SpEED
Fast combinatorial computation of good seeds for genome alignment

Lucian Ilie

Department of Computer Science
University of Western Ontario
A Revolution in Biology

- computer revolution – all areas affected
- biology – discoveries are produced with incredible speed
- great ability to create, store and process huge amounts of data
- bioinformatics algorithms
- biological molecules are seen as sequences of letters
 AGCTTTTTCATTCTGACTGCAACGGGCAATATGTCTCTCT...
- sequence similarity often implies functional similarity
- finding similarities – the most important problem in bioinformatics
- also called local alignment
Similarity search – Dynamic Programming

- [Smith, Waterman, 1981]
- example: local alignment of AGGCGG and GGGCTGGCGA

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>G</th>
<th>G</th>
<th>C</th>
<th>T</th>
<th>G</th>
<th>G</th>
<th>C</th>
<th>G</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

optimal local alignment: G G G C T G G C G A

A G G C G G
Similarity search – Dynamic Programming

- [Smith, Waterman, 1981]
- Example: local alignment of AGGCGG and GGGCTGGCGA

```
<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>G</th>
<th>G</th>
<th>C</th>
<th>T</th>
<th>G</th>
<th>G</th>
<th>C</th>
<th>G</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>
```

- Optimal local alignment: G G G C T G G C G A
- Problem: quadratic time – can handle only short sequences
 - Too slow for whole genome alignment or large database search
Similarity Search – BLAST

- **BLAST** (Basic Local Alignment Search Tool) – heuristic program
- **hit and extend**
 - hit: search for 11 consecutive matches
 - extend: check the surrounding area for similarity
Similarity Search – BLAST

- **BLAST** (Basic Local Alignment Search Tool) – heuristic program
- **hit and extend**
 - **hit**: search for 11 consecutive matches
 - **extend**: check the surrounding area for similarity

```
CCCTTGCTGGCAATATGTCTCTGTGGATTAAAAAAACAGTGTCACTGATACCACTACTCCCAGTTCCAGAT
CAATATCAGCCTAAAAAAAGAGTGTCTGATACCAACCTGCTTCTGAACGTGGTACCCTGCGTGAGTAAATTAAT
```
Similarity Search – BLAST

- **BLAST** (Basic Local Alignment Search Tool) – heuristic program
- **hit and extend**
 - hit: search for 11 consecutive matches
 - extend: check the surrounding area for similarity

```plaintext
CCCTTGCTGGCAATATGTCCTCTGTGGATTTAAAAAACAGTGTCAGATACCCAGCTACTCCCAGTTCCAGATCAATATCAGCCTAAATAAAAGAGTGTCCTGATACCCAGCTTCTGAACTGGTTACCTGCCGTCGAGTAAATTAAAAATT
```

- the most widely used bioinformatics software
 - [Altschul, Gish, Miller, Myers, Lipman, 1990]
 - the initial BLAST paper – 34,733 citations
 - [Altschul, Madden, Schäffer, Zhang, Zhang, Miller, Lipman, 1997]
 - gapped BLAST paper – 35,615 citations
Similarity Search – Seeds

- **seed** – the 11 consecutive matches of BLAST: 11111111111

- spaced seed – matches not consecutive: 111*1**1*1**11*111

1 = match, * = don't care; weight = number of 1's

- spaced seeds have higher chance of finding similarities

- [Califano, Rigoutsos, 1993], [Pevzner, Waterman, 1995], [Buhler, 2001], [Ma, Tromp, Li, 2002] – optimized spaced seeds

- PatternHunter's seed: 111*1**1*1**11*111

- multiple spaced seeds – much better

- also [Brejova, Brown, Vinar, 2003], [Buhler, Keich, Sun, 2003]

- PatternHunterII: 16 seeds of weight 11

- more space needed (more hash tables)

- space reduction – neighbour seeds – [Cs˝ ur˝ os, Ma, 2007]
Similiarity Search – Seeds

- **seed** – the 11 consecutive matches of BLAST: 11111111111
- **spaced seed** – matches not consecutive: 111*1**1*1**11*111
 - 1 = match, * = don’t care; **weight** = number of 1’s

- spaced seeds have higher chance of finding similarities
- [Califano, Rigoutsos, 1993], [Pevzner, Waterman, 1995], [Buhler, 2001], [Ma, Tromp, Li, 2002] – optimized spaced seeds
- PatternHunter’s seed: 111*1**1*1**11*111
- multiple spaced seeds – much better
 - also [Brejova, Brown, Vinar, 2003], [Buhler, Keich, Sun, 2003]
- PatternHunterII: 16 seeds of weight 11
 - more space needed (more hash tables)
- space reduction – neighbour seeds – [Csürös, Ma, 2007]
Similarity Search – Seeds

- **seed** – the 11 consecutive matches of BLAST: 11111111111
- **spaced seed** – matches not consecutive: 111*1**1*1**11*111
 - 1 = match, * = don’t care; weight = number of 1’s
- spaced seeds have higher chance of finding similarities
 - [Califano, Rigoutsos, 1993], [Pevzner, Waterman, 1995], [Buhler, 2001]
Similarity Search – Seeds

- **seed** – the 11 consecutive matches of BLAST: 11111111111
- **spaced seed** – matches not consecutive: 111*1**1*1**11*111
 - 1 = match, * = don’t care; weight = number of 1’s
- spaced seeds have higher chance of finding similarities
 - [Califano, Rigoutsos, 1993], [Pevzner, Waterman, 1995], [Buhler, 2001]
 - [Ma, Tromp, Li, 2002] – optimized spaced seeds
 - PatternHunter’s seed: 111*1**1*1**11*111
Similarity Search – Seeds

- **seed** – the 11 consecutive matches of BLAST: 11111111111
- **spaced seed** – matches not consecutive: 111*1**1*1**11*111
 - 1 = match, * = don’t care; **weight** = number of 1’s
- spaced seeds have higher chance of finding similarities
 - [Califano, Rigoutsos, 1993], [Pevzner, Waterman, 1995], [Buhler, 2001]
- [Ma, Tromp, Li, 2002] – optimized spaced seeds
 - PatternHunter’s seed: 111*1**1*1**11*111
 - multiple spaced seeds – much better
 - also [Brejova, Brown, Vinar, 2003], [Buhler, Keich, Sun, 2003]
Similarity Search – Seeds

- **seed** – the 11 consecutive matches of BLAST: 11111111111
- **spaced seed** – matches not consecutive: 111*1**1*1**11*111
 - 1 = match, * = don’t care; weight = number of 1’s
- spaced seeds have higher chance of finding similarities
 - [Califano, Rigoutsos, 1993], [Pevzner, Waterman, 1995], [Buhler, 2001]
 - [Ma, Tromp, Li, 2002] – optimized spaced seeds
 - PatternHunter’s seed: 111*1**1*1**11*111
 - multiple spaced seeds – much better
 - also [Brejova, Brown, Vinar, 2003], [Buhler, Keich, Sun, 2003]
- PatternHunterII: 16 seeds of weight 11
Similarity Search – Seeds

- **seed** – the 11 consecutive matches of BLAST: 11111111111
- **spaced seed** – matches not consecutive: 111*1**1*1**11*111
 - 1 = match, * = don’t care; **weight** = number of 1’s
- spaced seeds have higher chance of finding similarities
 - [Califano, Rigoutsos, 1993], [Pevzner, Waterman, 1995], [Buhler, 2001]
- [Ma, Tromp, Li, 2002] – optimized spaced seeds
 - PatternHunter’s seed: 111*1**1*1**11*111
 - multiple spaced seeds – much better
 - also [Brejova, Brown, Vinar, 2003], [Buhler, Keich, Sun, 2003]
- **PatternHunterII**: 16 seeds of weight 11
 - more space needed (more hash tables)
 - space reduction – neighbour seeds – [Csűrös, Ma, 2007]
Sensitivity of a Seed

- [Li, Ma, Kisman, Tromp, 2004]

DNA seq. S_1: A C G A G G C A C T G T A T G T A T A T C T A

DNA seq. S_2: A G T A G G C A A T G C A T T T A A A T C T C

matches/mism.: $\neq \neq $

Bernoulli seq. R: 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0

spaced seed s: 1 1 1 * 1 * * 1 * 1 * * 1 * 1 1 1 1

- an example of a hit using PatternHunter’s seed

- similarity $= \text{probability } p \text{ of equality (probab. of 1 in } R)$

- sensitivity $= \text{probability that } s \text{ hits } R \text{ at or before position } n$
 - depends on p and length of random region n
Sensitivity of a Seed

- [Li, Ma, Kisman, Tromp, 2004]

DNA seq. S_1: A C G A G G C A C T G T A T G T A T A T C T A
DNA seq. S_2: A G T A G G C A A T G C A T T T A A A T C T C
matches/mism.: $= \neq = = = = = \neq = = \neq = = \neq = = \neq = = = = = \neq$
Bernoulli seq. R: 1 0 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0
spaced seed s: 1 1 1 * 1 * * 1 * 1 * * 1 1 * 1 1 1

- an example of a hit using PatternHunter’s seed
- similarity $= \text{probability } p \text{ of equality (probab. of 1 in } R)$
- sensitivity $= \text{probability that } s \text{ hits } R \text{ at or before position } n$
 - depends on p and length of random region n
- for $p = 0.70, n = 64$:
 - BLAST: 0.30; PatternHunter: 0.466; PatternHunterII: 0.924
Speed vs Sensitivity

- two competing goals for the initial matches (hits)
 - high sensitivity – find many similar regions
 - high speed – find few non-similar regions (random hits)
- more initial matches (higher seed weight)
 - higher speed
 - many similar regions missed
 - lower sensitivity
- fewer initial matches (lower seed weight)
 - higher sensitivity
 - too many random hits
 - lower speed
- PatternHunter – increases both speed and sensitivity
Papers on (Multiple) Spaced Seeds

- advantages of spaced seeds over consecutive ones
 - [BKS03, KLMT04, ChZh04, LMZ06]
- relevant problems are NP-hard
 - [LMKT04, LMZ06, MaYa07]
- exact (exponential) algorithms for computing sensitivity
 - [BKS03, LMKT04, KLMT04, ChZh04, CZZ04]
- polynomial time approximation schemes
 - [LMZ06]
- heuristic algorithms
 - [LMKT04, CZZ04, Yaea04, PZC05, IlIl07, Koxx]
- adapting the seeds for specific biological tasks
 - [BBV04, KNP04, SuBu04, NoKu05]
- models for the mechanism that makes spaced seeds powerful
 - [BKS03, SuBu04, PZC05]
Applications

- **Similarity search**
 - WABA – [Kent,Zahler,2000]
 - PatternHunter – [Ma,Tromp,Li,2002]
 - YASS – [Kucherov,Noe,2005]

- **Read mapping**
 - MAQ – [Li,Ruan,Durbin,2008]
 - BFAST – [Homer,Merriman,Nelson,2009]
 - SHRiMP – [David,Dzamba,Lister,Ilie,Brudno,2010]

- **Oligonucleotide design**
 - ProDesign – [Feng,Tillier,2007]
Computing Good Seeds

- finding optimal seeds – hard
- exhaustive search – two exponential steps:
 - exponentially many seeds
 - single seeds: $O(2^\ell)$
 - multiple seeds: $O\left(2^{\sum_{i=1}^k \ell_i} \max L^k\right)$
 - computing sensitivity of each is exponential
 - single seeds: $O(nw2^{\ell-w})$
 - multiple seeds: $O\left((k + L + n)\sum_{i=1}^k \ell_i 2^{\ell_i-w}\right)$
- feasible only for single seeds – [Choi, Zeng, Zhang, 2004]
- for multiple seeds – heuristic algorithms – all exponential
Computing Good Seeds

- finding optimal seeds – hard
- exhaustive search – two exponential steps:
 - exponentially many seeds
 - single seeds: $\mathcal{O}(2^\ell)$
 - multiple seeds: $\mathcal{O}(2^{\sum_{i=1}^k \ell_i})\max L^k$
 - computing sensitivity of each is exponential
 - single seeds: $\mathcal{O}(nw2^{\ell-w})$
 - multiple seeds: $\mathcal{O}((k + L + n)\sum_{i=1}^k \ell_i2^{\ell_i-w})$
- feasible only for single seeds – [Choi, Zeng, Zhang, 2004]
- for multiple seeds – heuristic algorithms – all exponential
- a polynomial-time algorithm must
 - avoid considering all seeds
 - avoid computing sensitivity (!)
Avoiding Computing Sensitivity

- the hits of uniformly spaced seeds are more clustered
 - consecutive seed is uniformly spaced

- clustered \Rightarrow overlapping

- idea: low overlap complexity \Leftrightarrow high sensitivity
Overlap complexity (OC)

\[\sigma[i] = \text{pairs of 1's aligned together} \]

\[\text{OC}(s_1, s_2) = \sum_{i=1-|s_2|}^{|s_1|-1} 2^{\sigma[i]} \]

for multiple \((k)\) seeds:

\[\text{OC}(S) = \sum_{1 \leq i \leq j \leq k} \text{OC}(s_i, s_j) \]

invar. w.r.t order, reversal

intuitive reason behind definition

\[\text{OC}(11**1*1, 1*11) = 25 \]
Correlation with Sensitivity

- sensitivity of top overlap complexity seeds for weights 9..18, similarity 70%, and length of random region 64

<table>
<thead>
<tr>
<th>weight</th>
<th>optimal sensitivity</th>
<th>sensitivity of a top overlap seed</th>
<th>difference to optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0.729156</td>
<td>0.729156</td>
<td>0.000000</td>
</tr>
<tr>
<td>10</td>
<td>0.595740</td>
<td>0.595740</td>
<td>0.000000</td>
</tr>
<tr>
<td>11</td>
<td>0.467122</td>
<td>0.467122</td>
<td>0.000000</td>
</tr>
<tr>
<td>12</td>
<td>0.356430</td>
<td>0.356430</td>
<td>0.000000</td>
</tr>
<tr>
<td>13</td>
<td>0.264750</td>
<td>0.264750</td>
<td>0.000000</td>
</tr>
<tr>
<td>14</td>
<td>0.193514</td>
<td>0.193514</td>
<td>0.000000</td>
</tr>
<tr>
<td>15</td>
<td>0.138660</td>
<td>0.138333</td>
<td>0.000327</td>
</tr>
<tr>
<td>16</td>
<td>0.098942</td>
<td>0.098942</td>
<td>0.000000</td>
</tr>
<tr>
<td>17</td>
<td>0.070004</td>
<td>0.070004</td>
<td>0.000000</td>
</tr>
<tr>
<td>18</td>
<td>0.049146</td>
<td>0.049146</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
Avoid Considering All Seeds

- Hill Climbing based on overlap complexity
 - start with \(*\ldots*11\ldots1\) (very bad seed!)
 - swap 1 ↔ * to cause the greatest decrease in OC
 - at most \(kw\) swaps
- complexity: \(O(w^5)\)
Avoid Considering All Seeds

- Hill Climbing based on overlap complexity
 - start with **...*11...1 (very bad seed!)
 - swap 1 ↔ * to cause the greatest decrease in OC
 - at most kw swaps

- complexity: $O(w^5)$

- example: PatternHunter seed

<table>
<thead>
<tr>
<th>intermediate seeds</th>
<th>pairs swapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>* * * * * * * 1 1 1 1 1 1 1 1</td>
<td>(1, 12)</td>
</tr>
</tbody>
</table>
Avoid Considering All Seeds

- Hill Climbing based on overlap complexity
 - start with $**\ldots **11\ldots 1$ (very bad seed!)
 - swap $1 \leftrightarrow *$ to cause the greatest decrease in OC
 - at most kw swaps

- complexity: $O(w^5)$

- example: PatternHunter seed

<table>
<thead>
<tr>
<th>intermediate seeds</th>
<th>pairs swapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>$**\ldots **11\ldots 1$</td>
<td>(1, 12)</td>
</tr>
<tr>
<td>$1**\ldots **11\ldots 1$</td>
<td>(3, 15)</td>
</tr>
</tbody>
</table>
Avoid Considering All Seeds

- Hill Climbing based on overlap complexity
 - start with **...*11...1 (very bad seed!)
 - swap 1 ↔ * to cause the greatest decrease in OC
 - at most \(kw \) swaps
- complexity: \(O(w^5) \)
- example: PatternHunter seed

<table>
<thead>
<tr>
<th>intermediate seeds</th>
<th>pairs swapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>** ** ** ** ** 1</td>
<td>(1, 12)</td>
</tr>
<tr>
<td>1 ** ** ** ** ** 1 1 1 1 1 * 1</td>
<td>(3, 15)</td>
</tr>
<tr>
<td>1 * 1 ** ** ** ** 1 1 1 1 1 * 1</td>
<td>(2, 9)</td>
</tr>
<tr>
<td>1 1 1 ** ** ** ** 1 * 1 1 * 1 1 1 * 1</td>
<td>(5, 11)</td>
</tr>
<tr>
<td>1 1 1 * 1 ** ** ** 1 1 1 * 1 1 1 * 1</td>
<td></td>
</tr>
</tbody>
</table>
Avoid Considering All Seeds

- Hill Climbing based on overlap complexity
 - start with **...*11...1 (very bad seed!)
 - swap 1 ↔ * to cause the greatest decrease in OC
 - at most kw swaps

- complexity: $O(w^5)$

- example: PatternHunter seed

<table>
<thead>
<tr>
<th>intermediate seeds</th>
<th>pairs swapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>* * * * * * * 1 1 1 1 1 1 1</td>
<td>(1, 12)</td>
</tr>
<tr>
<td>1 * * * * * * 1 1 1 1 * 1 1 1 1 1</td>
<td>(3, 15)</td>
</tr>
<tr>
<td>1 * 1 * * * * 1 1 1 1 * 1 1 * 1 1 1 1</td>
<td>(2, 9)</td>
</tr>
<tr>
<td>1 1 1 * * * * 1 * 1 1 * 1 1 * 1 1 1 1</td>
<td>(5, 11)</td>
</tr>
<tr>
<td>1 1 1 * 1 * * 1 * 1 1 * 1 1 * 1 1 1 1</td>
<td></td>
</tr>
</tbody>
</table>

- PatternHunter seed found using 4 swaps
- this can be done by hand!!
Sensitivity of Heuristic Seeds

- sensitivity of heuristic seeds, weights 9..18, similarity 70%, and length of random region 64

<table>
<thead>
<tr>
<th>weight</th>
<th>optimal sensitivity</th>
<th>swap sensitivity</th>
<th>difference to optimal</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0.729156</td>
<td>0.726279</td>
<td>0.002877</td>
<td>0.01</td>
</tr>
<tr>
<td>10</td>
<td>0.595740</td>
<td>0.594758</td>
<td>0.000981</td>
<td>0.01</td>
</tr>
<tr>
<td>11</td>
<td>0.467122</td>
<td>0.467122</td>
<td>0.000000</td>
<td>0.01</td>
</tr>
<tr>
<td>12</td>
<td>0.356430</td>
<td>0.354035</td>
<td>0.002395</td>
<td>0.04</td>
</tr>
<tr>
<td>13</td>
<td>0.264750</td>
<td>0.264512</td>
<td>0.000238</td>
<td>0.04</td>
</tr>
<tr>
<td>14</td>
<td>0.193514</td>
<td>0.192711</td>
<td>0.000803</td>
<td>0.09</td>
</tr>
<tr>
<td>15</td>
<td>0.138660</td>
<td>0.138333</td>
<td>0.000327</td>
<td>0.16</td>
</tr>
<tr>
<td>16</td>
<td>0.098942</td>
<td>0.098865</td>
<td>0.000076</td>
<td>0.17</td>
</tr>
<tr>
<td>17</td>
<td>0.070004</td>
<td>0.069874</td>
<td>0.000130</td>
<td>0.33</td>
</tr>
<tr>
<td>18</td>
<td>0.049146</td>
<td>0.048946</td>
<td>0.000200</td>
<td>0.58</td>
</tr>
</tbody>
</table>
Comparison with PatternHunter II

<table>
<thead>
<tr>
<th>similarity</th>
<th>sensitivity of the 16 seeds of PatternHunter II</th>
<th>sensitivity of our 16 seeds</th>
<th>sensitivity of our 32 seeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>60%</td>
<td>0.566640</td>
<td>0.582399</td>
<td>0.703620</td>
</tr>
<tr>
<td>65%</td>
<td>0.781508</td>
<td>0.795993</td>
<td>0.880050</td>
</tr>
<tr>
<td>70%</td>
<td>0.924114</td>
<td>0.932308</td>
<td>0.968727</td>
</tr>
<tr>
<td>75%</td>
<td>0.984289</td>
<td>0.986850</td>
<td>0.995516</td>
</tr>
<tr>
<td>80%</td>
<td>0.998449</td>
<td>0.998813</td>
<td>0.999725</td>
</tr>
<tr>
<td>85%</td>
<td>0.999951</td>
<td>0.999967</td>
<td>0.999995</td>
</tr>
<tr>
<td>90%</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

time

- 12 days
- 10 s
- 85 s
Comparison with PatternHunter II

<table>
<thead>
<tr>
<th>similarity</th>
<th>sensitivity of the 16 seeds of PatternHunter II</th>
<th>sensitivity of our 16 seeds</th>
<th>sensitivity of our 32 seeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>60%</td>
<td>0.566640</td>
<td>0.582399</td>
<td>0.703620</td>
</tr>
<tr>
<td>65%</td>
<td>0.781508</td>
<td>0.795993</td>
<td>0.880050</td>
</tr>
<tr>
<td>70%</td>
<td>0.924114</td>
<td>0.932308</td>
<td>0.968727</td>
</tr>
<tr>
<td>75%</td>
<td>0.984289</td>
<td>0.986850</td>
<td>0.995516</td>
</tr>
<tr>
<td>80%</td>
<td>0.998449</td>
<td>0.998813</td>
<td>0.999725</td>
</tr>
<tr>
<td>85%</td>
<td>0.999951</td>
<td>0.999967</td>
<td>0.999995</td>
</tr>
<tr>
<td>90%</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

| time | 12 days | 10 s | 85 s |

better multiple spaced seed; 100,000 faster!
SpEED

- **Spaced SEED** computing software
 - engineering the overlap complexity
- **Hill climbing + restart**
Spaced SEED computing software
- engineering the overlap complexity

Hill climbing + restart

repeat a fixed number of times
- guess good seed lengths
- apply overlap complexity
- use sensitivity to keep the best seed
SpEED

- **Spaced SEED** computing software
 - engineering the overlap complexity
- **Hill climbing + restart**
- repeat a fixed number of times
 - guess good seed lengths
 - apply overlap complexity
 - use sensitivity to keep the best seed
- **SpEED fast** – using only overlap complexity – polynomial
- **SpEED best** – the best seed at the end – exponential
Spaced SEED computing software
 engineering the overlap complexity

Hill climbing + restart
repeat a fixed number of times
 guess good seed lengths
 apply overlap complexity
 use sensitivity to keep the best seed

SpEED fast – using only overlap complexity – polynomial

SpEED best – the best seed at the end – exponential

compared against the best existing software for computing seeds:
 Mandala – Buhler, Keich, Sun
 Iedera – Kucherov, Noé, Roytberg
<table>
<thead>
<tr>
<th>w</th>
<th>p</th>
<th>original seeds</th>
<th>Mandala</th>
<th>Iedera</th>
<th>SpEED</th>
<th>first</th>
<th>best</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.75</td>
<td>89.6113</td>
<td>90.6608</td>
<td>90.6802</td>
<td>90.6835</td>
<td>90.9098</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>97.3159</td>
<td>97.7316</td>
<td>97.7586</td>
<td>97.7436</td>
<td>97.8337</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>99.6613</td>
<td>99.7283</td>
<td>99.7437</td>
<td>99.7414</td>
<td>99.7569</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>261</td>
<td>2,706</td>
<td>0.06</td>
<td>1,300</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>81.6772</td>
<td>83.0512</td>
<td>83.2413</td>
<td>83.1190</td>
<td>83.3793</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>94.1141</td>
<td>94.7845</td>
<td>94.9350</td>
<td>94.8619</td>
<td>94.9861</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>714</td>
<td>5,355</td>
<td>0.07</td>
<td>1,658</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>89.3037</td>
<td>90.2580</td>
<td>90.3934</td>
<td>90.2786</td>
<td>90.5750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>97.7253</td>
<td>98.0786</td>
<td>98.0781</td>
<td>98.1239</td>
<td>98.1589</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>99.8330</td>
<td>99.8633</td>
<td>99.8773</td>
<td>99.8777</td>
<td>99.8821</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,092</td>
<td>10,476</td>
<td>0.1</td>
<td>2,772</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>84.0995</td>
<td>84.3838</td>
<td>84.5795</td>
<td>84.5476</td>
<td>84.8212</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>97.1676</td>
<td>97.3023</td>
<td>97.2806</td>
<td>97.3299</td>
<td>97.4321</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>99.9260</td>
<td>99.9287</td>
<td>99.9331</td>
<td>99.9338</td>
<td>99.9388</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10,218</td>
<td>10,220</td>
<td>0.3</td>
<td>2,279</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>71.1961</td>
<td>72.1954</td>
<td>72.1695</td>
<td>72.8024</td>
<td>73.1664</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>92.5652</td>
<td>93.0855</td>
<td>93.0442</td>
<td>93.5595</td>
<td>93.7120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>99.6299</td>
<td>99.6603</td>
<td>99.6690</td>
<td>99.7372</td>
<td>99.7500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,604</td>
<td>5,432</td>
<td>0.6</td>
<td>31,374</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.70</td>
<td>92.4114</td>
<td>92.3811</td>
<td>92.0708</td>
<td>92.9759</td>
<td>93.2526</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>98.4289</td>
<td>98.4320</td>
<td>98.3391</td>
<td>98.5971</td>
<td>98.6882</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>99.8449</td>
<td>99.8448</td>
<td>99.8366</td>
<td>99.8675</td>
<td>99.8820</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>37,806</td>
<td>12,326</td>
<td>13.1</td>
<td>44,651</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>92.4114</td>
<td>92.3811</td>
<td>92.0708</td>
<td>92.9759</td>
<td>93.2526</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>98.4289</td>
<td>98.4320</td>
<td>98.3391</td>
<td>98.5971</td>
<td>98.6882</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>99.8449</td>
<td>99.8448</td>
<td>99.8366</td>
<td>99.8675</td>
<td>99.8820</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>37,806</td>
<td>12,326</td>
<td>13.1</td>
<td>44,651</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.85</td>
<td>58.6907</td>
<td>—</td>
<td>60.1535</td>
<td>60.3534</td>
<td>60.8127</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>87.3359</td>
<td>—</td>
<td>87.9894</td>
<td>88.3817</td>
<td>88.5969</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>99.2249</td>
<td>—</td>
<td>99.2196</td>
<td>99.3524</td>
<td>99.3659</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 1 day</td>
<td>62,683</td>
<td>18.8</td>
<td>29,298</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHRiMP: 4 seeds ($N = 50$)

PatternHunter II: 16 seeds ($N = 64$)

BFAST: 10 seeds ($N = 50$)
References
