the universal Turing machine:

$M = (K, \Sigma, \Gamma, \delta, q_0, \{h\})$, where:

$K = \{q_0, q_1, h\}$,
$\Sigma = \{a, b\}$,
$\Gamma = \{a, b, c, \square\}$, and
δ is given by the following table:

<table>
<thead>
<tr>
<th>q</th>
<th>σ</th>
<th>$\delta(q, \sigma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>a</td>
<td>(q_1, b, \rightarrow)</td>
</tr>
<tr>
<td>q_0</td>
<td>b</td>
<td>(q_1, a, \rightarrow)</td>
</tr>
<tr>
<td>q_0</td>
<td>\square</td>
<td>$(h, \square, \rightarrow)$</td>
</tr>
<tr>
<td>q_0</td>
<td>c</td>
<td>(q_0, c, \rightarrow)</td>
</tr>
<tr>
<td>q_1</td>
<td>a</td>
<td>(q_0, c, \rightarrow)</td>
</tr>
<tr>
<td>q_1</td>
<td>b</td>
<td>(q_0, b, \leftarrow)</td>
</tr>
<tr>
<td>q_1</td>
<td>\square</td>
<td>(q_0, c, \rightarrow)</td>
</tr>
<tr>
<td>q_1</td>
<td>c</td>
<td>(q_1, c, \rightarrow)</td>
</tr>
</tbody>
</table>

We can encode the states and the alphabet as:

<table>
<thead>
<tr>
<th>q_0</th>
<th>q00</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q01</td>
</tr>
<tr>
<td>h</td>
<td>q10</td>
</tr>
<tr>
<td>a</td>
<td>a00</td>
</tr>
<tr>
<td>b</td>
<td>a01</td>
</tr>
<tr>
<td>\square</td>
<td>a10</td>
</tr>
<tr>
<td>c</td>
<td>a11</td>
</tr>
</tbody>
</table>
We can then encode δ as:

$$(q_{00}, a_{00}, q_{01}, a_{01}, \rightarrow), (q_{00}, a_{01}, q_{01}, a_{00}, \rightarrow), (q_{00}, a_{10}, q_{10}, a_{10}, \rightarrow),$$

$$(q_{00}, a_{11}, q_{00}, a_{11}, \rightarrow), (q_{01}, a_{00}, q_{00}, a_{11}, \rightarrow), (q_{01}, a_{01}, q_{00}, a_{01}, \leftarrow),$$

$$(q_{01}, a_{10}, q_{00}, a_{11}, \rightarrow), (q_{01}, a_{11}, q_{01}, a_{11}, \rightarrow).$$
Chapter 19

19 The Unsolvability of the Halting Problem

1) Consider the language $L = \{<M> : M \text{ accepts at least two strings}\}$.
 a) Describe in clear English a Turing machine M that semidecides L.

 M generates the strings in Σ^* in lexicographic order and uses dovetailing to interleave the computation of M on those strings. As soon as two computations accept, M halts and accepts.

 b) Suppose we changed the definition of L just a bit. We now consider:

 $L' = \{<M> : M \text{ accepts exactly } 2 \text{ strings}\}$.

 Can you tweak the Turing machine you described in part a to semidecide L'?

 No. M could discover that two strings are accepted. But it will never know that there aren’t any more.

2) Consider the language $L = \{<M> : M \text{ accepts the binary encodings of the first three prime numbers}\}$.
 a) Describe in clear English a Turing machine M that semidecides L.

 On input $<M>$ do:

 1. Run M on 10. If it rejects, loop.
 2. If it accepts, run M on 11. If it rejects, loop.
 3. If it accepts, run M on 101. If it accepts, accept. Else loop.

 This procedure will halt and accept iff M accepts the binary encodings of the first three prime numbers. If, on any of those inputs, M either fails to halt or halts and rejects, this procedure will fail to halt.

 b) Suppose (contrary to fact, as established by Theorem 19.2) that there were a Turing machine Oracle that decided H. Using it, describe in clear English a Turing machine M that decides L.

 On input $<M>$ do:

 1. Invoke $\text{Oracle}(<M, 10>)$.
 2. If M would not accept, reject.
 3. Invoke $\text{Oracle}(<M, 11>)$.
 4. If M would not accept, reject.
 5. Invoke $\text{Oracle}(<M, 101>)$.
 6. If M would accept, accept. Else reject.
20 Decidable and Semidecidable Languages

1) Show that the set D (the decidable languages) is closed under:
 a) Union
 b) Concatenation
 c) Kleene star
 d) Reverse
 e) Intersection

All of these can be done by construction using deciding TMs. (Note that there’s no way to do it with grammars, since the existence of an unrestricted grammar that generates some language L does not tell us anything about whether L is in D or not.)

a) Union is straightforward. Given a TM M_1 that decides L_1 and a TM M_2 that decides L_2, we build a TM M_3 to decide $L_1 \cup L_2$ as follows: Initially, let M_3 contain all the states and transitions of both M_1 and M_2. Create a new start state S and add transitions from it to the start states of M_1 and M_2 so that each of them begins in its start state with its read/write head positioned just to the left of the input. The accepting states of M_3 are all the accepting states of M_1 plus all the accepting states of M_2.

b) is a bit tricky. Here it is: If L_1 and L_2 are both in D, then there exist TMs M_1 and M_2 that decide them. From M_1 and M_2, we construct M_3 that decides $L_1 L_2$. Since there is a TM that decides L_3, it is in D.

The tricky part is doing the construction. When we did this for FSMs, we could simply glue the accepting states of M_1 to the start state of M_3 with ε transitions. But that doesn’t work now. Consider a machine that enters the state y when it scans off the edge of the input and finds a blank. If we’re trying to build M_3 to accept $L_1 L_2$, then there won’t be a blank at the end of the first part. But we can’t simply assume that that’s how M_1 decides it’s done. It could finish some other way.

So we need to build M_3 so that it works as follows: M_3 will use three tapes. Given some string w on tape 1, M_3 first nondeterministically guesses the location of the boundary between the first segment (a string from L_1) and the second segment (a string from L_2). It copies the first segment onto tape 2 and the second segment onto tape 3. It then simulates M_1 on tape 2. If M_1 accepts, it simulates M_2 on tape 3. If M_2 accepts, it accepts. If either M_1 or M_2 rejects, that path rejects.

There is a finite number of ways to carve the input string w into two segments. So there is a finite number of branches. Each branch must halt since M_1 and M_2 are deciding machines. So eventually all branches will halt. If at least one accepts, M_3 will accept. Otherwise it will reject.

2) Show that the set SD (the semidecidable languages) is closed under:
 a) Union
 b) Concatenation
 c) Kleene star
 d) Reverse
 e) Intersection

3) Let L_1, L_2, \ldots, L_k be a collection of languages over some alphabet Σ such that:
 \begin{itemize}
 \item For all $i \neq j$, $L_i \cap L_j = \varnothing$.
 \item $L_1 \cup L_2 \cup \ldots \cup L_k = \Sigma^*$.
 \item $\forall i \left(L_i \text{ is in } SD\right)$.
 \end{itemize}

Prove that each of the languages L_1 through L_k is in D.

$\forall i \left(\neg L_i = L_1 \cup L_2 \cup \ldots \cup L_{i+1} \cup \ldots \cup L_k\right)$.

Each of these L_i’s is in SD, so the union of all of them is in SD. Since L_i is in SD and so is its complement, it is in D.
4) If L_1 and L_3 are in D and $L_1 \subseteq L_2 \subseteq L_3$, what can we say about whether L_2 is in D?

L_2 may or may not be in D. Let $L_1 = \emptyset$ and let $L_3 = \Sigma$. Both of them are in D. Suppose L_2 is H. Then it is not in D. But now suppose that L_2 is $\{a\}$. Then it is in D.

5) Let L_1 and L_2 be any two decidable languages. State and prove your answer to each of the following questions:
 a) Is it necessarily true that $L_1 - L_2$ is decidable?

 Yes. The decidable languages are closed under complement and intersection, so they are closed under difference.

 b) Is it possible that $L_1 \cup L_2$ is regular?

 Yes. Every regular language is decidable. So let L_1 and L_2 be $\{a\}$. $L_1 \cup L_2 = \{a\}$, and so is regular.

6) Let L_1 and L_2 be any two undecidable languages. State and prove your answer to each of the following questions:
 a) Is it possible that $L_1 - L_2$ is regular?

 Yes. Let $L_1 = L_2$. Then $L_1 - L_2 = \emptyset$, which is regular.

 b) Is it possible that $L_1 \cup L_2$ is in D?

 Yes. $H \cup \neg H = \{<M, w>\}$.

7) Let M be a Turing machine that lexicographically enumerates the language L. Prove that there exists a Turing machine M' that decides L^R.

 Since L is lexicographically enumerated by M, it is decidable. The decidable languages are closed under reverse. So L^R is decidable. Thus there is some Turing machine M' that decides it.

8) Construct a standard one-tape Turing machine M to enumerate the language:

 $\{w : w$ is the binary encoding of a positive integer that is divisible by 3$\}$.

 Assume that M starts with its tape equal to \square. Also assume the existence of the printing subroutine P, defined in Section 20.5.1. As an example of how to use P, consider the following machine, which enumerates L', where $L' = \{w : w$ is the unary encoding of an even number$\}$:

 \[\begin{array}{c}
 > & P & R & 1 & R & 1 \\
 \end{array}\]

 You may find it useful to define other subroutines as well.
Define the subroutine A (Add1) as follows:

Input:
- $w_1 w_2 w_3 \ldots w_k$ (encoding some integer k)

Output:
- $w_1 w_2 w_3 \ldots w_{k+1}$ (encoding $k+1$)

The enumerating machine M is now:

9) Construct a standard one-tape Turing machine M to enumerate the language A^nB^n. Assume that M starts with its tape equal to \square. Also assume the existence of the printing subroutine P, defined in Section 20.5.1.
21 Decidability and Undecidability Proofs

1) For each of the following languages \(L \), state whether it is in D, in SD/D, or not in SD. Prove your answer. Assume that any input of the form \(<M>\) is a description of a Turing machine.

a) \(\{a\} \).

D. \(L \) is finite and thus regular and context-free. By Theorem 20.1, every context-free language is in D.

b) \(<M>: a \in L(M) \).

SD/D. Let \(R \) be a mapping reduction from \(H \) to \(L \) defined as follows:

\[
R(<M, w>) =
\]

1. Construct the description \(<M#> \) of a new Turing machine \(M#(x) \) that, on input \(x \), operates as follows:
 1.1. Erase the tape.
 1.2. Write \(w \) on the tape.
 1.3. Run \(M \) on \(w \).
 1.4. Accept.
2. Return \(<M#> \).

If \(Oracle \) exists, then \(C = Oracle(R(<M, w>)) \) decides \(L \):
 - \(R \) can be implemented as a Turing machine.
 - \(C \) is correct: \(M# \) accepts everything or nothing, depending on whether \(M \) halts on \(w \). So:
 - \(<M, w> \in H: M \) halts on \(w \), so \(M# \) accepts all inputs, including \(a \). \(Oracle \) accepts.
 - \(<M, w> \notin H: M \) does not halt on \(w \), so \(M# \) accepts nothing. In particular, it does not accept \(a \). \(Oracle \) rejects.

But no machine to decide \(H \) can exist, so neither does \(Oracle \).

c) \(\{<M>: L(M) = \{a\} \}. \)

\(\neg SD \): Let \(R \) be a reduction from \(\neg H = \{<M, w>: TM M \) does not halt on \(w \} \) to \(L \), defined as follows:

\[
R(<M, w>) =
\]

1. Construct the description of \(M#(x) \) that, on input \(x \), operates as follows:
 1.1. If \(x = a \), accept.
 1.2. Erase the tape.
 1.3. Write \(w \).
 1.4. Run \(M \) on \(w \).
 1.5. Accept.
2. Return \(<M#> \).

If \(Oracle \) exists and semidecides \(L \), then \(C = R(<M, w>) \) semidecides \(\neg H \):
 - \(<M, w> \in \neg H: M \) does not halt on \(w \), so \(M# \) accepts the string \(a \) and nothing else. So \(L(M#) = \{a\} \). \(Oracle \) accepts.
 - \(<M, w> \notin \neg H: M \) halts on \(w \). \(M# \) accepts everything. So \(L(M#) \neq \{a\} \). \(Oracle \) does not accept.

But no machine to semidecide \(\neg H \) can exist, so neither does \(Oracle \).
d) \{<M_a, M_b> : e \in L(M_a) - L(M_b)\}.

\~SD. Let R be a reduction from \~H = \{<M, w> : TM M does not halt on w\} to L, defined as follows:
\[R(<M, w>) = \]
1. Construct the description of \(M'(x) \) that operates as follows:
 1.1. Erase the tape.
 1.2. Write \(w \).
 1.3. Run \(M \) on \(w \).
 1.4. Accept.
2. Construct the description of \(M?(x) \) that, on input \(x \), operates as follows:
 2.1. Accept.
3. Return \(<M?, M#> \).

If Oracle exists and semidecides \(L \), then \(C = Oracle(R(<M, w>)) \) semidecides \~H:
- \(R \) can be implemented as a Turing machine.
- \(C \) is correct: \(M? \) accepts everything, including \(e \). \(M# \) accepts everything or nothing, depending on whether \(M \) halts on \(w \). So:
 - \(<M, w> \in \~H : M \) does not halt on \(w \). \(M# \) gets stuck in step 1.3. \(L(M#) = \emptyset \). \(L(M?) - L(M#) = L(M?) \), which contains \(e \). So Oracle accepts.
 - \(<M, w> \notin \~H : M \) halts on \(w \). So \(L(M#) = \Sigma^* \). \(L(M?) - L(M#) = \emptyset \), which does not contain \(e \). So Oracle does not accept.

But no machine to semidecide \~H can exist, so neither does Oracle.

e) \{<M_a, M_b> : L(M_a) = L(M_b) - \{e\}\}.

\~SD.

f) \{<M_a, M_b> : L(M_a) \neq L(M_b)\}.

\~SD. Let R be a reduction from \~H = \{<M, w> : TM M does not halt on w\} to L, defined as follows:
\[R(<M, w>) = \]
1. Construct the description of \(M'(x) \) that, on input \(x \), operates as follows:
 1.1. Erase the tape.
 1.2. Write \(w \).
 1.3. Run \(M \) on \(w \).
 1.4. Accept.
2. Construct the description of \(M?(x) \) that, on input \(x \), operates as follows:
 2.1. Accept.
3. Return \(<M?, M#> \).

If Oracle exists and semidecides \(L \), then \(C = Oracle(R(<M, w>)) \) semidecides \~H:
- \(R \) can be implemented as a Turing machine.
- \(C \) is correct: \(L(M?) = \Sigma^* \). \(M# \) accepts everything or nothing, depending on whether \(M \) halts on \(w \). So:
 - \(<M, w> \in \~H : M \) does not halt on \(w \). \(M# \) gets stuck in step 1.3. \(L(M#) = \emptyset \). \(L(M?) - L(M#) = L(M?) \), which contains \(e \). So Oracle accepts.
 - \(<M, w> \notin \~H : M \) halts on \(w \). So \(L(M#) = \Sigma^* \). \(L(M?) - L(M#) = \emptyset \). So Oracle does not accept.

But no machine to semidecide \~H can exist, so neither does Oracle.

g) \{<M, w> : M, when operating on input \(w \), never moves to the right on two consecutive moves\}.

D. Notice that \(M = (K, \Sigma, \Gamma, \delta, s, H) \) must move either to the right or the left on each move. If it cannot move right on two consecutive moves, then every time it moves right, it must next move back left. So it will never be able to read more than the first square of its input tape. It can, however, move left indefinitely. That part of the tape is already known to contain only blanks. \(M \) can write on the tape as it
moves left, but it cannot ever come back to read anything that it has written except the character it just wrote and the one immediately to its right. So the rest of the tape is no longer an effective part of M's configuration. We need only consider the current square and one square on either side of it. Thus the number of effectively distinct configurations of M is $\text{max} = \lvert K \rvert \cdot \lvert \Gamma \rvert^3$. Once M has executed max steps, it must either halt or be in a loop. If the latter, it will just keep doing the same thing forever. So the following procedure decides L:

Run M on w for $\lvert K \rvert \cdot \lvert \Gamma \rvert^3 + 1$ moves or until M halts or moves right on two consecutive moves:

- If M ever moves right on two consecutive moves, halt and reject.
- If M halts without doing that or if it has not done that after $\lvert K \rvert \cdot \lvert \Gamma \rvert^3 + 1$ moves, halt and accept.

h) $\{<M> : M$ is the only Turing machine that accepts $L(M)\}$.

D. $L = \emptyset$, since any language that is accepted by some Turing machine is accepted by an infinite number of Turing machines.

i) $\{<M> : L(M) \text{ contains at least two strings}\}$.

SD/D: The following algorithm semidecides L:

Run M on the strings in Σ^* in lexicographic order, interleaving the computations. As soon as two such computations have accepted, halt.

Proof not in D: R is a reduction from $H = \{<M, w> : \text{TM } M \text{ halts on } w\}$ to L, defined as follows:

$R(<M, w>) =$

1. Construct the description of $M#(x)$ that, on input x, operates as follows:
 1.1. Erase the tape.
 1.2. Write w on the tape.
 1.3. Run M.
 1.4. Accept.
2. Return $<M#>$.

If Oracle exists and decides L, then $C = \text{Oracle}(R(<M, w>))$ decides H:
- $<M, w> \in H$: M halts on w so $M#$ accepts everything and thus accepts at least two strings, so Oracle accepts.
- $<M, w> \notin H$: M doesn’t halt on w so $M#$ doesn’t halt and thus accepts nothing and so does not accept at least two strings so Oracle rejects.

But no machine to decide H can exist, so neither does Oracle.

j) $\{<M> : M$ rejects at least two even length strings\}$.

SD/D: The following algorithm semidecides L:

Run M on the even length strings in Σ^* in lexicographic order, interleaving the computations. As soon as two such computations have rejected, halt.

Proof not in D: R is a reduction from $H = \{<M, w> : \text{TM } M \text{ halts on } w\}$ to L, defined as follows:

$R(<M, w>) =$

1. Construct the description of $M#(x)$ that, on input x, operates as follows:
 1.1. Erase the tape.
 1.2. Write w on the tape.
 1.3. Run M.
 1.4. Reject.
2. Return $<M#>$.

12
If Oracle exists and decides L, then \(C = \text{Oracle}(R(<M, w>)) \) decides H:
- \(<M, w> \in H: M \text{ halts on } w \) so \(M^# \) rejects everything and thus rejects at least two even length strings, so Oracle accepts.
- \(<M, w> \not\in H: M \text{ doesn’t halt on } w \) so \(M^# \) doesn’t halt and thus rejects nothing and so does not reject at least even length two strings. Oracle rejects.

But no machine to decide H can exist, so neither does Oracle.

\(\{<M>: M \text{ halts on all palindromes}\} \).

\(\neg \text{SD: } \) Assume that \(\Sigma \neq \emptyset \). \(R \) is a reduction from \(\neg H = \{<M, w>: \text{TM } M \text{ does not halt on } w\} \) to \(L \), defined as follows:
\[
R(<M, w>) = \\
\begin{align*}
1. & \text{ Construct the description of } M^#(x) \text{ that, on input } x, \text{ operates as follows:} \\
& \quad 1.1. \text{ Save its input } x \text{ on a second tape.} \\
& \quad 1.2. \text{ Erase the tape.} \\
& \quad 1.3. \text{ Write } w. \\
& \quad 1.4. \text{ Run } M \text{ on } w \text{ for } |x| \text{ steps or until it halts.} \\
& \quad 1.5. \text{ If } M \text{ would have halted, then loop.} \\
& \quad 1.6. \text{ Else halt.} \\
2. & \text{ Return } <M^#>. \\
\end{align*}
\]

If Oracle exists and semidecides L, then \(C = R(<M, w>) \) semidecides \(\neg H \):
- \(<M, w> \in \neg H: M \text{ does not halt on } w, \) so \(M^# \) always gets to step 1.6. So it halts on everything, including all palindromes, so Oracle accepts.
- \(<M, w> \not\in \neg H: M \text{ halts on } w. \) Suppose it does so in \(k \) steps. Then, for all strings of length \(k \) or more, \(M^# \) loops at step 1.5. For any \(k \), there is a palindrome of length greater than \(k \). So \(M^# \) fails to accept all palindromes. So Oracle does not accept.

But no machine to semidecide \(\neg H \) can exist, so neither does Oracle.

\(\{<M>: L(M) \text{ is context-free}\} \).

\(\neg \text{SD: } \) \(R \) is a reduction from \(\neg H = \{<M, w>: \text{TM } M \text{ does not halt on } w\} \) to \(L \), defined as follows:
\[
R(<M, w>) = \\
\begin{align*}
1. & \text{ Construct the description of } M^#(x) \text{ that, on input } x, \text{ operates as follows:} \\
& \quad 1.1. \text{ Save } x. \\
& \quad 1.2. \text{ Erase the tape.} \\
& \quad 1.3. \text{ Write } w. \\
& \quad 1.4. \text{ Run } M \text{ on } w. \\
& \quad 1.5. \text{ If } x \in A^*B^nC^*, \text{ accept. Else loop.} \\
2. & \text{ Return } <M^#>. \\
\end{align*}
\]

If Oracle exists and semidecides L, then \(C = \text{Oracle}(R(<M, w>)) \) semidecides \(\neg H \):
- \(<M, w> \in \neg H: M \text{ does not halt on } w. \) \(M^# \) gets stuck in step 1.4. So \(L(M^#) = \emptyset \), which is context-free. So Oracle accepts.
- \(<M, w> \not\in \neg H: M \text{ halts on } w. \) So \(L(M^#) = A^*B^nC^* \), which is not context-free. So Oracle does not accept.

But no machine to semidecide \(\neg H \) can exist, so neither does Oracle.
m) \(\{<M>: L(M) \text{ is not context-free}\} \).

\[\neg \text{SD.} \ R \text{ is a reduction from } \neg \text{H} = \{<M, w>: \text{TM M does not halt on } w\} \text{ to } L, \text{ defined as follows:} \]

\[R(<M, w>) = \]

1. Construct the description of \(M#(x) \) that, on input \(x \), operates as follows:
 1.1. If \(x \in A^*B^*C^* \), accept.
 1.2. Erase the tape.
 1.3. Write \(w \).
 1.4. Run \(M \) on \(w \).
 1.5. Accept.
2. Return \(<M#> \).

If Oracle exists and semidecides \(L \), then \(C = \text{Oracle}(R(<M, w>)) \) semidecides \(\neg \text{H} \):
- \(<M, w> \in \neg \text{H}: M \) does not halt on \(w \). \(M# \) gets stuck in step 1.4. So \(L(M#) = A^*B^*C^* \), which is not context-free. So Oracle accepts.
- \(<M, w> \notin \neg \text{H}: M \) halts on \(w \). So \(L(M#) = \Sigma^* \), which is context-free. So Oracle does not accept.

But no machine to semidecide \(\neg \text{H} \) can exist, so neither does Oracle.

n) \(\{<M>: A_<(L(M)) > 0\} \), where \(A_<(L) = |L \cap a^*| \).

\[\text{SD/D:} \ \text{The following algorithm semidecides } L: \ \text{Lexicographically enumerate the strings in } a^* \text{ and run them through } M \text{ in dovetailed mode. If } M \text{ ever accepts a string, accept.} \]

We show not in D by reduction: \(R \) is a reduction from \(\text{H} \) to \(L \), defined as follows:

\[R(<M, w>) = \]

1. Construct the description of \(M#(x) \) that, on input \(x \), operates as follows:
 1.1. Erase the tape.
 1.2. Write \(w \).
 1.3. Run \(M \) on \(w \).
 1.4. Accept.
2. Return \(<M#> \).

If Oracle exists and decides \(L \), then \(C = \text{Oracle}(R(<M, w>)) \) decides \(\text{H} \):
- \(<M, w> \in \text{H}: M \) halts on \(w \). \(M# \) accepts everything, including strings in \(a^* \). So Oracle accepts.
- \(<M, w> \notin \text{H}: M \) does not halt on \(w \). \(M# \) accepts nothing. So Oracle rejects.

But no machine to decide \(\text{H} \) can exist, so neither does Oracle.

o) \(\{<M>: \|L(M)\| \text{ is a prime integer greater than 0}\} \).

\[\neg \text{SD: Assume that } \Sigma \neq \emptyset. \ R \text{ is a reduction from } \neg \text{H} = \{<M, w>: \text{TM M does not halt on } w\} \text{ to } L, \text{ defined as follows:} \]

\[R(<M, w>) = \]

1. Construct the description of \(M#(x) \) that, on input \(x \), operates as follows:
 1.1. If \(x \) is one of the first two strings (lexicographically) in \(\Sigma^* \), accept.
 1.2. Erase the tape.
 1.3. Write \(w \) on the tape.
 1.4. Run \(M \) on \(w \).
 1.5. Accept.
2. Return \(<M#> \).
If Oracle exists and semidecides \(L \), then \(C = R(<M, w>) \) semidecides \(\neg H \):
- \(<M, w> \in H \): \(M \) does not halt on \(w \), so the \(M \)\# accepts only the two strings that it accepts in step 1.1. So \(|L(M\#)| = 2 \), which is greater than 0 and prime, so Oracle accepts.
- \(<M, w> \not\in H \): \(M \) halts on \(w \) so \(M \)\# accepts everything else at step 1.5. There is an infinite number of strings over any nonempty alphabet, so \(L(M\#) \) is infinite. Its cardinality is not a prime integer. So Oracle does not accept.

But no machine to semidecide \(\neg H \) can exist, so neither does Oracle.

\(\{<M>: \text{there exists a string } w \text{ such that } |w| < |<M>| \text{ and } M \text{ accepts } w \} \).

SD/D: The following algorithm semidecides \(L \):

Run \(M \) on the strings in \(\Sigma^* \) of length less than \(|<M>| \), in lexicographic order, interleaving the computations. If any such computation halts, halt and accept.

Proof not in D: \(R \) is a reduction from \(H = \{<M, w>: \text{TM } M \text{ halts on } w \} \) to \(L \), defined as follows:

\[R(<M, w>) = \]

1. Construct the description \(<M\#> \) of a new Turing machine \(M\#(x) \) that, on input \(x \), operates as follows:
 1.1. Erase the tape.
 1.2. Write \(w \) on the tape.
 1.3. Run \(M \) on \(w \).
 1.4. Accept.
2. Return \(<M\#> \).

If Oracle exists and decides \(L \), then \(C = Oracle(R(<M, w>)) \) decides \(H \):
- \(<M, w> \in H \): \(M \) halts on \(w \) so \(M\# \) accepts everything. So, in particular, it accepts \(\epsilon \), which is a string of length less than \(|<M>| \), so \(Oracle(<M\#>) \) accepts.
- \(<M, w> \not\in H \): \(M \) doesn’t halt on \(w \) so \(M\# \) doesn’t halt and thus accepts nothing. So, in particular there is no string of length less than \(|<M>| \) that \(M\# \) accepts, so \(Oracle(<M\#>) \) rejects.

But no machine to decide \(H \) can exist, so neither does Oracle.

\(\{<M>: M \text{ does not accept any string that ends with } 0 \} \).

\(\neg \text{SD}: R \) is a reduction from \(\neg H = \{<M, w>: \text{TM } M \text{ does not halt on } w \} \) to \(L \), defined as follows:

\[R(<M, w>) = \]

1. Construct the description of \(M\#(x) \) that, on input \(x \), operates as follows:
 1.1. Erase the tape.
 1.2. Write \(w \) on the tape.
 1.3. Run \(M \) on \(w \).
 1.4. Accept.
2. Return \(<M\#> \).

If Oracle exists and semidecides \(L \), then \(C = R(<M, w>) \) semidecides \(\neg H \):
- \(<M, w> \in \neg H \): \(M \) does not halt on \(w \) so \(M\# \) accepts nothing and so, in particular, accepts no string that ends in \(0 \). So Oracle accepts.
- \(<M, w> \not\in \neg H \): \(M \) halts on \(w \) so \(M\# \) accepts everything, including all strings that end in \(0 \). Since \(M\# \) does accept strings that end in \(0 \), \(M\# \) is not in \(L \) and Oracle does not accept.

But no machine to semidecide \(\neg H \) can exist, so neither does Oracle.
r) \{<M> : there are at least two strings \(w\) and \(x\) such that \(M\) halts on both \(w\) and \(x\) within some number of steps \(s\), and \(s < 1000\) and \(s\) is prime\}.

D. Note that in any fixed number \(s\) steps, \(M\) can examine no more than \(s\) squares of its tape. So if it is going to accept any string \(w\) that is longer than \(s\), it must also accept a string \(w'\) that is no longer than \(s\) and that is an initial substring of \(w\). So the following algorithm decides \(L\):

Run \(M\) on all strings in \(\Sigma^*\) of length between 0 and 1000. Try each for 1000 steps or until the computation halts:
- If at least two such computations halted in some prime number of steps \(s\), accept.
- Else reject.

s) \{<M> : there exists an input on which TM \(M\) halts in fewer than \(|<M>|\) steps\}.

D. In \(|<M>|\) steps, \(M\) can examine no more than \(|<M>|\) squares of its tape. So the following algorithm decides \(L\):

Run \(M\) on all strings in \(\Sigma^*\) of length between 0 and \(|<M>|\). Try each for \(|<M>|\) steps or until the computation halts:
- If at least one such computation halted, accept.
- Else reject.

It isn’t necessary to try any longer strings because, if \(M\) accepts some longer string, it does so by looking at no more than \(|<M>|\) initial characters. So it would also accept the string that contains just those initial characters. And we’d have discovered that.

t) \{<M> : \(L(M)\) is infinite\}.

\(\neg\text{SD.} \) Assume that \(\Sigma \neq \emptyset\). \(R\) is a reduction from \(\neg H = \{<M, w> : \text{TM } M \text{ does not halt on } w\} \) to \(L\), defined as follows:

\(R(<M, w>) = \)
1. Construct the description of \(M#(x)\) that, on input \(x\), operates as follows:
 1.1. Save its input \(x\) on a second tape.
 1.2. Erase the tape.
 1.3. Write \(w\).
 1.4. Run \(M\) on \(w\) for \(|x|\) steps or until it halts.
 1.5. If \(M\) would have halted, then loop.
 1.6. Else accept.
2. Return \(\text{Oracle}(<M#>)\)

If \(\text{Oracle}\) exists and semidecides \(L\), then \(R\) semidecides \(\neg H\):
- \(<M, w> \in \neg H: M\) does not halt on \(w\). So \(M#\) always makes it to step 1.6. It accepts everything, which is an infinite set. So \(\text{Oracle}\) accepts.
- \(<M, w> \not\in \neg H: M\) halts on \(w\). Suppose it does so in \(k\) steps. Then \(M#\) loops on all strings of length \(k\) or greater. It accepts strings of length less than \(k\). But that set is finite. So \(\text{Oracle}\) does not accept.

But no machine to semidecide \(\neg H\) can exist, so neither does \(\text{Oracle}\).

u) \{<M> : \(L(M)\) is uncountably infinite\}.

D. \(L = \emptyset\), since every Turing machine \(M = (K, \Sigma, \Gamma, \delta, s, H)\) accepts some subset of \(\Sigma^*\) and \(|\Sigma^*|\) is countably infinite. So \(L\) is not only in \(D\), it is regular.
7) Show that each of the following questions is undecidable by recasting it as a language recognition problem and showing that the corresponding language is not in D:

a) Given a program P, input x, and a variable n, does P, when running on x, ever assign a value to n?

$L = \{<P, x, n> : P$, when running on x, ever assigns a value to $n\}$. We show that L is not in D by reduction from H. Define:

$R(<M, w>) =
\begin{enumerate}
 \item Construct the description $<P>$ of a program P that ignores its input and operates as follows:
 \begin{enumerate}
 \item Erase a simulated tape.
 \item Write w on the tape.
 \item Simulate running M on w.
 \item Set n to 0.
 \end{enumerate}
 \item Return $<P, e, n>$.
\end{enumerate}$

If Oracle exists and decides L, then $C = Oracle(R(<M, w>))$ decides H. R can be implemented as a Turing machine. And C is correct:

- $<M, w> \in H$: M halts on w, so P, regardless of its input, assigns a value to n. $Oracle(<P, e, n>)$ accepts.
- $<M, w> \notin H$: M does not halt on w, so P, regardless of its input, fails to assign a value to n. $Oracle(<P, e, n>)$ rejects.

But no machine to decide H can exist, so neither does Oracle.

b) Given a program P and code segment S in P, does P reach S on every input (in other words, can we guarantee that S happens)?

c) Given a program P and a variable x, is x always initialized before it is used?

d) Given a program P and a file f, does P always close f before it exits?

e) Given a program P with an array reference of the form $a[i]$, will i, at the time of the reference, always be within the bounds declared for the array?

f) Given a program P and a database of objects d, does P perform the function f on all elements of d?

$L = \{<P, d, f> : P$ performs f on every element of $d\}$. We show that L is not in D by reduction from H. Define:

$R(<M, w>) =
\begin{enumerate}
 \item Create a database D with one record r.
 \item Create the function f that writes the value of the first field of the database object it is given.
 \item Construct the description $<P>$ of a program P that ignores its input and operates as follows:
 \begin{enumerate}
 \item Erase a simulated tape.
 \item Write w on the tape.
 \item Simulate running M on w.
 \item Run f on r.
 \end{enumerate}
 \item Return $<P, D, f>$.
\end{enumerate}$
If Oracle exists and decides \(L \), then \(C = Oracle(R(<M, w>)) \) decides \(H \). \(R \) can be implemented as a Turing machine. And \(C \) is correct:

- \(<M, w> \in H: M \) halts on \(w \), so \(P \), regardless of its input, runs \(f \) on \(r \). Oracle(\(<P, D, f> \)) accepts.
- \(<M, w> \notin H: M \) does not halt on \(w \), so \(P \), regardless of its input, fails to run \(f \) on \(r \). Oracle(\(<P, D, f> \)) rejects.

But no machine to decide \(H \) can exist, so neither does Oracle.

10) Do the other half of the proof of Rice’s Theorem, i.e., show that the theorem holds if \(P(\emptyset) = True \).

The easiest way to do this is to use a reduction that is not a mapping reduction. We simply invert the reduction that we did to prove the first half. So we proceed as follows. Assume that \(P(\emptyset) = True \). Since \(P \) is nontrivial, there is some SD language \(L_{S} \) such that \(P(L_{S}) \) is False. Since \(L_{S} \) is in SD, there exists some Turing machine \(K \) that semidecides it.

Define:

\[
R(<M, w>) =
\]

1. Construct the description \(<M\#> \) of a new Turing machine \(M\#(x) \) that, on input \(x \), operates as follows:
 1.1. Copy its input \(x \) to a second tape.
 1.2. Erase the tape.
 1.3. Write \(w \) on the tape.
 1.4. Run \(M \) on \(w \).
 1.5. Put \(x \) back on the first tape and run \(K \) on \(x \).
2. Return \(<M\#> \).

\(\{R, \neg\} \) is a reduction from \(H \) to \(L_{2} \). If Oracle exists and decides \(L \), then \(C = \neg Oracle(R(<M, w>)) \) decides \(H \). \(R \) can be implemented as a Turing machine. And \(C \) is correct:

- If \(<M, w> \in H: M \) halts on \(w \), so \(M\# \) makes it to step 1.5. So \(M\# \) does whatever \(K \) would do. So \(L(M\#) = L(K) \) and \(P(L(M\#)) = P(L(K)) \). We chose \(K \) precisely to assure that \(P(L(K)) \) is False, so \(P(L(M\#)) \) must also be False. Oracle decides \(P \). Oracle(\(<M\#> \)) rejects so \(C \) accepts.
- If \(<M, w> \notin H: M \) does not halt on \(w \). \(M\# \) gets stuck in step 1.4 and so accepts nothing. \(L(M\#) = \emptyset \). By assumption, \(P(\emptyset) = True \). Oracle decides \(P \). Oracle(\(<M\#> \)) accepts so \(C \) rejects.

But no machine to decide \(H \) can exist, so neither does Oracle.

11) For each of the following languages \(L \), do two things:
 i) State whether or not Rice’s Theorem has anything to tell us about the decidability of \(L \).
 ii) State whether \(L \) is in D, SD/D, or not in SD.

a) \(\{<M>: M \text{ accepts all strings that start with } a\} \).

 Rice’s Theorem applies and tells us that \(L \) is not in D. It is also true that \(L \) is not in SD.

b) \(\{<M>: M \text{ halts on } \varepsilon \text{ in no more than 1000 steps}\} \).

 Rice’s Theorem does not apply. \(L \) is in D. It can be decided by simply running \(M \) on \(\varepsilon \) for 1000 steps or until it halts.

c) \(\neg L_{1}, \text{ where } L_{1} = \{<M>: M \text{ halts on all strings in no more than 1000 steps}\} \).

 Rice’s Theorem does not apply. \(L_{1} \) is in D. The key to defining a decision procedure for it is the observation that if \(M \) is allowed to run for only 1000 steps, it must make its decision about whether to accept an input string \(w \) after looking at no more than the first 1000 characters of \(w \). So we can decide \(L_{1} \).
by doing the following: Lexicographically enumerate the strings of length up to 1000 drawn from the alphabet of M. For each, run M for 1000 steps or until it halts. If M halted on all of them, then it must also halt on all longer strings. So accept. Otherwise, reject. Since the decidable languages are closed under complement, $\overline{L_1}$ must be in D if L_1.

d) $\{<M, w> : M \text{ rejects } w\}$.

Rice’s Theorem does not apply. Note that the definition of this language does not ask about the language that M accepts. Failure to reject could mean either that M accepts or that it loops. L is in SD.

12) Use Rice’s Theorem to prove that each of the following languages is not in D:
 a) $\{<M> : \text{Turing machine } M \text{ accepts at least two odd length strings}\}$.

 We define P as follows:
 - Let P be defined on the set of languages accepted by some Turing machine M. Let it be $True$ if $L(M)$ contains at least two odd length strings and $False$ otherwise.
 - The domain of P is the SD languages since it is those languages that are accepted by some Turing machine M.
 - P is nontrivial since $P(\{a, aaa\})$ is $True$ and $P(\emptyset)$ is $False$.

 Thus $\{<M> : \text{Turing machine } M \text{ accepts at least two odd length strings}\}$ is not in D.

 b) $\{<M> : M \text{ is a Turing machine and } |L(M)| = 12\}$.

 We define P as follows:
 - Let P be defined on the set of languages accepted by some Turing machine M. Let it be $True$ if $|L(M)|$ is 12 and $False$ otherwise.
 - The domain of P is the SD languages since it is those languages that are accepted by some Turing machine M.
 - P is nontrivial since $P(\{a, aa, aaa, aaaaa, aaaaaa, b, bb, bbb, bbbb, bbbbb, bbbbb\})$ is $True$ and $P(\emptyset)$ is $False$.

 Thus $\{<M> : \text{M is a Turing machine and } |L(M)| = 12\}$ is not in D.

20) If L_1 and L_2 are decidable languages and $L_1 \subseteq L \subseteq L_2$, must L be decidable? Prove your answer.

 No. Let $L_1 = \emptyset$. Let $L_2 = \{<M>\}$. Let $L = \{<M> : M \text{ accepts } e\}$, which is not decidable.
22 Undecidable Languages That Do Not Ask Questions about Turing Machines

1) Consider the following instance of the Post Correspondence problem. Does it have a solution? If so, show one.

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>bab</td>
</tr>
<tr>
<td>2</td>
<td>bbb</td>
<td>bb</td>
</tr>
<tr>
<td>3</td>
<td>aab</td>
<td>ab</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>

2, 1, 2 is a solution.

2) Prove that, if we consider only PCP instances with a single character alphabet, PCP is decidable.

If there is any index i such that $X_i = Y_i$, then the single element sequence i is a solution.

If there is some index i with the property that $|X_i| > |Y_i|$ and another index j with the property that $|X_j| < |Y_j|$ then there is a solution. In this case, there must be values of $n, m, k,$ and p such that (giving the name a to the single element of Σ):

- i: a^{n+k} a^n
- j: a^n a^{n+p}

The sequence $i \neq j$ must be a solution since:

- the number of a’s in the X string will then be $p(n+k)+km = pn + pk + km$, and
- the number of a’s in the Y string will then be $pn + k(m+p) = pn + kp + km$.

For example, suppose that we have:

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.... aaaaaaa</td>
<td>aaa</td>
</tr>
<tr>
<td>2</td>
<td>aa</td>
<td>aaaaaaa</td>
</tr>
</tbody>
</table>

We can restate that as:

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.... a^{3+4}</td>
<td>a^3</td>
</tr>
<tr>
<td>2</td>
<td>a^2</td>
<td>a^{2+5}</td>
</tr>
</tbody>
</table>

So: $n = 3, k = 4$ $m = 2, p = 5$

So 1, 1, 1, 1, 2, 2, 2, 2 is a solution:

X: $\ldots a^3a^3a^3a^3a^3a^3a^3a^3a^3a^3a^2a^2a^2a^2a^2 = a^{43}$

Y: $a^3 = a^{43}$

If, on the other hand, neither of these conditions is satisfied, there is no solution. Now either all the X strings are longer than their corresponding Y strings or vice versa. In either case, as we add indices to any proposed solutions, the lengths of the resulting X and Y strings get farther and farther apart.
3) Prove that, if an instance of the Post Correspondence problem has a solution, it has an infinite number of solutions.

If \(S \) is a solution, then \(S^2, S^3, \ldots \) are all solutions.

4) State whether or not each of the following languages is in \(D \) and prove your answer.
 a) \(\{<G> : G \text{ is a context-free grammar and } e \in L(G) \} \).

 \(L \) is in \(D \). \(L \) can be decided by the procedure:

 If \(\text{decideCFL}(L, e) \) returns True, accept. Else reject.

 b) \(\{<G> : G \text{ is a context-free grammar and } \{e\} = L(G) \} \).

 \(L \) is in \(D \). By the context-free pumping theorem, we know that, given a context-free grammar \(G \), if there is a string of length greater than \(b^n \) in \(L(G) \), then \(\forall y \) can be pumped out to create a shorter string also in \(L(G) \) (the string must be shorter since \(|y| > 0 \)). We can, of course, repeat this process until we reduce the original string to one of length less than \(b^n \). This means that if there are any strings in \(L(G) \), there are some strings of length less than \(b^n \). So, to see whether \(L(G) = \{e\} \), we do the following: First see whether \(e \in L(G) \) by seeing whether \(\text{decideCFL}(L, e) \) returns True. If not, say no. If \(e \) is in \(L(G) \), then we need to determine whether any other strings are also in \(L(G) \). To do that, we test all strings in \(\Sigma^* \) of length up to \(b^{n+1} \). If we find one, we say no, \(L(G) \neq \{e\} \). If we don't find any, we can assert that \(L(G) = \{e\} \). Why? If there is a longer string in \(L(G) \) and we haven't found it yet, then we know, by the pumping theorem, that we could pump out \(y \) from it until we got a string of length \(b^n \) or less. If \(e \) were not in \(L(G) \), we could just test up to length \(b^n \) and if we didn't find any elements of \(L(G) \) at all, we could stop, since if there were bigger ones we could pump out and get shorter ones but there aren't any. However, because \(e \) is in \(L(G) \), what about the case where we pump out and get \(e \)? That's why we go up to \(b^{n+1} \). If there are any long strings that pump out to \(e \), then there is a shortest such string, which can't be longer than \(b^{n+1} \) since that's the longest string we can pump out.

 c) \(\{<G_1, G_2> : G_1 \text{ and } G_2 \text{ are context-free grammars and } L(G_1) \subseteq L(G_2) \} \).

 \(L \) is not in \(D \). If it were, then we could reduce \(\text{GG-} = \{<G_1, G_2> : G_1 \text{ and } G_2 \text{ are CFGs and } L(G_1) = L(G_2) \} \) to it and we have shown that \(\text{GG-} \) is not in \(D \). Notice that \(L(G_1) = L(G_2) \iff L(G_1) \subseteq L(G_2) \) and \(L(G_2) \subseteq L(G_1) \). So, if we could solve the subset problem, then to find out whether \(L(G_1) = L(G_2) \), all we do is ask whether the first language is a subset of the second and vice versa. If both answers are yes, we say yes. Otherwise, we say no. Formally, we define \(R \) as follows:

 \[
 R(<G_1, G_2>) = \\
 \begin{align*}
 1. \text{If } & M_2(<G_1, G_2>) \text{ accepts and } M_2(<G_2, G_1>) \text{ accepts then accept, else reject.}
 \end{align*}
 \]

 If \(\text{Oracle} \) exists and decides \(L \), then \(C = R(<G_1, G_2>) \) decides \(\text{GG-} \):

 - \(<G_1, G_2> \in \text{GG-} \iff L(G_1) = L(G_2) \), so \(L(G_1) \subseteq L(G_2) \) and \(L(G_2) \subseteq L(G_1) \). So \(M_2 \) accepts.
 - \(<G_1, G_2> \notin \text{GG-} \iff L(G_1) \neq L(G_2) \), so \(\neg(L(G_1) \subseteq L(G_2) \text{ and } L(G_2) \subseteq L(G_1)) \). So \(M_2 \) rejects.

But no machine to decide \(\text{GG-} \) can exist, so neither does \(\text{Oracle} \).
Unrestricted Grammars

1) Write an unrestricted grammar for each of the following languages L:

a) $\{a^{2^n}b^{2^n}, n \geq 0\}$.

```
S -> # ab %
# -> # D  /* Each D is a doubler. Spawn (n-1) of them. Each of them will get pushed to the right and will turn each a into aa and each b into bb as it passes over.
Da -> aaD /* Move right and double.
Db -> bbD /* ”
D% -> %  /* D’s work is done. Wipe it out.
# -> e  /* Get rid of the walls.
% -> e /* ”
```

G generates all strings in L: If no D’s are generated, G generates ab ($n = 0$). For any other value of n, the correct number of D’s can be generated. G generates only strings in L: Once a D is generated, it cannot be eliminated until it has made it all the way to the right and is next to %. To do that, it must double each a and each b it passes over.

b) $\{a^n b^m c^{n+m} : n, m > 0\}$.

```
S -> a S c /* $L$ is actually context free.
S -> a T c
T -> b T c
T -> b c
```

c) $\{a^n b^m c^{n+m} : n, m > 0\}$.

```
S -> S_1 # /* First generate $A^n b^m#$
S_1 -> A S_1
S_1 -> A S_2
S_2 -> S_2 b
S_2 -> b
A -> a 1 /* For each $A$, in order to convert it to $a$, we will generate a 1.
/* Then we’ll push the 1 rightwards. As it passes over the b’s, it will generate a $C$ for each $b$. Start with the rightmost $A$ or the second 1 will get stuck.
1 a -> a 1
1 b -> b C 1
C b -> b C /* Move all the $C$’s to the right of the b’s.
C 1 # -> 1 # c /* Jump each $C$ across # and convert it to c.
1 # -> # /* Get rid of 1 once all the $C$’s have jumped. If it goes too soon, then some $C$’s will be stuck to the left of #.
b# c -> bc /* Get rid of # at the end.
```

d) $\{a^n b^{2n} c^{3n} : n \geq 1\}$.

This one is very similar to $a^n b^n c^n$. The only difference is that we will churn out b’s in pairs and c’s in triples each time we expand S. So we get:

```
S -> a BS ccc
S -> a B ccc
```
\[e) \{ww^Rw : w \in \{a, b\}^*\}. \]

\[
\begin{array}{l}
S \rightarrow S_1 \ # \\
S_1 \rightarrow a \ S_1 \ a \\
S_1 \rightarrow b \ S_1 \ b \\
S_1 \rightarrow T \\
T \ a \rightarrow T1 \ A \\
T \ b \rightarrow T2 \ B \\
1 \ a \rightarrow 11 \ A \\
1 \ b \rightarrow 12 \ B \\
2 \ a \rightarrow 21 \ A \\
2 \ b \rightarrow 22 \ B \\
A \ a \rightarrow a \ a \\
A \ b \rightarrow b \ A \\
B \ b \rightarrow b \ B \\
B \ a \rightarrow a \ B \\
A \ # \rightarrow # \ a \\
B \ # \rightarrow # \ b \\
1 \ # \rightarrow # \ a \\
2 \ # \rightarrow # \ b \\
T \ # \rightarrow \varepsilon
\end{array}
\]

f) \{a^n b^n a^n b^n : n \geq 0\}.

\[
\begin{array}{l}
S \rightarrow T \\
T \rightarrow A \ B \ T \ A \ B \\
T \rightarrow # \\
B \ A \rightarrow A B \\
B \ a \rightarrow a \ a \\
b \ a \rightarrow a \\
B \ b \rightarrow b \ b \\
B \ b \rightarrow b \ b \\
\ a \rightarrow a \\
% \ # \rightarrow \varepsilon
\end{array}
\]

g) \{xy^n x^R \ : \ x, y \in \{a, b\}^* \ and \ |x| = |y|\}.

\[
\begin{array}{l}
S \rightarrow a \ S \ X \ a \\
S \rightarrow b \ S \ X \ b \\
S \rightarrow # \\
b \ X \rightarrow X \ b \\
a \ X \rightarrow X \ a
\end{array}
\]
2) Show that, if \(G, G_1, \) and \(G_2 \) are unrestricted grammars, then each of the following languages, defined in Section 23.4, is not in \(\mathrm{D} \):

a) \(L_b = \{ \langle G \rangle : \varepsilon \in L(G) \} \).

We show that \(A_c \leq_m L_b \) and so \(L_b \) is not decidable. Let \(R \) be a mapping reduction from \(A_c = \{ \langle M \rangle : \text{Turing machine } M \text{ accepts } \varepsilon \} \) to \(L_b \), defined as follows:

\[
R(\langle M \rangle) = \\
1. \text{From } M, \text{ construct the description } \langle G\# \rangle \text{ of a grammar } G\# \text{ such that } L(G\#) = L(M) . \\
2. \text{Return } \langle G\# \rangle .
\]

If \(\text{Oracle} \) exists and decides \(L_b \), then \(C = \text{Oracle}(R(\langle M \rangle)) \) decides \(A_c \). \(R \) can be implemented as a Turing machine using the algorithm presented in Section 23.2. And \(C \) is correct:

- If \(\langle M \rangle \in A_c : M(\varepsilon) \) halts and accepts. \(\varepsilon \in L(M) \). So \(\varepsilon \in L(G\#) \). \(\text{Oracle}(\langle G\# \rangle) \) accepts.
- If \(\langle M \rangle \not\in A_c : M(\varepsilon) \) does not halt. \(\varepsilon \not\in L(M) \). So \(\varepsilon \not\in L(G\#) \). \(\text{Oracle}(\langle G\# \rangle) \) rejects.

But no machine to decide \(A_c \) can exist, so neither does \(\text{Oracle} \).

b) \(L_c = \{ \langle G_1, G_2 \rangle : L(G_1) = L(G_2) \} \).

We show that \(\text{EqTMs} \leq_m L_c \) and so \(L_c \) is not decidable. Let \(R \) be a mapping reduction from \(\text{EqTMs} = \{ \langle M_a, M_b \rangle : L(M_a) = L(M_b) \} \) to \(L_c \), defined as follows:

\[
R(\langle M_a, M_b \rangle) = \\
1. \text{From } M_a, \text{ construct the description } \langle G_a\# \rangle \text{ of a grammar } G_a\# \text{ such that } L(G_a\#) = L(M_a) . \\
2. \text{From } M_b, \text{ construct the description } \langle G_b\# \rangle \text{ of a grammar } G_b\# \text{ such that } L(G_b\#) = L(M_b) . \\
3. \text{Return } \langle G_a\#, G_b\# \rangle .
\]

If \(\text{Oracle} \) exists and decides \(L_c \), then \(C = \text{Oracle}(R(\langle M_a, M_b \rangle)) \) decides \(\text{EqTMs} \). \(R \) can be implemented as a Turing machine using the algorithm presented in Section 23.2. And \(C \) is correct:

- If \(\langle M_a, M_b \rangle \in \text{EqTMs} : L(M_a) = L(M_b) . \ L(G_a\#) = L(G_b\#) . \ \text{Oracle}(\langle G_a\#, G_b\# \rangle) \) accepts.
- If \(\langle M_a, M_b \rangle \not\in \text{EqTMs} : L(M_a) \neq L(M_b) . \ L(G_a\#) \neq L(G_b\#) . \ \text{Oracle}(\langle G_a\#, G_b\# \rangle) \) rejects.

But no machine to decide \(\text{EqTMs} \) can exist, so neither does \(\text{Oracle} \).

c) \(L_d = \{ \langle G \rangle : L(G) = \emptyset \} \).

The proof is by reduction from \(A_{\text{ANY}} = \{ \langle M \rangle : \text{there exists at least one string that Turing machine } M \text{ accepts} \} \). Define:

\[
R(\langle M \rangle) = \\
1. \text{From } M, \text{ construct the description } \langle G\# \rangle \text{ of a grammar } G\# \text{ such that } L(G\#) = L(M) . \\
2. \text{Return } \langle G\# \rangle .
\]

\(\{ R, \neg \} \) is a reduction from \(A_{\text{ANY}} \) to \(L_d \). If \(\text{Oracle} \) exists and decides \(L_d \), then \(C = \neg \text{Oracle}(R(\langle M \rangle)) \) decides \(A_{\text{ANY}} \). \(R \) can be implemented as a Turing machine using the algorithm presented in Section 23.2. And \(C \) is correct:
• If $<M> \in A_{\text{ANY}}$, M accepts at least one string. $L(M) \neq \emptyset$. So $L(G\#) \neq \emptyset$. $\text{Oracle}(G\#)$ rejects. C accepts.
• If $<M> \notin A_{\text{ANY}}$, M does not accept at least one string. $L(M) = \emptyset$. So $L(G\#) = \emptyset$. $\text{Oracle}(G\#)$ accepts. C rejects.

But no machine to decide A_{ANY} can exist, so neither does Oracle.

3) Show that, if G is an unrestricted grammar, then each of the following languages is not in D:

a) $\{<G> : G$ is an unrestricted grammar and $a^* \subseteq L(G)\}$.

Let R be a mapping reduction from H to L defined as follows:

$$R(<M, w>) =$$

1. Construct the description $<M\#>$ of a new Turing machine $M\#(x)$, which operates as follows:
 1.1. Erase the tape.
 1.2. Write w on the tape.
 1.3. Run M on w.
 1.4. Accept.
2. Build the description $<G\#>$ of a grammar $G\#$ such that $L(G\#) = L(M\#)$.
3. Return $<G\#>$.

If Oracle exists, then $C = \text{Oracle}(R(<M, w>))$ decides L. R can be implemented as a Turing machine. And C is correct. $G\#$ generates Σ^* or \emptyset, depending on whether M halts on w. So:

- $<M, w> \in H$: M halts on w, so $M\#$ accepts all inputs. $G\#$ generates Σ^*. $a^* \subseteq \Sigma^*$. Oracle accepts.
- $<M, w> \notin H$: M does not halt on w, so $M\#$ halts on nothing. $G\#$ generates \emptyset. It is not true that $a^* \subseteq \emptyset$. Oracle rejects.

But no machine to decide H can exist, so neither does Oracle.

b) $\{<G> : G$ is an unrestricted grammar and G is ambiguous\}.

Hint: Prove this by reduction from PCP.

4) Let G be the unrestricted grammar for the language $A^nB^nC^n = \{a^n b^n c^n : n \geq 0\}$, shown in Example 23.1. Consider the proof, given in Section 36.4, of the undecidability of the Post Correspondence Problem. The proof is by reduction from the membership problem for unrestricted grammars.

a) Define the MPCM instance MP that will be produced, given the input $<G, abc>$, by the reduction that is defined in the proof of Theorem 36.1.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 %S⇒</td>
<td>%</td>
</tr>
<tr>
<td>2 a</td>
<td>⇒ abc%</td>
</tr>
<tr>
<td>3 S</td>
<td>S</td>
</tr>
<tr>
<td>4 B</td>
<td>B</td>
</tr>
<tr>
<td>5 a</td>
<td>a</td>
</tr>
<tr>
<td>6 b</td>
<td>b</td>
</tr>
<tr>
<td>7 c</td>
<td>c</td>
</tr>
<tr>
<td>8 aBSc</td>
<td>S</td>
</tr>
<tr>
<td>9 e</td>
<td>S</td>
</tr>
<tr>
<td>10 aB</td>
<td>Ba</td>
</tr>
<tr>
<td>11 bc</td>
<td>Bc</td>
</tr>
<tr>
<td>12 bb</td>
<td>Bb</td>
</tr>
<tr>
<td>13 ⇒</td>
<td>⇒</td>
</tr>
</tbody>
</table>

b) Find a solution for MP.

1, 8, 13, 5, 4, 9, 7, 13, 5, 11, 2.
c) Define the PCP instance P that will be built from MP by the reduction that is defined in the proof of Theorem 36.2.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$c \in S \Rightarrow c$</td>
<td>$c \in S$</td>
</tr>
<tr>
<td>1</td>
<td>$c \in S \Rightarrow c$</td>
<td>$c \in S$</td>
</tr>
<tr>
<td>2</td>
<td>$c \Rightarrow c \Rightarrow c$</td>
<td>$c \Rightarrow c \Rightarrow c$</td>
</tr>
<tr>
<td>3</td>
<td>$S \Rightarrow c$</td>
<td>$c \in S$</td>
</tr>
<tr>
<td>4</td>
<td>$B \Rightarrow c$</td>
<td>$c \in B$</td>
</tr>
<tr>
<td>5</td>
<td>$a \Rightarrow c$</td>
<td>$c \in a$</td>
</tr>
<tr>
<td>6</td>
<td>$b \Rightarrow c$</td>
<td>$c \in b$</td>
</tr>
<tr>
<td>7</td>
<td>$c \Rightarrow c$</td>
<td>$c \in c$</td>
</tr>
<tr>
<td>8</td>
<td>$a \Rightarrow B \Rightarrow S \Rightarrow c$</td>
<td>$c \Rightarrow S$</td>
</tr>
<tr>
<td>9</td>
<td>$c \Rightarrow c$</td>
<td>$c \Rightarrow c$</td>
</tr>
<tr>
<td>10</td>
<td>$a \Rightarrow B \Rightarrow c$</td>
<td>$c \Rightarrow B \Rightarrow a$</td>
</tr>
<tr>
<td>11</td>
<td>$b \Rightarrow c \Rightarrow c$</td>
<td>$c \Rightarrow B \Rightarrow c$</td>
</tr>
<tr>
<td>12</td>
<td>$b \Rightarrow b \Rightarrow c$</td>
<td>$c \Rightarrow B \Rightarrow b$</td>
</tr>
<tr>
<td>13</td>
<td>$\Rightarrow c$</td>
<td>$c \Rightarrow c$</td>
</tr>
<tr>
<td>14</td>
<td>S</td>
<td>$c \Rightarrow c$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$0, 8, 13, 5, 4, 9, 7, 13, 5, 11, 2, 14$.</td>
<td></td>
</tr>
</tbody>
</table>

d) Find a solution for P.

$0, 8, 13, 5, 4, 9, 7, 13, 5, 11, 2, 14$.