
MUSIDO: A Framework for Musical Data Organization to
Support Automatic Music Composition

Ryan Demopoulos and Michael Katchabaw

Department of Computer Science
The University of Western Ontario

London, Ontario, Canada

Abstract. It is becoming increasingly prevalent in research towards automatic music composition to make use of musical
information extracted and retrieved from existing music compositions. Unfortunately, this can be an unnecessarily complex and
tedious process, given the incompatibilities in music modeling, organization, and representation between extraction and composition
algorithms. This paper introduces the Musical Data Organization platform and framework (MUSIDO), which is aimed at resolving
this problem by providing middleware to facilitate access to musical information in a simple and straightforward fashion. In doing
so, MUSIDO provides an effective method to support automatic music composition based on existing music as source data. This
paper discusses MUSIDO’s design and implementation, and presents our experiences with using MUSIDO to date.

1. Introduction

Automatic music composition is the process of writing music
withdrawn from human intervention. Many recent efforts to
improve this process focus on learning from music written by
humans, which involves extracting musical features and feeding
these data directly into composition algorithms. The capabilities
of these approaches are strongly dependent on the information
gathering mechanisms employed; fortunately, algorithms that
can automate this process are becoming increasingly
sophisticated [4].

In practice, unfortunately, it is difficult for composition
algorithms to take advantage of multiple extraction algorithms
due to differences in how these algorithms model musical data.
Most composition algorithms require musical data to be
carefully formatted for a specific purpose and so researchers
typically prefer to format their source data in a fashion that
specifically serves the needs of their own approach. Extraction
algorithms tend to collect and present information in an ad hoc
fashion as well [5], and the information gathered is seldom
meant for use in automatic composition systems, leading to
issues in interoperability.

This is particularly troublesome since most extraction
algorithms tend to focus on one aspect of music for recognition
and extraction, and most composition systems typically require
multiple sources of information to use for composition.
Integration is therefore a significant problem, because it is not
just one source to interface with, but rather many. To address
this issue, a unified way of communicating musical information
between extraction approaches and automatic composition
algorithms is needed.

Our current work introduces the Musical Data Organization
platform and framework, collectively referred to as MUSIDO.
The purpose of MUSIDO is to facilitate the development of
automatic music composition systems that rely on existing
music as source data. This is accomplished by introducing a
middleware entity to transfer musical information between
extraction and composition algorithms in an easy,
straightforward, and flexible fashion. This middleware is
comprised of two important aspects: a clearly-defined data
model specifically designed to organize musical data and
metadata, and a standard and supportive application
programming interface (API) to provide input/output access to a
platform conforming to the data model.

While other platforms and frameworks already exist for working
with musical data [1,2,7,9,11,12,14,15], these approaches either
lack elements useful for automated extraction or composition, or
were simply not designed specifically for these tasks. As a
result, they fall short in terms of their ability to specify,
represent, manipulate, store, and query musical information or in
terms of their programming interface for constructing extraction
or composition systems. In some cases, no programming
interface or ability is provided at all, meaning that a
considerable amount of development effort is required to make
use of them.

This paper presents the findings of our current work, examining
the design and development of MUSIDO in detail and
discussing our experiences in using it in developing an
automatic music composition system that makes use of music
extraction algorithms. We have found that MUSIDO greatly
facilitates the development of such systems, and does so in a
way that is a considerable improvement over existing work,
demonstrating significant potential for the future.

2. Overview of MUSIDO

Traditionally, constructing an automated music composition
system that uses existing music as source data encounters a
compatibility issue in which the music information extraction
and retrieval and algorithms and composition algorithms were
not initially designed or intended to work with one another.
This is shown in the left side of Figure 1, in which an
incompatible Automatic Music Information Retrieval (AMIR)
algorithm attempts to interface with an Automatic Music
Composition (AMC) algorithm.

Figure 1: Traditional (left) Versus MUSIDO (right) Approaches

The main goal of MUSIDO is to resolve this issue, by providing
a framework to facilitate such algorithms working together, as
shown in the right side of Figure 1. This is discussed in the next
section in detail.

2.1. The MUSIDO Framework

In designing the MUSIDO framework, we set out to achieve the
following:

• Provisioning of a middleware entity, the MUSIDO

platform, whose purpose is to communicate musical
information between music extraction and music
composition systems.

• Reduction of integration effort required through the support
of multiple types and formats of data.

• Architectural simplicity, lowering the barrier to adoption.

This led to the development of the MUSIDO framework as
depicted in Figure 2, below.

Figure 2: The MUSIDO Framework

The framework shown in Figure 2 is comprised of three types of
entities, specifically algorithms, drivers, and a central platform.
This contrasts existing frameworks for automatic composition,
such as those involving a human component, or those
resembling the left side of Figure 1, where composition
algorithms make direct use of an extraction algorithm for the
collection of musical data. The framework can also be viewed
as a workflow with each possible entity participating in one of
four separate stages:

• Data collection, comprised of one or more extraction and

retrieval algorithms, gathering musical data from
potentially multiple sources of music.

• Data organization, comprised of two entities: input drivers,
and the MUSIDO platform, which are collectively
responsible for the conversion and management of data.

• Data provision, comprised of the MUSIDO platform as
well as drivers that serve composition algorithms.

• Data utilization, comprised of one or more composition
algorithms for generating music.

The input to this workflow is pre-existing musical data; while
we consider human compositions as the primary source, our

framework does not exclude the use of synthetic data as well.
Systems conforming to the framework take these data and apply
each of the four stages in turn, eventually outputting newly-
composed music. It is important to recognize that our
framework does not provide guarantees as to the quality of
music produced; this would be impossible, since quality is based
on the particular entities participating (most importantly, the
composition algorithm) rather than the framework itself.
Instead, we strive to support automatic composition systems in
order to provide the best opportunity for quality to be evaluated
and reliably achieved.

2.1.1. MUSIDO Platform

The central and most significant component of our framework is
the MUSIDO platform. Unlike the framework itself which
exists as a conceptual entity, the platform has been implemented
and exists as usable software. It is comprised of two important
aspects: a flexible data model, and a software API. The
platform acts as a broker of musical information, providing
automated composition algorithms with musical data in a
clearly-stated manner. To achieve this level of interoperability,
our platform is not designed around any one particular digital
music format. Rather, our data model is specifically designed to
allow different types of musical formatting to co-exist, with one
important caveat: only those musical features pertinent to the
majority of compositions systems are directly supported in our
work. This helps to achieve a concisely focused API; we leave
extensions to this data model up to the individual systems that
require them. Thus, improvements can be easily made in rare
cases when they are needed; indeed it is not possible for any
data model to represent all types of musical data and metadata,
as there are a vast number of ways to analyze music itself.

Any composition system that conforms to the MUSIDO
framework is one that uses the MUSIDO platform to store and
organize passages of music that serve as input to the
composition process. Due to its emphasis and complexity, we
separately discuss the data model and API of this platform in
Sections 2.2 and 2.3 respectively.

2.1.2. Drivers

The MUSIDO platform was introduced to allow music
extraction and composition algorithms to work together
harmoniously; however, the platform itself is comprised of a
single input/output API. Newly designed algorithms will not
have difficulty working within our framework, since the API for
storing and retrieving data through the platform entity is well
known ahead of time. Unfortunately, this is not the case for
existing algorithms that have not been designed to cooperate
with the platform; thus, the platform alone does not solve the
problem of non-interoperability between these entities.

In order for previously created algorithms to communicate with
each other through the platform, we need to introduce another
entity into our framework, namely drivers. The responsibility of
a driver is to facilitate the exchange of information between an
extraction or composition algorithm and the MUSIDO platform;
specifically, drivers translate information between the platform’s
API and the musical format expected by these algorithms. In
simple terms, drivers extend existing algorithms so that they are
compatible with the input/output API of our platform; in cases
where these algorithms have been explicitly designed to work
with MUSIDO, drivers may be unnecessary—in reality, they
have already been built into the algorithm itself.

The very requirement for driver entities raises an important
question: how does the MUSIDO framework differ from a
traditional framework, considering that drivers could be written
to allow direct communication between a music extraction
process and a composition process? It is true that current
composition systems which make use of existing musical data
already make use of some form of driver; however, these drivers
are almost always integrated directly into the composition
algorithm rather than existing as a separate entity, thus
demonstrating the improved modularity of our approach. More
importantly, even if these drivers were extracted into their own
module, the MUSIDO framework would have two distinct
advantages. The first advantage of our framework is that its
platform is capable of converting many types of musical data
automatically, whereas extraction and composition algorithms
traditionally are not. As a result, the process of creating a driver
to sit between two of these algorithms would often be
significantly more complex, since the drivers themselves would
require complex conversion logic.

A second and even more important advantage that our
framework provides is reusability of algorithms. While it may
not be unreasonable for a single driver to be written within a
traditional framework, such a driver would only be useful to the
specific extraction/composition algorithm combination that it
bridges. A problem would occur, say, if the composition
algorithm designers wished to make use of a different or new
extraction algorithm for gathering data. In such a case, an
entirely new driver (with a different set of potentially complex
conversion logic) would be needed. Thus, combining the
MUSIDO platform with supporting drivers allows one
algorithm/driver combination to serve a potentially limitless set
of other algorithms interacting with the platform.

Mathematically, suppose we have m extraction algorithms and n
composition algorithms. To interface each extraction algorithm
with each composition algorithm directly would require m*n
points of integration. To interface each extraction algorithm
with each composition algorithm using MUSIDO, however,
would only require m+n points of integration, to produce the
driver for each algorithm in question to interface with the
MUSIDO platform. Furthermore, in this scenario, if a new
extraction algorithm was created, n points of integration would
be required to directly interface it with each composition
algorithm, and if a new composition algorithm was created, m
points of integration would be required to directly interface it
with each extraction algorithm. Using MUSDIO, however, only
one integration step would be required with each new algorithm,
to develop a driver to enable interactions with MUSIDO.

2.2. Platform Data Model

Prior to developing a software implementation of the MUSIDO
platform, our work focused on the design of a data model that
would satisfy the key goals of our middleware, most of which
came from our review of existing algorithms as outlined in [3].
Currently we offer support for many features found in common
Western civilization music; our model does not fully support
other musical styles from different cultures, however we have
preserved flexibility throughout the design process, and in some
cases we have explicitly included facilities that allow alternative
music forms to be expressed.

Our data model serves to organize two types of musical
information. First, many elements that have some
corresponding representation on a musical score (such as notes,
phrases, and bars) are modeled in a hierarchical fashion. The

second type of data is concerned with descriptive non-score
elements (including metadata), which serves to represent
musical information in a variety of capacities. In each of these
cases, the data model is only meant to encompass those data
types that are immediately applicable to automatic music
composition, to avoid adding unnecessary complexity to the
platform when compared to improved utility.

For brevity, the subsections below only provide an overview of
various elements from our data model. For further details on the
entire data model, the reader is urged to consult [3].

2.2.1 High-level Structure

The highest abstraction of our data model is concerned with how
musical information collected by musical information extraction
algorithms can be grouped and stored as individual entities,
shown in Figure 3. Broadly speaking, all musical information
within our platform is stored within a Repository. Repositories
are analogous to database instantiations such that each
Repository is capable of storing any number of Record objects;
the purpose of this is to allow a way to group common Records
into one conceptual set.

Record objects exist to track a single passage of music; usually
this will be a song. Each can be described using the various
types of data in our model, though very few data are required
and in many cases fields can be left unspecified. Furthermore,
Records stored in the same Repository may contain different
degrees of information; there is no requirement that these
Records must be similar in structure, allowing Repositories to be
very flexible in organization. For example, suppose that a
Mozart Repository is created, and two extraction algorithms are
used to store Records in the Repository. One of these
algorithms may be responsible for identifying chord
progressions that occur within a set of pieces, while another
algorithm may be responsible for creating a Record to supply
statistics on the distribution of Mozart’s use of pitch intervals.
These data can be stored in separate Records, all within the
same Repository, even though each Record is responsible for a
different type of data than the others. In this case, Records
would not be representing songs, but rather aspects of music.

In general, Records are meant to contain only those data needed
for any particular application. Each of the possible data types
that can be stored directly into a Record object is explained in
the subsections that follow:

• A list of Sections that occur within the Record, such as

verses and choruses.
• A list of musical Parts.
• A set of directives, which provide instructions on how the

passage should be performed.
• A set of properties (or details), such as a title for the record

or the name of a composer.

Records are flexible for storing musical information, being able
to contain data from merely a few musical statistics on a piece,
to entire pieces themselves. Ultimately, extraction algorithms
decide what musical information should be extracted from
existing music and stored. In some cases, these algorithms may
extract and store important musical features along with the
entire piece from which those features are derived, all within the
same Record. This is possible due to the flagging system that
our data model provides where themes, repeating sequences,
melodic lines, and other passage types can be identified as a
subset within a Record.

2.2.2. Sections

We define musical structure as a set of abstract conceptual
divisions within a piece, using a collection of Section elements
in our data model. Each Section is a segment of music bound by
a starting bar and beat and an ending bar and beat. This allows
several different types of Sections to be specified for a single
passage of music, with each potentially overlapping as well. As
an example, a Record that represents a folk song may have one
Chorus Section and five Verse Sections. This is useful for
automatic composition systems to apply analysis on different
parts of a piece, or to determine how the structure of newly-
formed music should occur if attempting to mimic existing
work.

Our model defines five types of Sections by default: Chorus,
Verse, Bridge, Climax, and Alternate Ending. The model, as
mentioned earlier, is highly extensible, allowing other Section
types to be defined as necessary.

2.2.3. Parts

One of the most important aspects of music is the actual notes
that are played. In our platform, musical Notes and Bars are
assembled into Parts. This follows common conventions: most
prominent digital music formats organize data this way as well,
including GUIDO [8], MuseData [9], MusicXML [6], and
Lilypond [13], since printed musical score is organized in this
manner. Platform Records contain a set of Parts, each of which
contains the following: a unique integer identifier number, an
Instrument, a set of directives, a set of Musical Effects, a set of
Lyrics, a set of Dynamics, a set of Bars (containing Notes in
Note Positions), a set of Contours, and a set of Chords (serving
as a Chord progression).

Some of these associations may be somewhat obvious in design.
It is clear that Bars should be associated with Parts, according to
the common layout of music. The integer assigned to a Part
serves as a unique ID value within a Record; this allows data
associated with the part to be retrieved directly, or through the
data projection system supplied by the platform. Also, the

association of an Instrument to a Part merely reflects the same
common association that exists in real-world music; both written
score and digital formats such as MIDI already assign single
Instruments to Parts, even though it is possible that two
instruments could potentially have notes on the same musical
line, as is sometimes done in choral music. In such cases, our
platform’s 1:1 mapping of Part to Instrument requires that
polyphonic multi-voiced parts be separated into separate lines of
music. As a practical aide to most existing algorithms that deal
with MIDI, our platform implementation includes a subclass of
Instrument specifically designed to represent a MIDI instrument,
including a field for a MIDI patch number.

In contrast to the more obvious design decisions above, it may
be less apparent as to why the remaining elements are associated
with Parts, rather than some other entity. For example, many
types of musical contours can exist at a finer granularity, such as
pitch contours within Bar objects. It would seem advantageous
to associate these Contours with Bars rather than with Parts; in
the case where a Contour is needed that spans an entire Part, one
could be created from the individual Contours of each Bar
contained within, although some method of determining
Contour symbols between Bars themselves would be needed.
While this is true, the MUSIDO platform (and Records in
particular) is designed to hold partial information. Consider a
music extraction algorithm that operates on MIDI data by
extracting a pitch contour from the notes that occur in a melodic
line. If our platform required that the contour be broken down
on a per-Bar granularity, then some understanding of the Bar
divisions of the piece would be required. Unfortunately, MIDI
data does not include any notion of Bar lines or divisions; thus,
the algorithm would not be able to specify the contour within the
platform unless it first applied some additional extraction
approach to Bar induction; certainly a considerable problem, and
even more so in other cases such as Chord progressions, where
the challenge of extracting Chords is already very difficult.
Thus, our approach allows the full specification of a Contour
within a Part, regardless of the presence of musical Bars.

In some cases it may make sense to track a type of data on a
Bar-per-Bar basis, and yet this same type of data may also cross

Figure 3: High-level Structure of the MUSIDO Data Model

bar line boundaries. For example, many Dynamics can easily be
attributed to a specific note within a specific Bar. Despite this,
Dynamics may also span across several Bars; for
example, a crescendo may occur over a long sequence of notes.
To store these data, two solutions exist: track Dynamics within
Bars with complex analysis required for those Dynamics that
cross bar lines, or simply track Dynamics according to Parts,
requiring that a start time and possibly a finish time be set. The
latter option maintains simplicity, particularly for developing a
platform API, whereas the former requires complex and
expensive algorithms to coordinate dynamics participating in
several Bars. Thus, we take the latter approach, applying this to
Lyrics, Chord progressions, and Musical Effects also.

2.2.4. Directives

The purpose of a directive is to provide general musical
instructions for the entities that it is associated with. In our
platform, we make use of two types of directives.

The Record Directive type may seem to serve a similar purpose
to the Record Details type (discussed in next section); while
both provide data that affects or describes the entire Record as a
whole, they are different in two regards. First, Record
Directives describe musical features while Record Details are
responsible for musical metadata. In particular, Record
Directives describe how music should sound; our current
platform includes a core set of directives, while extensions to
these may be included by other specific systems. The second
difference between these entities is that Record Directives take
place at a specific point within a piece, rather than applying to
the piece universally. This is reflected in the hierarchy of the
class; each directive has a distinct start and end point as defined
by the four temporal variables tracking bar and beat timing.

Part Directives closely resemble Record Directives; their
purpose is very similar, only limited to the scope of the
particular Part that they are associated with. A wider range of
directive types exist for Parts; in particular, data concerning how
a piece is traversed and what play style should be used are
included, again leaving the option for additional directives to be
defined by individual systems using our framework.

2.2.5. Record Details

Aside from musical features, Records also contain metadata
describing this information. There is potentially a large amount
of data that could exist on a musical piece or passage; this was
learned early in the data modeling process of the Record class,
where the number of variables and functions involved quickly
became unreasonable to track in a concise manner. Thus, we
have chosen to separate all metadata described for musical
Records in a separate object called Record Details. Record
Details can include a wide variety of attributes, including title,
composer, composition date, genre, status, quality ranking, data
format, and so on.

There are two purposes for storing Record metadata in general.
First, these data may be useful in describing some aspect of
music to be considered by a composition system when
generating new compositions; for example, a composition
system may use the title of an existing piece to give some
indication of what a newly-composed piece should be named.
The number of applications in this regard are probably few, but
still potentially useful. The second and likely more common
way to use these metadata is for the purpose of Record
organization. For example, a composition system using a large

Repository of Records may wish to isolate only Jazz Records, or
perhaps only those musical passages written by a particular
composer. This descriptive information lends well for
categorizing Records into utility-specific groups.

2.3. Application Programming Interface

The API supported by the MUSIDO function consists of three
categories of functionality: input, output, and processing. Input
and output functions are fairly straightforward: input functions
take musical data into the platform, while output functions allow
musical data to be retrieved, either at a low-level in a more
direct fashion, or at a high-level, in which the data can be
organized to make common information-gathering tasks simpler
to accomplish.

Processing functions are provided to enable computational
offloading. In some cases, the data stored in MUSIDO may
require analysis or manipulation that goes beyond mere
reorganization. We have therefore included some functions that
act as composition services, processing common tasks that many
composition systems require based on our observations as
discussed earlier in this paper. These include functions for
format conversion, contour conversion, data projection,
transposition, statistical calculations, and so on.

Further details on this API can be found in [3].

3. Prototype Implementation

The primary goal of the MUSIDO platform is to allow a wide
range of music extraction and composition algorithms to
communicate information across the platform. In an effort to
satisfy this goal, we have chosen to implement this middleware
in two different languages: Microsoft’s J♯ .NET, and Sun’s
Java. These languages are designed to operate over a diverse
range of heterogeneous operating systems; while Java currently
offers greater portability, an increasing number of software
developers are making use of the .NET platform, and we felt it
was important to provide application interoperability in this
environment as well. Our selection of J♯, rather than another
.NET language, was motivated by the potential for simple code
migration. J♯ uses a syntax identical to that of Java, and nearly
all of J♯’s API is a subset of Java’s; precisely, J♯ is equivalent
to J2SE v1.1.4. As a result, our code was written in J♯ knowing
that migration to Java would be trivial. Also, due to the .NET
framework’s internal language compatibility, our platform can
be compiled as a .NET dynamic link library (DLL) and used in
other more common .NET languages, such as C♯, C++, and
Visual Basic.

Unfortunately, the J2SE v1.1.4 API, and thus J♯’s API, is not
sufficient to allow many automatic composition systems to be
written in J♯. The source of this problem is a lack of support for
MIDI data; specifically, the javax.sound.midi package was not
added to J2SE until revision 1.2, and so this package is not
available when using J♯. As previously mentioned,
compositions systems frequently use MIDI data to specify
newly-written music, and so the absence of complex MIDI-
creation logic serves as a major deterrent to the use of J♯ for a
system conforming to the MUSIDO framework. Currently, the
best way to avoid this problem is to refrain from using J♯ as a
potential language for developing a music composition or
extraction system. The popular language C♯ does include MIDI
data support, and the MUSIDO platform can still be used in this
language when imported as a DLL package.

For developers desiring to use J♯ as a basis for their systems, an
alternative does exist; in fact, the AMEETM composition system
[10], with which most of our validation was done, is written in
J♯. AMEETM uses a customized J♯ version of the MIDI
package from Java. This package was originally taken from the
GNU Classpath project, and was modified to work in the .NET
environment by the developers of AMEETM. This solution not
only allows some composition systems to work with MIDI in J♯,
but it also preserves the code migration benefits of working with
Java/J♯ syntax. Thus, while this customized package is not part
of our platform’s design, we consider it an important extension
for systems using MUSIDO in J♯.

4. Experiences

To validate MUSIDO’s use in supporting automatic music
composition, we conducted a variety of tests and experiments.
This section provides a brief overview of our experiences; the
reader is urged to consult [3] for additional details as necessary.

Initial testing involved ensuring that MUSIDO could effectively
communicate musical information between music extraction and
composition algorithms. Through the use of simple algorithms,
drivers were constructed to interface them with MUSIDO, and
they were able to use MUSIDO easily and efficiently through its
API to store, organize, and retrieve various musical elements.

More substantial evaluation of MUSIDO came in the form of
testing with the automatic music composition system known as
the Algorithmic Music Evolution Engine (AMEETM), as
discussed earlier. Four simple music extraction algorithms were
developed to gather themes, chords, probabilistic values, and
contours from existing pieces of MIDI music. This data was fed
into MUSIDO, and accessed by AMEETM through the use of
appropriate MUSIDO driver modules.

In doing this integration, we found that AMEETM was able to
produce music quite effectively using the musical information
retrieved from MUSIDO, and was able to produce music using
MUSIDO that was identical to a direct integration with the
aforementioned extraction algorithms. The music composed in
both cases was identical, both in the time, onset, and rhythmic
feature domains. This helps to confirm the correctness of the
MUSIDO platform itself; no loss of information on pitch,
rhythm, or onset time is experienced when the platform is used.
In the process, we did find, however, that MUSIDO greatly
facilitated integration efforts, allowing AMEETM to access
musical information far more easily than with a traditional,
direct integration with the algorithms.

In the end, our initial experiences indicated that MUSIDO both
allows for an efficient and effective exchange of musical
information between music extraction and composition systems,
and enables this exchange far more readily than direct
integration. This demonstrates that MUSIDO is quite promising
for supporting automatic music composition efforts in the future.

5. Conclusions and Future Work

Using existing music as source data in automatic music
composition systems is an approach attracting more attention
from the research community. Our current work in MUSIDO is
aimed at supporting this work by providing a framework to
allow music extraction and music compositions to exchange
musical information to support composition processes. Early
experiences with MUSIDO have been quite successful,
demonstrating great promise for continued work in the future.

There are several potential research directions to be explored in
the future. We would like to continue experimentation with
MUSIDO, in particular through user evaluation of MUSIDO and
its results. Support for additional music formats and
representation could be added to MUSIDO, allowing the
platform to work with music in GUIDO notation, MusicXML,
and sampled formats. We would also like to study the extension
of MUSIDO to include musical concepts that are currently
unsupported, including musical elements from other cultures.

References

[1] C. Agon, G. Assayag, M. Laurson, and C. Rueda.

Computer Assisted Composition at Ircam: PatchWork &
OpenMusic. Computer Music Journal, 23(5), 1999.

[2] G. Assayag, M. Castellengo, and C. Malherbe. Functional
Integration of Complex Instrumental Sounds in Music
Writing. In Proceedings of the 1998 International
Computer Music Conference, San Francisco: International
Computer Music Association, 1985.

[3] R. Demopoulos. Towards an Integrated Automatic Music
Composition Framework. Masters Thesis, Department of
Computer Science, The University of Western Ontario,
London, Canada, May 2007.

[4] R. Demopoulos and M. Katchabaw. Music Information
Retrieval: A Survey of Issues and Approaches. Technical
Report #677, Department of Computer Science, The
University of Western Ontario, London, Canada, January
2007.

[5] S. Doraisamy and S. Rüger. A Comparative and Fault-
tolerance Study of the Use of n-grams with Polyphonic
Music. In 3rd International Symposium on Music
Information Retrieval, Paris, France, October 2002.

[6] M. Good. MusicXML for Notation and Analysis. In The
Virtual Score: Representation, Retrieval, Restoration,
W. Hewlett and E. Selfridge-Field, eds., MIT Press,
Cambridge, MA, 2001.

[7] M. Henz, S. Lauer, and D. Zimmermann. COMPOzE:
Intention-based Music Composition through Constraint
Programming. In Proceedings of the IEEE International
Conference on Tools with Artificial Intelligence, Toulouse,
France, November 1996.

[8] H. Hoos, K. Hamel, K. Renz, and J. Kilian. The GUIDO
Notation Format – A Novel Approach for Adequately
Representing Score-Level Music. In Proceedings of the
International Computer Music Conference, 1998.

[9] W. Hewlett. MuseData: Multipurpose Representation. In
Beyond Midi: the Handbook of Musical Codes, MIT Press,
Cambridge, 1997.

[10] M. Hoeberechts, R. Demopoulos, and M. Katchabaw. A
Flexible Music Composition Engine. Proceedings of Audio
Mostly 2007: The Second Conference on Interaction with
Sound. Ilmenau, Germany, September 2007.

[11] D. Huron. The Humdrum Toolkit: Reference Manual.
Center for Computer Assisted Research in the Humanities,
Menlo Park, California, ISBN 0-936943-10-6, 1995.

[12] M. Laurson and J. Duthen. PatchWork, a Graphical
Language in PreForm. In Proceedings of the International
Computer Music Conference, San Francisco, CA, 1989.

[13] H. Nienhuys and J. Nieuwenhuizen. Lilypond, a System
for Automated Music Engraving. In XIV Colloquium on
Musical Informatics, Firenze, Italy, May 2003.

[14] D. Psenicka. FOMUS: A Computer Music Notation Tool,
FOMUS Project Documentation. February, 2007.

[15] A. Sorensen and A. Brown. Introducing jMusic. In
InterFACES: Proceedings of The Australasian Computer
Music Conference. Brisbane, Australia. 2000.

