
Proceedings of DiGRA 2005 Conference: Changing Views – Worlds in Play.
© 2005 Authors & Digital Games Research Association DiGRA. Personal and educational classroom
use of this paper is allowed, commercial use requires specific permission from the author.

Bringing New HOPE to Networked Games:
Using Optimistic Execution to Improve

Quality of Service

Ryan Hanna, Michael Katchabaw
Department of Computer Science

The University of Western Ontario
London, Ontario, Canada

Tel: +1 519-661-4059
rhanna@uwo.ca, katchab@csd.uwo.ca

ABSTRACT
As more games of a wider variety of genres move online to provide multiplayer experiences to
their players, there is an increasing need to improve the quality of service delivered to the players
of these games. Players tend to have the same performance and consistency expectations of their
online multiplayer games as they do of their single player games, without realizing the issues and
problems introduced by networking their games together. This results in a tremendous challenge
for developers of networked games, because issues such as latency work strongly against
meeting the needs of players.

In this paper, we discuss the concept of optimistic execution to help game developers mask or
hide the effects of latency in their networked games. We introduce the notion of optimistic
execution, present our work in this area, dubbed New HOPE, and comment on its ability to assist
game developers in this important area.

Keywords
Latency, lag, and delay reduction, optimistic execution, quality of service.

INTRODUCTION
Despite improvements to networking technologies, adverse network conditions continue to have
serious consequences for online games. With online games one of the fastest growing industry
segments [7], and with players bringing the same quality of service expectations from their
offline experiences to their online experiences, the challenges faced by developers of networked
games are only going to increase.

Latency (also commonly referred to as lag or end-to-end delay) is an especially challenging
problem [2], leading to anything from minor annoyance to a totally unplayable experience. In
some respects, unfortunately, there is little that can be done, particularly for games played over
wide area networks, such as the Internet. Ultimately, the speed of light is not amenable to
change.

Action-oriented games are hardest hit by latency issues. Recognizing this, there have been
several proposed solutions, many of which focussed at shooting aspects of first-person shooters,
such as [1,5]. Unfortunately, these solutions tend to be very narrow and very ad hoc, applying
only to one aspect of a single genre of games. They also tend to either induce confusing
gameplay or introduce potential inconsistencies that can break immersion in the game quite
easily [2]. Using client side prediction to hide movement-related latency is a common technique,
but ultimately has limitations [4]. With more varied gameplay moving online, a more general,
flexible, and robust solution is necessary.

Our current work introduces a new formalism to networked games: optimistic execution. The
basic premise behind optimistic execution is to allow certain game activities to occur without
checking with other parts of the game first, provided that the outcomes of the activities are
predictable and recoverable, in case predictions turn out to be incorrect once synchronization
occurs. Optimistic execution of such activities occurs in parallel with confirmation of their
outcomes, allowing the latency of synchronization to be effectively hidden from the player.

Elements of optimism can be found in earlier work in this area, but in an ad hoc fashion, without
the formalisms and support necessary to properly make use of it. By providing appropriate
design methodologies and programming constructs, developers have complete control over how
optimism is used within their games, and can even cede some of this control to the games, or
their players. Consequently, optimistic execution has the potential to provide the latency
solution desperately needed.

We begin this paper with a discussion of the original HOPE, which served as a starting point for
our current work. We then present New HOPE, an evolution of HOPE specifically targeted
towards the needs of networked games. We discuss a proof of concept of New HOPE, as well as
work in progress towards providing tools support to game developers for optimistic game
development. We finally conclude our paper with a summary, and discussion of future work in
this important area.

HOPE
HOPE (Hopefully Optimistic Programming Environment) [3] was developed at the University of
Western Ontario to bring optimistic execution to networked applications, before the current

surge in popularity of networked multiplayer games. It was intended to support non real-time
applications such as banking systems and other transaction-oriented systems in which a complete
rollback of activity could be accomplished when an optimistic prediction was discovered to be
incorrect.

Consider, for example, the traditional (pessimistic) execution scenario shown in Figure 1:

Figure 1: Traditional, pessimistic execution.

When program execution reaches a remote operation, it must block and wait for the results of the
computation to be executed remotely before proceeding with execution. Execution in this case is
considered pessimistic in that it must be certain of the results checked before proceeding. If
latency is high, it can take considerable time to receive the necessary results; in the mean time,
program execution has been suspended. For example, if a player was moving in a multiplayer
game, and every movement required a synchronization check before it was permitted, the
performance of the game would be seriously affected.

If the result generated can be predicted with reasonable certainty, optimistic execution could be
used to mask the latency and allow computation to proceed while the result was still being
calculated. To support this, HOPE introduced the concepts of guesses, affirmations, denials, and
rollbacks, among other formalisms [3], as shown in Figure 2:

Figure 2: Optimistic execution in HOPE.

The remote operation in this case begins with a guess. If we presume that the value of the result
is highly predictable, this value is guessed and assumed to be valid. Optimistic execution of the
program proceeds based on this assumption until the result is computed remotely and is made
available to the program. When the actual computed result is checked against the assumed
result, there are two possible outcomes. The first possibility is that there is a match, and the
optimistic assumption has been affirmed. In this case, execution can proceed without alteration,

and the latency of the computation and communication involved has been effectively hidden.
The second possibility is that the actual result and assumed result do not match. In this case, the
optimistic assumption is denied, and all execution that happened in the mean time is rolled back
until the program is in the same state it was when the guess was originally made. At this point,
the program has no choice but to continue execution as if the guess was never made, and the
program was executing using the pessimistic model in Figure 1. In doing so, however, no time
has been lost, except for the overhead involved in the rollback.

While suitable for transaction-oriented applications, HOPE is not suitable for networked games.
These games are very much real time interactive multimedia applications, and the methods
employed by HOPE for managing optimistic execution will not work well in this environment.
Ultimately, a total rollback does not make sense for networked games. This would be
tantamount to undoing player actions and reactions, moving the game backwards in time. This
would break immersion and believability in the game, and is highly undesirable. For example,
undoing the firing of a weapon in a game could be very problematic.

NEW HOPE
While HOPE cannot be directly applied to networked multiplayer games as is, it still contains
many of the philosophies and theories required to support optimistic execution in a compatible
fashion. New HOPE is a new embodiment of HOPE that is specifically designed for real-time
applications and the needs of networked multiplayer games, as discussed in the sections below.

Programmable Optimistic Execution
If the results of activities are predictable and recoverable, then execution is allowed to proceed
without first checking the results of the activities, much as in the original HOPE The results are
checked when they become available, without stalling the game to wait.

Recovery, Not Rollback
Unlike HOPE, which requires a full rollback for every optimistically executed action, New
HOPE requires recoveries. A recovery is a method of handling an incorrect optimistic prediction
while keeping the flow of gameplay moving forward. When completed, a recovery procedure
must bring the game into a consistent and acceptable state.

Consider the new optimistic execution scenario in Figure 3. The primary difference between this
scenario and the scenario in Figure 2 is the use of recovery on the denial of a guess, instead of
rollback. By carefully selecting a recovery appropriate to the game context, execution can
proceed forward without having to go back first. (If multiple recovery methods are possible, one
can be selected randomly, using a weighted process, or based on the operation and actual results
received.) When a guess is incorrect, the optimistic execution depending on that guess is also
incorrect, and the recovery attempts to correct this situation as best as possible. For example, if a
player in a game was attempting to jump onto a moving object, it may be reasonable to assume
that they made the jump. If it is determined the jump was missed after checking the result, a
suitable recovery could be to have the player slip and fall from the obstacle to place the player in
a consistent state in the game.

Figure 3: Optimistic execution in New HOPE.

While optimistic execution in this fashion may allow incorrect computations to occur while in a
speculative state, it is better than the alternatives. Pessimistic execution forces the player to
experience the latency involved, while optimistic execution hides it. A controlled recovery is
better than a rollback, and is better than either no recovery or an ad hoc or uncontrolled recovery.
If guesses are made when appropriate, and recoveries in place are suitable, then the optimistic
execution of New HOPE will work quite well. If, on the other hand, outcomes of a remote
operation cannot be predicted, or if the actions taken while in a speculative state cannot be easily
recovered from, then optimistic execution could be hazardous and lead to undesirable effects.

Flexibility in Control of Optimistic Execution
To provide more flexibility in control over what executes optimistically in a game, new
optimism primitives were added to New HOPE. One primitive, padding, is depicted in Figure 4.

Figure 4: Optimistic execution in New HOPE with padding.

Padding is, in essence, a distraction element added to hide latency before proceeding with
optimistic execution in cases where guesses are uncertain or recoveries are difficult. By using
padding, the amount of optimistic execution can be limited to what is acceptable under the
circumstances, while at the same time hiding the inherent latency in the remote operation. If the
length of the padding element is equal to or greater than the latency of the operation in question,
then an essentially pessimistic execution can begin after the result check, without the delays
made apparent by a pessimistic execution. For example, if a player wanted to pick up an item
and add it to their inventory, an animation could be played of the player’s character bending over
to pick up the item, while the corresponding remote operation occurs in the background. In this
case, the animation distracts the player from recognizing the latency involved in the operation.

Another primitive added to provide more control over optimistic execution comes in the form of
synchronization points. A synchronization point can be added to either check on the status of a
remote operation (non-blocking mode) or to force a wait for the remote operation to complete
(blocking mode). This can be used to prevent further optimistic execution from proceeding if
that execution would be difficult to recover from. It is important to note that recovery would still
be necessary upon denial for any optimistic execution up until this point, however. This is
shown in Figure 5.

Figure 5: Optimistic execution in New HOPE with synchronization points.

Variable Predictability
The state of a game can be used to make optimism decisions dynamically, unlike HOPE. When
game state makes a certain action more predictable, then that action can be completed
optimistically. When game state makes the results of an action less certain, for example below
an acceptable threshold, then the action should be carried out pessimistically, waiting for the
results before continuing. For example, as the number of players in an area of the game world
increases, the less predictable the situation becomes; the fewer the number of players, the more
predictable outcomes are. Revisiting the previous example in picking up an item, the chances for
success are extremely high if no one else is in the area. If there are several other players in the
area, however, it becomes more possible that another player would attempt to pick up the item at
the same time, and the end result becomes less predictable.

The predictability threshold mentioned above can be presented to users as a tuneable game
parameter. Players that would ordinarily experience considerable latency within a game can set
the threshold lower, allowing more operations to occur optimistically to reduce the effects of lag.
(More recoveries would be required in such a case, however, as predictions made could be less
certain than before.) Players encountering less lag can keep the threshold higher to avoid the
need for recoveries. Ideally, the game can tune this threshold itself dynamically in response to
observed network latency, but it is also good to give players control over their experiences.

EXPERIENCES WITH NEW HOPE
In this section, we briefly describe a proof of concept for New Hope, and present a discussion of
our experiences to date.

Proof of Concept
As proof of concept, we implemented new optimistic algorithms in the Zen of Networked
Physics simulation environment [4]. This environment provides the ability to simulate a cube
moving around an environment with a physics model applied, along with a projection of the
cube’s state to a server and remote client. Varying degrees of latency and packet loss can also be
applied to observe first hand the effects of network conditions on the experience viewed locally
and remotely. This environment also provides algorithm components for client side prediction,
smoothing (to help recover from the inevitable snapping in client side prediction), and forward
error correction (to reduce the impact of packet loss). Consequently, this environment provides a
solid experimental framework for investigating optimism in networked games.

Using elements from New HOPE, and the facilities from the simulation environment, we
constructed several new optimistic algorithms. This includes algorithms for client side
adjustment of player state, and a client projection of state. The former algorithm used padding to
adjust the momentum of a cube to allow a portion of latency to be masked by a more realistic
responsiveness of the cube, while employing optimistic execution afterwards and smoothing as a
recovery procedure in case execution would incorrectly predict the state of the cube. The latter
algorithm projected the cube’s position in the future, taking predicted latency effects into
consideration, and optimistically provided this state to the simulated server and remote client.
Smoothing or rollback could be used as recovery procedures in this optimistic algorithm, with
rollback provided to demonstrate why it is not a good idea in optimistic programming for
networked games. Details on these algorithms can be found in [6]; a screen shot of the
simulation tool using client side adjustment of player state can be found in Figure 6.

Figure 6: Client side adjustment of player state, with client state (green cube) matching

server state (white cube) despite latency.

Discussion
Our experiences with implementing algorithms using primitives from New HOPE have
demonstrated that New HOPE is sufficiently rich to represent a wide variety of optimistic
algorithms suitable for use in networked video games. Clearly, however, more rigorous
experimentation, including performance analyses, is necessary to ensure New HOPE is ready for
widespread use.

We also learned that while it is possible to implement an Application Programming Interface
(API) for New HOPE that presents optimism primitives (guesses, affirmations, denials,
recoveries, padding, synchronization points, and so on) directly to the programmer in a fashion
similar to [3], providing an API that hides these details would be quite difficult. To truly take
advantage of optimism, the developers of networked games have to be aware of it and must be
knowledgeable in using it wisely. This reaffirms the findings of [3].

This indicates a need for modelling tools to assist developers in reasoning about the desired
levels of optimism in their games, the potential effects of optimism, and the kinds of guesses,
padding, and recoveries required to support it. With the appropriate modelling tools, developing
an optimistic networked game could be greatly simplified.

CONCLUDING REMARKS
Latency remains a challenging problem to the development and success of networked
multiplayer games. New HOPE is aimed at reducing or eliminating the effects of latency to
produce more enjoyable gaming experiences for players. To date, we have completed work in
developing formalisms for New HOPE and developed algorithms using the optimism primitive
from New HOPE as proof of concept, as discussed earlier in this paper. Furthermore, we have
work well in progress towards a complete API and modelling tools for optimism in networked
games. In the future, plans are to complete these developments, and to continue experimentation
to validate New HOPE, as discussed above.

REFERENCES
1. Y. Bernier. “Latency Compensating Methods in Client/Server In-game Protocol Design and Optimization.”

Presented at the 2001 Game Developers Conference. San Francisco, California. March 2001.
2. J. Blow. Miscellaneous Rants. Appeared in Game Developer Magazine. May 2004.
3. C. Cowan. “A Programming Model for Optimism”. PhD Thesis. Department of Computer Science, The

University of Western Ontario. February 1995.
4. G. Fielder. “Zen of Networked Physics”. Presented at the 2004 Australian Game Developers Conference.

Melbourne, Australia, December 2004.
5. J. Fraser. Zeroping Frequently Asked Questions. Accessible online at: http://zeroping.home.att.net. April

2000.
6. R. Hanna. “Bringing New HOPE to Networked Games Research Project”. Undergraduate Thesis,

Department of Computer Science, The University of Western Ontario. London, Ontario, Canada, March 2005.
7. PricewaterhouseCoopers LLP. PricewaterhouseCoopers LLP Global Entertainment and Media Outlook: 2004-

2008. PWC Report, 2004.

