Suffix Tree and Array
Things To Study

• So far we learned how to find “approximate” matches – the alignments. And they are difficult.

• Finding exact matches are much easier. Suffix tree and array are two data structures for this purpose.

• Suffix Tree
 • Data structure
 • A few examples of using suffix array to solve practical problems.

• Suffix Array
 • Data structure
 • The skew algorithm for constructing suffix array.
What Can Suffix Tree Do?

• Build an index structure of the Internet (the text).
 • Given a length-k string (the query), in O(k) time, find the first occurrence of the string in the text.
 • Cannot afford super linear space.
• Find the longest shared string between human and mouse genomes
 • Each has 3×10^9 base pairs.
 • Cannot afford $3 \times 10^9 \times 3 \times 10^9$ comparisons.
 • This can be done in linear time!
• **Suffix trees can do many string operations you might think are very hard, in linear time.**

• It surprised everybody when it was first invented by Weiner in 1973. Knuth is claimed to have called the result “the algorithm of 1973”.

• Easier algorithms have developed after then.
What are suffix trees?

- A suffix tree stores all of the substrings of a given string in linear space in a way that the search for a substring is efficient
 - time proportional to the length of the query string.
- Suffix tree can be built in *linear time*.
 - We will not study the linear time construction algorithm.
As a picture

- Here is the suffix tree for GAAGAT

- An edge is labelled with a substring of the original string.
- A node’s label is the concatenation of all edge labels for the path leading to that node.
- The path from the root, \(r \), to any leaf \(\alpha \) is a suffix of the string \(S \). Each of the \(m \) suffixes of the string is in the tree, so it has \(m \) leaves.
- Each internal node has at least 2 children.
- The substrings labelling each edge out of a node must all begin with different letters.
Some basic facts

1) If we’re really going to include all of the suffixes, then the last letter must be unique (as in the example). Else, suffix may end at an internal node!
 • We solve this problem by adding a unique letter at end.

2) We’re going to assume throughout that the alphabet size is constant. Thus each internal node has constant number of child nodes.

3) The suffix tree is unique except for ordering of child nodes.
Application I. Search for a substring.

- Any substring of S is a **prefix** of a **suffix**.

- Example of using this: Is the string x a substring of S?
 - Start at the root, and follow paths labelled by the characters of x. If you can get to the end of x, then yes, it is.
How to construct a suffix tree?

• We’ll start with a quadratic-time algorithm and talk about the uses of suffix trees.
• Then we’ll finish with some applications.
• The linear-time construction isn’t easy on the first time. Chapters 5-8 of the following book are excellent. It’s strongly recommended that you look at them.
 • Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology
A simple algorithm

• Given: A string S of length m over a finite alphabet. The last character of S is a unique $\$$ character.

• We’ll build the suffix tree from right to left.
 • $S[m..m], S[m-1..m], S[m-2..m], \ldots$

• Begin with this tree:

```
• Then, for $i = m$ downto 1:
• Follow the letters of $S[i..m]$ along the edges of the tree $T$.
• When we reach a point where no path exists, break the current edge and add a new edge for what is left.
One round

• Suppose the following is the suffix tree for GAAGA$\$, add another suffix AGAAGA$\$.

• First, follow the edges for A and for GA from the root.

• Then split after the A since the only path in the tree is for $\$, and we have an A, instead.

• Add a new edge for AGA$\$. 
New tree

• This yields this new tree.

• Note: There are 3 places where “AGA$” is sitting off by itself. Maybe this repetition might be something to think about.
Obvious runtime

• Obviously, this algorithm has runtime $O(m^2)$, since it’s doing $O(m)$ work in each phase.

• But quadratic work on, say, a genome would be unacceptable.

• First observation (not immediately obvious): This needs not be taking quadratic space.

• Why?

• Because each edge doesn’t need to be labelled with a string, but just with coordinates in the sequence.
Example:

- There’s the same suffix tree, in linear space.
- (Somewhere, you have to store the string itself…)
Application II: Longest Common Substring

• What’s the longest substring common to both $S_1$ and $S_2$?
• Build a suffix tree for $S = S_1 # S_2 $, where # and $ are unique characters.
• All suffixes of $S_1$ ends with an edge including $# S_2$.
• Color all nodes $v$ of the tree:
  • red if $v$’s label is a substring of $S_1$
  • blue if it’s a substring of $S_2$
  • purple if it’s a substring of both
• We want the lowest purple node.
• Linear time, linear space.
Application III: Maximal repeats

• Given: String S.
• A maximal repeat is a substring t occurs k>1 times in S, and if t is extended to left or right, it will occur less than k times.
• Find all maximal repeats.
• Example:
• AAGATATGATAGGAT$
• Maximal repeats include:
• GATA (as in positions 3 and 8):
  • AAGATATGATA$T GAT$
• GAT (as in position 3, 8 and 13):
  • AAGATATGATA$GTGAT$
• And so on. (Try to find another one)
Suffix trees are magic…

• These can be identified in $O(m)$ time.
• We’ll prove this slowly.

**Lemma 1:** If $\alpha$ is a maximal repeat, then there is an internal node with that label.

• **Proof:** Since $\alpha$ is a maximal repeat, then twice when it occurs, it’s followed by different letters. Hence, it’s a bifurcation point in the tree.

**Lemma 2:** There are at most $m$ maximal repeats.

• **Proof:** The tree has $m+1$ leaves, and hence at most $m$ internal nodes.

• OK, so which internal nodes correspond to maximal repeats?
Finding maximal repeats

- Consider a node $x$ with path label $\alpha$.
- Now, consider all suffixes of $S$ that begin with $\alpha$. (all paths from the root that go through $x$)
- Let the “left character” of a suffix be the character before that suffix in $S$.
- (For the string “banana$”,
  - $\text{left(ana$)} = n$
  - $\text{left(anana$)} = b$
  - $\text{left(banana$)} = \text{NULL}$;
**Theorem**

**Theorem:** $a$ is a maximal repeat iff $a$ is an internal node in the tree and there are at least two suffixes that begin with $a$ and have different left characters.

**Proof:**

Can’t extend to left $\iff$ There are two suffixes begin with $da$ and $ea$ for two different letters $d$ and $e$.

Can’t extend to right $\iff$ It is an internal node.
Finding maximal repeats

• An internal node’s leaf descendants are suffixes, each of which has a left character.
• If the left characters of all leaf descendants are not all identical, it’s called a “left-diverse” node.
• Maximal repeats $\iff$ left-diverse internal nodes.

• **Algorithm:**
• Do a DFS on the tree
• For each leaf, label it with its left character
• For each internal node:
  – If at least one child is labelled with *, then label it with *
  – Else if its children’s labels are diverse, label with *.
  – Else then all children have same label, copy it to current node.
• Easily performed in $O(m)$ time.
Application III: Large-scale global alignment

• Large-scale global alignment

• Idea:
• Pick some “anchors” through which the true alignment is very likely to fall.
• Align the regions between the anchors either recursively or just using classical global alignment tools.

• Can we use suffix trees to choose good global anchors?
• First program that does so: MUMMER by Delcher et al.
Seeds come from suffix trees

• Where Mummer differs from other programs is in the seeds it uses, which come from a use of suffix trees.

• A seed match is a maximal unique match, or MUM.

• That is, it’s a string that occurs exactly one time in each genome, and which can’t be extended either way and still be a match.

• What is that in a suffix tree?
How to find mums?

• We want to find all mums instead of just the longest single one.
• Just as for maximal repeats, build a suffix tree for $S#T$.
• A mum is a maximal match between the two sequences…
• Can’t extend on the right:
  $\Rightarrow$ an internal node in the tree
• It occurs once in $S$ and once in $T$:
  $\Rightarrow$ 2 descendants, one from $S$ and one from $T$
• Can’t extend on the left:
  $\Rightarrow$ Different left characters in both descendants

• All mums between $S$ and $T$ can be found in … linear time.
Applications of suffix trees

• That’s all we’re going to do with suffix trees.

• Most commonly used in 3 areas of bioinformatics

1) Repeat finding
2) Very-large-scale sequence alignment
Quick Note on Suffix Array

• Suffix tree is not a compact data structure.
  • A lot of pointers

• Gene Myers and Udi Manber (VP engineering, Google) proposed suffix array.

• A suffix array stores the positions in a string. Each position is an integer so this is a length n integer array.

• Each position corresponds to a suffix starting at this position.

• The suffix array is sorted according to the string order of the corresponding suffixes.
Suffix Array

• AGAAGAT

1 = AGAAGAT
2 = GAAGAT
3 = AAGAT
4 = AGAT
5 = GAT
6 = AT
7 = T

3 = AAGAT
1 = AGAAGAT
4 = AGAT
6 = AT
2 = GAAGAT
5 = GAT
7 = T

3, 1, 4, 6, 2, 5, 7
Suffix Array

• Binary search to find matches.
• Can be constructed in linear time using suffix tree or directly.
• Can be more compact: $O(n)$ bits
  • Comparing to $O(n)$ words, i.e., $O(n \log n)$ bits.
Skew Algorithm For Suffix Sorting

- Let $S_0, S_1, S_2, \ldots, S_{n-1}$ be all the $n$ suffixes. $S_i$ starts at $i$-th position.
- We have two sets $SA^0 = \{S_i : i = 0 \text{ mod } 3\}$ and $SA^{12} = \{S_i : i=1 \text{ or } 2 \text{ mod } 3\}$.
- 1. We sort $SA^{12}$ recursively.
- 2. We sort $SA^0$ in linear time.
- 3. Then we merge sort $SA^0$ and $SA^{12}$ in linear time.
- The time complexity $T(n) = O(n) + T(2n/3)$. So it is linear.
  - Compare with merge sort.
- Isn’t it easy?
Let $S_0, S_1, S_2, \ldots, S_{n-1}$ be all the $n$ suffixes. $S_i$ starts at $i$-th position.

We have two sets $SA^0 = \{S_i : i = 0 \mod 3\}$ and $SA^{12} = \{S_i : i = 1 \text{ or } 2 \mod 3\}$.

1. We sort $SA^{12}$ recursively.
2. We sort $SA^0$ in linear time.
3. Then we merge sort $SA^0$ and $SA^{12}$ in linear time.
• Sorting these suffixes is equivalent to sorting the suffixes of the sequences of 3-mers. Length is shorter if we regard each 3-mer as a basic unit.
• However, the alphabet size is larger, or the comparison of a basic unit takes more than a constant time.
• Solution: renaming 3-mer by integer, and suffix-sort the integer array recursively.
Renaming

- **Renaming**: reduce a sequence of k-mer strings to a sequence of integers.
  - original: its, iss, ipp, abc, att
  - sorted: abc, att, ipp, iss, its
  - rename: $abc \rightarrow 0$, $att \rightarrow 1$, $ipp \rightarrow 2$, $iss \rightarrow 3$, $its \rightarrow 4$
  - original array is equivalent to 4, 3, 2, 0, 1
- If we regard each 3-mer as an inseparable unit, the suffix sorting of itsissippabcatt can be equivalently done by the suffix sorting of 4 3 2 0 1.
- The alphabet size of the new sequence is at most the length of the string.
Renaming in Linear Time

• Renaming is just sorting 3-mers. Can’t use quick sort as it is $O(n \log n)$ time.

• **Radix Sort**: stable sort according to one digit, from the least to the most significant digit.

• original: its, iss, ipp, abc, att
• pass1: abc, ipp, its, iss, att
• pass2: abc, ipp, iss, its, att
• pass3: abc, att, ipp, iss, its

• Radix sorting requires $O(k)$ space, where $k$ is the size of the alphabet.
Skew Algorithm For Suffix Sorting

• Let $S_0, S_1, S_2, \ldots, S_{n-1}$ be all the $n$ suffixes. $S_i$ starts at $i$-th position.

• We have two sets $SA^0 = \{S_i : i = 0 \mod 3\}$ and $SA^{12} = \{S_i : i = 1 \text{ or } 2 \mod 3\}$.

• 1. We sort $SA^{12}$ recursively.

• 2. We sort $SA^0$ in linear time.

• 3. Then we merge sort $SA^0$ and $SA^{12}$ in linear time.
Sort $S^0$ in linear time

- $S_i = s[i] \ S_{i+1}$.
- For all $S_i$ in $SA^0$, $S_{i+1}$ has been sorted already. Use $s[i]$ to do another pass of radix sorting will give us the right order of $SA^0$. This takes linear time.
Skew Algorithm For Suffix Sorting

- Let $S_0, S_1, S_2, \ldots, S_{n-1}$ be all the $n$ suffixes. $S_i$ starts at $i$-th position.
- We have two sets $SA^0 = \{S_i : i = 0 \mod 3\}$ and $SA^{12} = \{S_i : i = 1 \text{ or } 2 \mod 3\}$.
- 1. We sort $SA^{12}$ recursively.
- 2. We sort $SA^0$ in linear time.
- 3. Then we merge sort $SA^0$ and $SA^{12}$ in linear time.
Merge $S^0$ and $S^{12}$

- Merging only requires to compare a suffix $S_j$ with $j \mod 3 = 0$ with a suffix $S_i$ with $i \mod 3 \neq 0$.

- **Case 1:** If $i \mod 3 = 1$, we write $S_i$ as $(s[i], S_{i+1})$ and $S_j$ as $(s[j], S_{j+1})$.
  - Since $(i + 1) \mod 3 = 2$ and $(j + 1) \mod 3 = 1$, the relative order of $S_{j+1}$ and $S_{i+1}$ can be determined from their position in $SA^{12}$.

- **Case 2:** If $i \mod 3 = 2$, we compare the triples $(s[i], s[i + 1], S_{i+2})$ and $(s[j], s[j + 1], S_{j+2})$. 
C codes

• 50 lines of C++ codes were given in J.C.M. Baeten et al. (Eds.): ICALP 2003, LNCS 2719, pp. 943–955, 2003.